首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an assessment of climate change impacts on the hydrologic regime of the 600,000 km2 Upper Paraguay River basin, located in central South America based on predictions of 20 Atmospheric/Ocean General Circulation Models (AOGCMs). We considered two climate change scenarios from the Intergovernmental Panel on Climate Change (IPCC) and two 30-years time intervals centered at 2030 and 2070. Projected temperature and precipitation anomalies estimated by the AOGCMs for the study site are spatially downscaled. Time series of projected temperature and precipitation were estimated using the delta change approach. These time series were used as input to a detailed coupled hydrologic-hydraulic model aiming to estimate projected streamflow in climate change scenarios at several control points in the basin. Results show that impacts on streamflow are highly dependent on the AOGCM used to obtain the climate predictions. Patterns of temperature increase persist over the entire year for almost all AOGCMs resulting in an increase in the evapotranspiration rate of the hydrological model. The precipitation anomalies show large dispersion, being projected as either an increase or decrease in precipitation rates. Based on these inputs, results from the coupled hydrologic-hydraulic model show nearly one half of projections as increasing river discharge, and other half as decreasing river discharge. If the mean or median of the predictions is considered, no discernible change in river discharge should be expected, despite the dispersion among results of the AOGCMs that reached +/?10 % in the short horizon and +/? 20 % in the long horizon, at several control points.  相似文献   

2.
Previous studies have revealed some common biases in coupled general circulation model’s simulations of the East Asian (EA) winter monsoon (EAWM), including colder surface air temperature and more winter precipitation over the EA region. In this study, we examined 41 fully coupled atmosphere–ocean models from fifth phase of the Coupled Model Intercomparison Project (CMIP5), which will be widely used in the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC), and address whether the current state-of-the-art CMIP5 models can characterise the climatology of the East Asian winter monsoon. We also compared the results with the models from third phase of CMIP, which was extensively used in the fourth assessment report of the IPCC. The results show that the cold surface air temperature (SAT) bias is lessened and the precipitation amount decreased with the current CMIP5 models. Moreover, the CMIP5 models performbetter at predicting surface winds and high-level jet streams than the CMIP3 models. Moreover, CMIP5 models show more model consistency in most EAWM parameters, and the interannual variability of the SAT is closer to the observations. We also examined the change in the radiation energy budget in the CMIP5 models and compared with CMIP3 models. Although the improvements are significant, deficiencies still exist in the simulation of the EAWM, e.g., the stronger EA major trough and the stronger zonal sea level pressure gradient.  相似文献   

3.
In this study, the influence of climate change to California and Nevada regions was investigated through high-resolution (4-km grid spacing) dynamical downscaling using the WRF (Weather Research & Forecasting) model. The dynamical downscaling was performed to both the GFS (Global forecast model) reanalysis (called GFS-WRF runs) from 2000?C2006 and PCM (Parallel Climate Model) simulations (called PCM-WRF runs) from 1997?C2006 and 2047?C2056. The downscaling results were first validated by comparing current model outputs with the observational analysis PRISM (Parameter-elevation Regressions on Independent Slopes Model) dataset. In general, the dominant features from GFS-WRF runs and PCM-WRF runs were consistent with each other, as well as with PRISM results. The influences of climate change on the California and Nevada regions can be inferred from the model future runs. The averaged temperature showed a positive trend in the future, as in other studies. The temperature increases by around 1?C2°C under the assumption of business as usual over 50?years. This leads to an upward shifting of the freezing level (the contour line of 0°C temperature) and more rain instead of snow in winter (December, January, and February). More hot days (>32.2°C or 90°F) and extreme hot days (>37.8°C or 100°F) are predicted in the Sacramento Valley and the southern parts of California and Nevada during summer (June, July, and August). More precipitation is predicted in northern California but not in southern California. Rainfall frequency slightly increases in the coast regions, but not in the inland area. No obvious trend of the surface wind was indicated. The probability distribution functions (PDF) of daily temperature, wind and precipitation for California and Nevada showed no significant change in shape in either winter or summer. The spatial distributions of precipitation frequency from GFS-WRF and PCM-WRF were highly correlated (r?=?0.83). However, overall positive shifts were seen in the temperature field; increases of 2°C for California and 3°C for Nevada in summer and 2.5°C for California and 1.5°C for Nevada in winter. The PDFs predicted higher precipitation in winter and lower precipitation in the summer for both California and Nevada.  相似文献   

4.
Long-term variations of monthly average maximum and minimum temperature (TMAX and TMIN) and precipitation records in southern Brazil are investigated for the 1913–2006 period. These variations are carefully analyzed for seasonal and annual indices, taken as regional averages. For this purpose, the serial correlation and trend of the indices are investigated using the run and Mann–Kendall tests. The significant trends are obtained from linear least-square fits. The annual and seasonal TMIN indices show significant warming trends with magnitudes (1.7°C per 100 years for annual index) comparable to those reported by the Intergovernmental Panel on Climate Change, but lower than those found for the southern Brazil in another previous work. Regarding the two other variables, the indices show significant trends only for summer, being a cooling trend of 0.6°C per 100 years for the TMAX and an increasing trend of 93 mm per 100 years over an average summer precipitation of 367 mm. Concerning the decadal analysis, the 1920s present the lowest annual, autumn, and spring TMIN and the 1990s, the highest ones. The 1970s is the decade with the lowest summer TMAX, and the 1940s the decade with the highest one. The driest decade is the 1940s and the wettest, the 1980s.  相似文献   

5.
We investigate the ability of a global atmospheric general circulation model (AGCM) to reproduce observed 20 year return values of the annual maximum daily precipitation totals over the continental United States as a function of horizontal resolution. We find that at the high resolutions enabled by contemporary supercomputers, the AGCM can produce values of comparable magnitude to high quality observations. However, at the resolutions typical of the coupled general circulation models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, the precipitation return values are severely underestimated.  相似文献   

6.
Tens of millions of people around the world are already exposed to coastal flooding from tropical cyclones. Global warming has the potential to increase hurricane flooding, both by hurricane intensification and by sea level rise. In this paper, the impact of hurricane intensification and sea level rise are evaluated using hydrodynamic surge models and by considering the future climate projections of the Intergovernmental Panel on Climate Change. For the Corpus Christi, Texas, United States study region, mean projections indicate hurricane flood elevation (meteorologically generated storm surge plus sea level rise) will, on average, rise by 0.3 m by the 2030s and by 0.8 m by the 2080s. For catastrophic-type hurricane surge events, flood elevations are projected to rise by as much as 0.5 m and 1.8 m by the 2030s and 2080s, respectively.  相似文献   

7.
21st century climate change in the Middle East   总被引:1,自引:0,他引:1  
This study examined the performance and future predictions for the Middle East produced by 18 global climate models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report. Under the Special Report on Emission Scenarios A2 emissions scenario the models predict an overall temperature increase of ~1.4 K by mid-century, increasing to almost 4 K by late-century for the Middle East. In terms of precipitation the southernmost portion of the domain experiences a small increase in precipitation due to the Northward movement of the Inter-Tropical Convergence Zone. The largest change however is a decrease in precipitation that occurs in an area covering the Eastern Mediterranean, Turkey, Syria, Northern Iraq, Northeastern Iran and the Caucasus caused by a decrease in storm track activity over the Eastern Mediterranean. Other changes likely to impact the region include a decrease of over 170,000 km2 in viable rainfed agriculture land by late-century, increases in the length of the dry season that reduces the length of time that the rangelands can be grazed, and changes in the timing of the maximum precipitation in Northern Iran that will impact the growing season, forcing changes in cropping strategy or even crop types.  相似文献   

8.
Present-day (1979–2003) and future (2075–2099) simulations of mean and extreme rainfall and temperature are examined using data from the Meteorological Research Institute super-high-resolution atmospheric general circulation model. Analyses are performed over the 20-km model grid for (1) a main Caribbean basin, (2) sub-regional zones, and (3) specific Caribbean islands. Though the model’s topography underestimates heights over the eastern Caribbean, it captures well the present-day spatial and temporal variations of seasonal and annual climates. Temperature underestimations range from 0.1 °C to 2 °C with respect to the Japanese Reanalysis and the Climatic Research Unit datasets. The model also captures fairly well sub-regional scale variations in the rainfall climatology. End-of-century projections under the Intergovernmental Panel on Climate Change SRES A1B scenario indicate declines in rainfall amounts by 10–20 % for most of the Caribbean during the early (May–July) and late (August–October) rainy seasons relative to the 1979–2003 baselines. The early dry season (November–January) is also projected to get wetter in the far north and south Caribbean by approximately 10 %. The model also projects a warming of 2–3 °C over the Caribbean region. Analysis of future climate extremes indicate a 5–10 % decrease in the simple daily precipitation intensity but no significant change in the number of consecutive dry days for Cuba, Jamaica, southern Bahamas, and Haiti. There is also indication that the number of hot days and nights will significantly increase over the main Caribbean basin.  相似文献   

9.
Future climate in the Pacific Northwest   总被引:4,自引:2,他引:2  
Climate models used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) on the whole reproduce the observed seasonal cycle and twentieth century warming trend of 0.8°C (1.5°F) in the Pacific Northwest, and point to much greater warming for the next century. These models project increases in annual temperature of, on average, 1.1°C (2.0°F) by the 2020s, 1.8°C (3.2°F) by the 2040s, and 3.0°C (5.3°F) by the 2080s, compared with the average from 1970 to 1999, averaged across all climate models. Rates of warming range from 0.1°C to 0.6°C (0.2°F to 1.0°F) per decade. Projected changes in annual precipitation, averaged over all models, are small (+1% to +2%), but some models project an enhanced seasonal cycle with changes toward wetter autumns and winters and drier summers. Changes in nearshore sea surface temperatures, though smaller than on land, are likely to substantially exceed interannual variability, but coastal upwelling changes little. Rates of twenty-first century sea level rise will depend on poorly known factors like ice sheet instability in Greenland and Antarctica, and could be as low as twentieth century values (20 cm, 8) or as large as 1.3 m (50).  相似文献   

10.
We investigated changes to precipitation and temperature of Alberta for historical and future periods. First, the Mann-Kendall test and Sen’s slope were used to test for historical trends and trend magnitudes from the climate data of Alberta, respectively. Second, the Special Report on Emissions Scenarios (SRES) (A1B, A2, and B1) of CMIP3 (Phase 3 of Coupled Model Intercomparison Project), projected by seven general circulation models (GCM) of the Intergovernmental Panel on Climate Change (IPCC) for three 30 years periods (2020s, 2050s, and 2080s), were used to evaluate the potential impact of climate change on precipitation and temperature of Alberta. Third, trends of projected precipitation and temperature were investigated, and differences between historical versus projected trends were estimated. Using the 50-km resolution dataset from CANGRD (Canadian Grid Climate Data), we found that Alberta had become warmer and somewhat drier for the past 112 years (1900–2011), especially in central and southern Alberta. For observed precipitation, upward trends mainly occurred in northern Alberta and at the leeward side of Canadian Rocky Mountains. However, only about 13 to 22 % of observed precipitation showed statistically significant increasing trends at 5 % significant level. Most observed temperature showed significant increasing trends, up to 0.05 °C/year in DJF (December, January, and February) in northern Alberta. GCMs’ SRES projections indicated that seasonal precipitation of Alberta could change from ?25 to 36 %, while the temperature would increase from 2020s to 2080s, with the largest increase (6.8 °C) in DJF. In all 21 GCM-SRES cases considered, precipitation in both DJF and MAM (March, April, and May) is projected to increase, while temperature is consistently projected to increase in all seasons, which generally agree with the trends of historical precipitation and temperature. The SRES A1B scenario of CCSM3 might project more realistic future climate for Alberta, where its water resources can become more critical in the future as its streamflow is projected to decrease continually in the future.  相似文献   

11.
Projections by the Intergovernmental Panel on Climate Change suggest that there will be an increase in the frequency and intensity of climate extremes in the 21st century. Kolkata, a megacity in India, has been singled out as one of the urban centers vulnerable to climate risks. Modest flooding during monsoons at high tide in the Hooghly River is a recurring hazard in Kolkata. More intense rainfall, riverine flooding, sea level rise, and coastal storm surges in a changing climate can lead to widespread and severe flooding and bring the city to a standstill for several days. Using rainfall data, high and low emissions scenarios, and sea level rise of 27 cm by 2050, this paper assesses the vulnerability of Kolkata to increasingly intense precipitation events for return periods of 30, 50, and 100 years. It makes location-specific inundation depth and duration projections using hydrological, hydraulic, and urban storm models with geographic overlays. High resolution spatial analysis provides a roadmap for designing adaptation schemes to minimize the impacts of climate change. The modeling results show that de-silting of the main sewers would reduce vulnerable population estimates by at least 5 %.  相似文献   

12.
气候变化对淮河蒙洼蓄滞洪区启用风险影响评估   总被引:1,自引:0,他引:1  
基于RCP情景下47个IPCC CMIP5气候模式模拟数据和大尺度水文模型VIC,预估了未来(2021-2050年)气候变化对淮河蒙洼蓄滞洪区启用的可能影响。结果表明:与基准期(1971-2000年)相比,多模式预估淮河上游未来多年平均气温一致呈增加趋势,平均增幅范围0.2~1.7℃。不同模式对降水预估差异较大,但有超过70%的模式预估降水呈增加趋势,平均增幅为3.4%~4.1%。未来气候情景下,王家坝断面洪水总体呈增加趋势,20年一遇的洪水强度平均增幅19%,洪水频率将增大,蒙洼蓄滞洪区启用可能更加频繁,启用的风险加大。  相似文献   

13.
Rapidly accelerating climate change in the Himalaya is projected to have major implications for montane species, ecosystems, and mountain farming and pastoral systems. A geospatial modeling approach based on a global environmental stratification is used to explore potential impacts of projected climate change on the spatial distribution of bioclimatic strata and ecoregions within the transboundary Kailash Sacred Landscape (KSL) of China, India and Nepal. Twenty-eight strata, comprising seven bioclimatic zones, were aggregated to develop an ecoregional classification of 12 ecoregions (generally defined by their potential dominant vegetation type), based upon vegetation and landcover characteristics. Projected climate change impacts were modeled by reconstructing the stratification based upon an ensemble of 19 Earth System Models (CIMP5) across four Representative Concentration Pathways (RCP) emission scenarios (i.e. 63 impact simulations), and identifying the change in spatial distribution of bioclimatic zones and ecoregions. Large and substantial shifts in bioclimatic conditions can be expected throughout the KSL area by the year 2050, within all bioclimatic zones and ecoregions. Over 76 % of the total area may shift to a different stratum, 55 % to a different bioclimatic zone, and 36.6 % to a different ecoregion. Potential impacts include upward shift in mean elevation of bioclimatic zones (357 m) and ecoregions (371 m), decreases in area of the highest elevation zones and ecoregions, large expansion of the lower tropical and sub-tropical zones and ecoregions, and the disappearance of several strata representing unique bioclimatic conditions within the KSL, with potentially high levels of biotic perturbance by 2050, and a high likelihood of major consequences for biodiversity, ecosystems, ecosystem services, conservation efforts and sustainable development policies in the region.  相似文献   

14.
Recently published work estimates that global sea level rise (SLR) approaching or exceeding 1 m by 2100 is plausible, thus significantly updating projections by the Fourth Assessment of the Intergovernmental Panel on Climate Change. Furthermore, global greenhouse gas (GHG) emissions over the 21st century will not only influence SLR in the next ??90 years, but will also commit Earth to several meters of additional SLR over subsequent centuries. In this context of worsening prospects for substantial SLR, we apply a new geospatial dataset to calculate low-elevation areas in coastal cities of the conterminous U.S.A. potentially impacted by SLR in this and following centuries. In total, 20 municipalities with populations greater than 300,000 and 160 municipalities with populations between 50,000 and 300,000 have land area with elevations at or below 6 m and connectivity to the sea, as based on the 1 arc-second National Elevation Dataset. On average, approximately 9% of the area in these coastal municipalities lies at or below 1 m. This figure rises to 36% when considering area at or below 6 m. Areal percentages of municipalities with elevations at or below 1?C6 m are greater than the national average along the Gulf and southern Atlantic coasts. In contrast to the national and international dimensions of and associated efforts to curb GHG emissions, our comparison of low-elevation areas in coastal cities of the conterminous U.S.A. clearly shows that SLR will potentially have very local, and disproportionate, impacts.  相似文献   

15.
A large component of present-day sea-level rise is due to the melt of glaciers other than the ice sheets. Recent projections of their contribution to global sea-level rise for the twenty-first century range between 70 and 180 mm, but bear significant uncertainty due to poor glacier inventory and lack of hypsometric data. Here, we aim to update the projections and improve quantification of their uncertainties by using a recently released global inventory containing outlines of almost every glacier in the world. We model volume change for each glacier in response to transient spatially-differentiated temperature and precipitation projections from 14 global climate models with two emission scenarios (RCP4.5 and RCP8.5) prepared for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The multi-model mean suggests sea-level rise of 155 ± 41 mm (RCP4.5) and 216 ± 44 mm (RCP8.5) over the period 2006–2100, reducing the current global glacier volume by 29 or 41 %. The largest contributors to projected global volume loss are the glaciers in the Canadian and Russian Arctic, Alaska, and glaciers peripheral to the Antarctic and Greenland ice sheets. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 80 % of their volume by 2100. However, large uncertainties in the projections remain due to the choice of global climate model and emission scenario. With a series of sensitivity tests we quantify additional uncertainties due to the calibration of our model with sparsely observed glacier mass changes. This gives an upper bound for the uncertainty range of ±84 mm sea-level rise by 2100 for each projection.  相似文献   

16.
It was recently reported a regional warming in the intra-Americas region where sea surface temperature exhibited increases exceeding 0.15 °C/decade and an accelerated air temperature rise that could impact building energy demands per capita (EDC). Reanalysis data is used herein to quantify the impacts of these warming trends on EDC. Results of the analysis depict a Southern Greater Antilles and inland South America with a positive annual EDC rate of 1–5 kWh per year. The Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCP) 2.6 and 4.5 scenarios were selected to analyze energy demand changes in the twenty-first century. A multi-model ensemble forecasts an EDC increase of 9.6 and 23 kWh/month in the RCP2.6 and RCP4.5 at the end of the twenty-first century, which may increase average building cooling loads in the region by 7.57 GW (RCP2.6) and 8.15 GW (RCP4.5), respectively. Furthermore, 4 of 9 (RCP2.6) and 7 of 9 (RCP4.5) of the major countries in this region have EDCs ranging between 1887 and 2252 kWh/year at the end of this century. Therefore, increased energy production and improved energy infrastructure will be required to maintain ideal indoor building conditions at the end of the twenty-first century in these tropical coastal regions as consequence of a warmer climate.  相似文献   

17.
18.
19.
We estimated the impact of climatic change on wildland fire and suppression effectiveness in northern California by linking general circulation model output to local weather and fire records and projecting fire outcomes with an initial-attack suppression model. The warmer and windier conditions corresponding to a 2 × CO2 climate scenario produced fires that burned more intensely and spread faster in most locations. Despite enhancement of fire suppression efforts, the number of escaped fires (those exceeding initial containment limits) increased 51% in the south San Francisco Bay area, 125% in the Sierra Nevada, and did not change on the north coast. Changes in area burned by contained fires were 41%, 41% and –8%, respectively. When interpolated to most of northern California's wildlands, these results translate to an average annual increase of 114 escapes (a doubling of the current frequency) and an additional 5,000 hectares (a 50% increase) burned by contained fires. On average, the fire return intervals in grass and brush vegetation types were cut in half. The estimates reported represent a minimum expected change, or best-case forecast. In addition to the increased suppression costs and economic damages, changes in fire severity of this magnitude would have widespread impacts on vegetation distribution, forest condition, and carbon storage, and greatly increase the risk to property, natural resources and human life.  相似文献   

20.
The interannual variability of precipitation and temperature is derived from all runs of the Intergovernmental Panel on Climate Change (IPCC) fourth Assessment Report (AR4)-based two Atmospheric Oceanic General Circulation Model (AOGCM) simulations, over Pakistan, on an annual basis. The models are the CM2.0 and CM2.1 versions of Geophysical Fluid Dynamics Laboratory (GFDL)-based AOGCM. Simulations for a recent 22-year period (1979–2000) are validated using Climate Research Unit (CRU) and NCEP/NCAR datasets over Pakistan, for the first time. The study area of Pakistan is divided into three regions: all Pakistan, northern Pakistan, and southern Pakistan. Bias, root mean square error, one sigma standard deviation, and coefficient of variance are used as validation metrics. For all Pakistan and northern Pakistan, all three runs of GFDL-CM2.0 perform better under the above metrics, both for precipitation and temperature (except for one sigma standard deviation and coefficient of variance), whereas for southern Pakistan, third run of GFDL-CM2.1 perform better expect for the root mean square error for temperature. A mean and variance-based bias correction is applied to bias in modeled precipitation and temperature variables. This resulted in a reduced bias, except for the months of June, July, and August, when the reduction in bias is relatively lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号