首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of multiple regression is used to analyze the influences of flood events from the coarse sediment producing areas on the channel siltation and fluvial process of the lower Yellow River based on the flood events from 1950 to 1985. The results showed that the flood events from the coarse sediment producing areas carry larger amounts of sediment load and coarser particle sizes than from other source areas, which increases deposition in the lower river channel. And there exist good correlations between channel siltation of the lower reaches of the Yellow River and the coming water and sediment of flood events from the coarse sediment producing areas. Through these correlations, the amounts of sediment deposition in the lower river channel could be roughly estimated based on the runoff and sediment load of flood events from the coarse sediment producing areas. The sediment deposition caused the fluvial process. There exists a complex response of channel form change to the coming water and sediment load of flood events from the coarse sediment producing areas. When the sediment concentration is smaller than 200kg/m3, the ratio between wide-depth ratio after flood and wide-depth ratio before flood((B/h)a / (B/h)b) will increase with the increase of the maximum sediment concentration; when the sediment concentration is near 200kg/m3, (B/h)a / (B/h)b reaches the maximum value; and when the sediment concentration reaches the limits of hyperconcentrated flow, (B/h)a / (B/h)b will decrease with the increase of the maximum sediment concentration. Generally, flood events from the coarse sediment producing areas made channel form of the lower Yellow River deeper and narrower, but a large amount of sediment deposition simultaneously occurs. So, the impacts of flood events from the coarse sediment producing areas on the channel of the lower Yellow River are lessened.  相似文献   

2.
1INTRODUCTIONTheBrahmaputraRiveroriginatesfromtheJimayanzhongglacieratthenorthfootoftheHimalayaMountainsinSouthTibet,China.I...  相似文献   

3.
1INTRODUCTIONDuringthefloodseasonof1998,anothercatastrophicfloodoccurredinthemiddleandlowerYangtzeRiverfollowingthecatastrophicfloodin1954.Ascomparedwiththe54flood,the1998floodwascharacterizedbythefactsthatthedurationofthehighwaterstagewasmuchlonger,thefloodcontrolwasmuchmoredifficult,andthetotalmanpowerandmaterialresourcesexpelldedintilefloodfightingweremuchmoreenormous.TOsummarizetheexperienceandlessonsfromthefloodissignificanttotilehydraulicengineeringandfloodcontroloftheYangtzeRiver.…  相似文献   

4.
I. INTRODUCTIONThe Yellow River is a heavily sediment--laden river. The sediment load of the Yellow River ranks the first in the world while its annual runoff is only of medium size. Toharness the river, it is necessary to build reservoirs for regulating runoff to meet the demands of economic development. Since the founding of PRC in 1949, I S4 large and medium--sized reservoirs have been constructed on the main stem and the tributaries with atotal storage capacity of 84.5 billion m3.…  相似文献   

5.
1 wrsoooCTIoxThe Yeuow mver crtes a huge amoun of sedimcht and the noods often cause raPid and severeerosinn and dePOsihon. The channl bed of the YelOw mver often exPeriences degIadation in the mainchannel during fioods. In some cases vigorous erosion uP to l0 meters takes place in a shOrt Period oftiIn. Such phenomenon usually occurs in the ndddie reaChs of the Yelow mver and its tributaries suchas the Wdse mVer the Beiluohe mver etc. For examPle, th6 hyPenconcentraed nood in July l…  相似文献   

6.
1 INTRODUCTION Shortage of water resources is one of the important issues in the Yellow River basin in China. The runoff and sediment in the Yellow River come from different sources. The runoff comes from the dry areas of its upper reaches, while the sedi…  相似文献   

7.
From the mid 1980s through the late 1990s, the channel of the lower Yellow River experienced serious shrinkage, which has decreased the flood conveyance of the channel and the sediment carrying capacity of the flow, raised the water levels of floods, and, thus, severely threatened the safety of flood control along the river. The completion of Xiaolangdi Dam in 1999 could help mitigate the channel shrinkage problem, but the situation has not changed yet. This paper analyses the characteristics, mechanisms, and conditions resulting in channel shrinkage, points out channel instabilities, and puts forward approaches of channel rehabilitation.  相似文献   

8.
This article addresses spatial variability of comtemporary floodplain sedimentation at the event scale. Measurements of overbank deposition were carried out using sediment traps on 11 floodplain sections along the rivers Waal and Meuse in The Netherlands during the high-magnitude flood of December 1993. During the flood, sand sheets were locally deposited behind a natural levee. At distances greater than 50 to 100 m from the river channel the deposits consisted mainly of silt- and clay-sized material. Observed patterns of deposition were related to floodplain topography and sediment transporting mechanisms. Though at several sites patterns were observed that suggest transport by turbulent diffusion, convection seems the dominant transporting mechanism, in particular in sections that are bordered by minor embankments. The average deposition of overbank fines ranged between 1·2 and 4·0 kg m−2 along the river Waal, and between 1·0 and 2·0 kg m−2 along the river Meuse. The estimated total accumulation of overbank fines (not including sand sheets) on the entire river Waal floodplain was 0·24 Mton, which is 19 per cent of the total suspended sediment load transported through the river Waal during the flood. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
1INTRODUCTIONTheYellowRivercarries1.6billiontonsofsedanmentload,rankedthefirstintheworld.Sedimentationinthelowerreachesresultedinfrequentlyshiftoftherivercourses.ThroughoutthehistoryofChina,theYellowRiverhasbeenassociatedwithfloodsandfamine,earningtherivername"China'ssorrow"(Hu,l996).Instabilityoftheriverchannel,especiallythedeltachannel,restraintstheeconomicdevelopmentofthearea.TheDongyingmunicipalgovernment,theShenliOilCorporationandtheYellowRiverMouthManagementBureauofYRCC(Yel…  相似文献   

10.
lCOMPOSITIONOFTHE"92.8"FLOODThreerainstormsoccurredfrom7ththrough13,,,August,1992inShaanxiProvince,diStributingfromnorthtosouthinsequence.Therainfallareacoveredtheregionsofintensivesoilerosion,'wheretheaveragerateoferosionis10,000-15',000ton/kmZ'year.Fig.IshowsisohyetsofrainfallintensityinthecatchmentoftheMiddleYellowRiVerdepictingthedistributionoftherainstormsfrom7thto13,,,August,1992(thehydrologicalBureauYRCC,1992).ThecenterofthefirstrainstormwaslocatedattheYikezhaomengPrefec…  相似文献   

11.
1. INTROOrCTIOXThe upper Tisza in Hungary is a sand bed alluvial river. presenting several river training problems. In order to solve these problems first the laws of free river--bed evolution must be clarified thenthe effects of existing river training s…  相似文献   

12.
IINTRODUCTIONDebrisflowisaphenomenonhappeninginextremeseveresit'Uationofsoilerosion(Guan,1996).ItoccursfrequentlyanddistributesdenselyinupperreachesoftheYangtzeRiverandtransportsahugeamountofsedimentilltotheriver.Debrisflowdepositinfluencesthecompositionofsedimentandthemorphologyoftheriverbedfromupstreamt6downstreamandthenaffectsthedynamiccharactersandsedimentbudgetoftheYangtzeRiver.Furthermore,itimpactsonthefloodandwaterconservancyengineering.2DEBRISFLOWGULLY--HIGHWAYOFSEDI…  相似文献   

13.
1 wrsoorCnoxThe Yenow mver delta is ereated by the river transponing sediment bom the Loess Plateau to the shallOWBOhai Gulf during the paSt l45 years. lh recent years, the water discharge and sediment load enedg thesea have bein ched dramacaily The river end chann shital northeastWed hom QingshulgOuN to qngshulgou-Chah chaDnel in 1996, resulting in a new regfor of sedimenboon and erosion ofthe subaqucous delta.,A nUInerial model for river sediInen dispersion and seabed mOrPhofogy of t…  相似文献   

14.
l INTRODUCTIONT'he landscaPe is mainly shaPed by surface runoff of water through erosion and sedimentahon. mverflows cut the bed, scour the banks and silt the seas. All these are realized by moving sediment frOm oneplace to other places. The caPacity of the flow to remove sediment frOm one place to other places within ariver chanel is called sediment-removing caPacity. It differs frOm the well-defined sediment-capingcapacity For instance, steady flow carries sediment through the river …  相似文献   

15.
Based on long-term measurements at three gauging stations, Toudaoguai, Fugu and Hequ, and one meteorological station, this article discusses the features of discharge (Q) and sediment concentration (Cs) of a river reach of the Yellow River with a reservoir located in the Loess Plateau. The impacts of the local sub-watershed between Toudaoguai and Fugu gauging stations on sediment budget to the Yellow River have been analyzed. In addition, the deposition processes in the Tianqiao Reservoir have been investigated. Results show over 80% of the precipitation that falls in the local subwatershed is unable to contribute to the Yellow River runoff process. It is found that the annualmaximum sediment concentration is usually less than 30 kg/m^3 during flood seasons at Toudaoguai Gauging Station, but the sediment concentration varies dramatically at Fugu Gauging Station. About 35% of the sediment eroded in the sub-watersheds between Toudaoguai and Fugu gauging stationswas produced from the Huangfuchuan sub-watershed which has a drainage area accounting only for 10% of the drainage area between Toudaoguai and Fugu gauging stations. The Tianqiao Reservoir generally has deposition during the summer flood season, and scouring during the non-flood season.On average, over 85% of deposited sediment in the reservoir occurs in the 12 km long lower reservoir reach. The volume of annual deposition in the reservoir mainly depends on the volume of water from the local region between Hequ and Fugu gauging stations.  相似文献   

16.
ON THE SHRINKAGE OF RIVER CHANNEL   总被引:1,自引:0,他引:1  
ONTHESHRINKAGEOFRIVERCHANNELCHENDong1,CAOWenhong2andZHANGQishun3ABSTRACTAlongwiththerapiddevelopmentofsocialeconomy,developme...  相似文献   

17.
1INTRODUCTIONTheHaiheRiverBasinislocatedinNorthChinawithareaof262.6km2.Itisaquicklydevelopedareawithmanyimportantcitiesandindustrialhubs,includingBeding,Tianjin,Tangshan,Cangzhou,DezhouandHuanghua.Theareawatchedfastprogressesinurbanizationinthepastdecades,andhumanactivitieshaveresultedingreatinfluencesontheenvironment,riverhydrologyandsedimentbudget.Theareaisprojectedtobemoreprosperouswithmoreoilandgasfields,chemicalindustrybases,anddenserrailwaysandexpresshighwaysinthenextcent'Ury.T…  相似文献   

18.
The Three Gorges Project is one of the largest hydro-projects in the world and has drawn many debates inside China and abroad. The major concern is that sediment load from the river basin may eventually fail the functions of the project for flood control and power generation. To reduce sedimentation in the reservoir, watershed management has been adopted. However, there is limited information regarding the effectiveness of various control measures such as terracing and afforestation on a watershed scale. The Jialing River, a main tributary of the Yangtze River, contributes approximately 25% of the total sediment load in the main river but only represents 8% of the whole basin area. There have been various land use patterns and extensive human activities for thousands of years in the Jialing River watershed. Based on analysis of the major factors affecting erosion in the Jialing River watershed, the main watershed management strategies (afforestation, farming and engineering practice) are illustrated, and their effects on the reduction of sediment and runoff are studied in detail. The sediment budget of the watershed shows that 1/3 of the sediment yield is trapped by the erosion control measures (afforestation and farming) on the slope, 1/3 is trapped by the reservoirs, ponds and dams within the watershed, and only about 1/3 is transported into the Yangtze River, which will affect the Three Gorges Project.  相似文献   

19.
IINTRODUCTIONTheYellowRiverisfamousforitsheaVysedimentloadandcompledpluvialprocessesobviousadvanceshavebeenmadeinthetwo-dimensionalsedimentmathematicalmodel.Amongtile1llodelscreatedbeforethemechanismofsedimenttransportandrelatedphysicalparametel's,suchassedimentvelocity,sedimentcan'yingcapacityandriverfi.ictionetc.arenotyetundel.stoodvery\veil.Thesynchronousobserveddataoftheflowwithsediment,especiallyathyperconcentration,arenotenougllforthemodelcalibration.Thereforethedevelopmentoftwo-di…  相似文献   

20.
Alterations in flood flows of the Raba River are examined to determine the influence exerted on flood waves by changing morphological conditions. With stable vertical channel position, the river increased its sinuosity during the 1920s to 1940s, and the change was accompanied by a growing tendency to flood-wave attenuation. The temporal change in flood-wave transformation is typical of a developing low-flow system. Subsequently, streambed degradation has been induced due to channnelization works which straightened and narrowed the river. Flood waves became progressively more flashy as channel incision progressed. The increase in magnitude of flood waves passing the deepened reach was greatest for bankfull flows and diminished for lower in-bank flows and higher overbank flows. The tendency to magnification of peak discharges has been also found in other Carpathian rivers which were considerably degraded in the 20th century in response to channelization. Introducing an empirically found correcting factor into the analysis of the ratio of outflow to inflow peak discharges shows how the conditions of peak-flow transformation in a reach have changed since the beginning of the study period. A marked coincidence between changes in vertical channel location and variations in the ‘corrected’ peak-discharge ratio proves channel changes to be a very important reason for the growing flood hazard in southern Poland. Gradient oversteepening and channel narrowing, caused by channelization, lead to formation of a river system having a steep, straight, narrow and deep channel. Such a morphology distinguishes the system from natural low-flow and high-flow systems. Reduced floodplain water storage and self-acceleration of flow concentrated in a channel zone make flood waves progressively more flashy on their way down the channelization-formed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号