首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Long-lived brightness structures in the solar electron corona persist over many solar rotation periods and permit an observational determination of coronal magnetic tracer rotation as a function of latitude and height in the solar atmosphere. For observations over 1964–1976 spanning solar cycle 20, we compare the latitude dependence of rotation at two heights in the corona. Comparison of rotation rates from East and West limbs and from independent computational procedures is used to estimate uncertainty. Time-averaged rotation rates based on three methods of analysis demonstrate that, on average, coronal differential rotation decreases with height from 1.125 to 1.5 R S. The observed radial variation of differential rotation implies a scale height of approximately 0.7 R S for coronal differential rotation.Model calculations for a simple MHD loop show that magnetic connections between high and low latitudes may produce the observed radial variations of magnetic tracer rotation. If the observed tracer rotation represents the rotation of open magnetic field lines as well as that of closed loops, the small scale height for differential rotation suggests that the rotation of solar magnetic fields at the base of the solar wind may be only weakly latitude dependent. If, instead, closed loops account completely for the radial gradients of rotation, outward extrapolation of electron coronal rotation may not describe magnetic field rotation at the solar wind source. Inward extrapolations of observed rotation rates suggest that magnetic field and plasma are coupled a few hundredths of a solar radius beneath the photosphere.  相似文献   

2.
Calculations of the magnetic field in the potential approximation (using Bd technology (Rudenko, 2001)) were used to study the time variations of several parameters of the large-scale magnetic field in the solar atmosphere during the last four cycles. Synoptic maps (SMs) for the radial component Br of the calculated magnetic field were plotted at 10 heights between the solar surface (R = R ) and the source (R = 2.5R ). On these SMs, we marked the 10-degree latitudinal areas. The following (averaged within the zone) characteristics of the magnetic field were determined corresponding to these zones: Sp, Sm; S +fields , where Sp is the positive value of Br, Sm is the averaged modulus of the negative Br; S +fields is the percentage of latitudinal zones with positive Br. The analysis of temporal variations in the magnitude of S points to different origins of the large-scale magnetic field in the near-equatorial and polar regions of the solar atmosphere. The analysis of temporal variations of S +fields showed that there were almost no periods with a mixed polarity at R = 2.5R during the 21st and 22nd solar cycles and in an ascending phase of the 23rd cycle. However, beginning from the maximum of the 23rd cycle, a mixed polarity in the equatorial region was observed until the end of the long minimum of activity. We hypothesized that this could be a precursor for a long minimum between the 23rd and 24th solar cycles. It was shown that during the maximum phase of the 24th solar cycle the magnetic field at R = R is much less than that during the maximum phase of the 23rd cycle, and in the region from 55° to 75°, this difference reaches an order of magnitude.  相似文献   

3.
A three-dimensional (non-axisymmetric) model for the solar mean magnetic field generation is studied. The sources of generation are the differential rotation and mean helicity in the convective shell. The system is described by two equations of the first order in time and the fourth order in space coordinates. The solution is sought for in the form of expansion over the spherical function Ynm. The modes of different m are separated. A finite-difference scheme similar to the Peaceman-Rachford scheme is constructed so to find coefficients of the expansion depending on the time and radial coordinates. It is shown that a mode with a smaller azimuthal number m is primarily excited. The axisymmetric mode m = o describes the 22 year solar cycle oscillations. The modes of m o have no such periodicity, the oscillate with a period of rotation of the low boundary of the solar convective shell, The solutions which are symmetric relative to the equator plane are excited more easily compared with the antisymmetrical ones. The results obtained are confronted to the observational picture of the non-axisymmetric large-scale solar magnetic fields.  相似文献   

4.
The Faraday rotation of a radio source (Pioneer 6) occulted by the solar corona has been measured by Levy et al. (1969). During the course of these measurements, three large-scale transient phenomena were observed. These events were preceded by subflares and class 1 flares. These transient events are interpreted as evidence for a coronal magnetic bottle at 10 R . The velocity of propagation for the disturbance is set at 200 km/sec; the dimension of the region, 10 R ; field strength at 10 R , 0.02 G; particle density, 2.0 × 104/cm3; Alfvén speed, 320 km/sec. From the nature of the observations and the lack of related effects from similar flares on the interplanetary sector pattern observed at 1 AU, it is suggested that such coronal magnetic bottles expand to perhaps 10–30 R and then contract to a few solar radii. Such a phenomena is evidence for an expansion of the corona with a sub-Alfvénic velocity. It is further suggested that such magnetic bottles may be important in the storage and diffusion of solar generated cosmic ray particles. NAS-NRC Postdoctoral Resident Research Associate.  相似文献   

5.
The spatial structure of the transverse oscillations in the interplanetary magnetic field at 1 AU is studied by comparing the simultaneous observations by Explorer 33 and 35 satellites at the maximum separation of about 200R E. The anisotropy characteristics of these oscillations suggest that the oscillations sampled are Alfvén waves. It is found that the size of the region of the wave coherence is related to the solar wind velocity; the size is 80R E when the wind velocity is lower than 500 km s–1 but becomes less than this when the wind velocity is higher. An inference is made that the solar atmospheric turbulence contributing to the faster solar wind is finer in scale than that associated with the slower wind.A postgraduate student at the Tokai University  相似文献   

6.
H. Washimi  T. Sakurai 《Solar physics》1993,143(1):173-186
An axisymmetric solar wind structure including the solar rotation effect is studied by the method of MHD computer simulation. For the case of the radial magnetic field configuration, the simulation result is fairly well coincident with the steady-state solution. For the case of the dipole magnetic field configuration, the properties of the solution depend on the ratio of the gas pressure to the magnetic pressure-ratio) in the model. If the-ratio is small, a clearly defined stagnation region appears in the wind, in which the flow speed is very small and the azimuthal magnetic field is very weak because of the corotation of the plasma. If the-ratio is greater than 1, the plasma is not effectively trapped by the magnetic field so that the stagnation region is not clearly defined in the solution.  相似文献   

7.
The formation of the solar wind, the plasma flows from the Sun, is studied by new methods that have been developed in recent years. Experiments on circumsolar plasma sounding at radial heliocentric distances of ~2.5–60R form their basis. Experimental data are used to construct the correlation diagrams-the location of the boundary of the transonic solar wind transition region versus the magnetic field strength in the region of the flow sources. The 2000–2004 correlation diagrams reveal flows of six types that differ by the magnetic field structure in their sources. During the decline of solar activity in 2003–2004, the evolution of the slow solar wind flows has been found to be determined not by the Wolf numbers, but by the total strength of the global magnetic field in the solar corona.  相似文献   

8.
Flapping motions of the magnetotail with an amplitude of several earth radii are studied by analysing the observations made in the near (x = ?25 ~ ?30 RE and the distant (x? ?60 RE) tail regions. It is found that the flapping motions result from fluctuations in the interplanetary magnetic field, especially Alfvénic fluctuations, when the magnitude of the interplanetary magnetic field is larger than ~10 γ and they propagate behind the Earth with the solar wind flow. Flappings tend to be observed in early phases of the magnetospheric substorm, and they have two fundamental modes with periods of ~200 and ~500 sec. In some limited cases a good correspondence with the long period micropulsations (Pc5) in the polar cap region is observed. These observational results are explained by the model in which the Alfvénic fluctuations in the solar wind penetrate into the magnetosphere along the connected interplanetary-magnetospheric field lines. The characteristics of the flapping reveal that the geomagnetic tail is a good resonator for the hydromagnetic disturbances in the solar wind.  相似文献   

9.
Ivanov  E.V.  Obridko  V.N. 《Solar physics》2002,206(1):1-19
Digitized synoptic charts of photospheric magnetic fields were analyzed for the past 4 incomplete solar activity cycles (1969–2000). The zonal structure and cyclic evolution of large-scale solar magnetic fields were investigated using the calculated values of the radial B r, |B r|, meridional B θ, |B θ|, and azimuthal B φ, |B φ| components of the solar magnetic field averaged over a Carrington rotation (CR). The time–latitude diagrams of all 6 parameters and their correlation analysis clearly reveal a zonal structure and two types of the meridional poleward drift of magnetic fields with the characteristic times of travel from the equator to the poles equal to ∼16–18 and ∼2–3 years. A conclusion is made that we observe two different processes of reorganization of magnetic fields in the Sun that are related to generation of magnetic fields and their subsequent redistribution in the process of emergence from the field generation region to the solar surface. Redistribution is supposed to be caused by some external forces (presumably, by sub-surface plasma flows in the convection zone).  相似文献   

10.
The evolution of the background magnetic field with the solar cycle has been studied using the dipole-quadrupole magnetic energy behaviour in a cycle. The combined energy of the axisymmetric dipole, non-axisymmetric quadrupole, and equatorial dipole is relatively lowly variable over the solar cycle. The dipole field changed sign when the quadrupole field was near a maximum, andvice versa. A conceptual picture involving four meridional magnetic polarity sectors proposed to explain these features may be in agreement with equatorial coronal hole observations. The rate of sector rotation is estimated to be 8 heliographic degrees per year faster than the Carrington rotation (P = 27.23d synodic). Polarity boundaries of sectors located 180° apart show meridional migrations in one direction, while the boundaries of the other two sectors move in the opposite direction. A simple model of how the magnetic field energy varies, subject to specifying reasonable initial photospheric magnetic and velocity field patterns, follows the observed evolution of the dipole and quadrupole field energies quite nicely.  相似文献   

11.
Experiments based on multi-source radio occultation measurements of the circumsolar plasma at R∼4.0−70R S were carried out during 1997 – 2008 to locate the inner boundary of the solar-wind transonic transition region, R in. The data obtained were used to correlate the solar-wind stream structure and magnetic fields on the source surface (R=2.5R S) in the solar corona. The method of the investigation is based on the analysis of the dependence R in=F(|B R|) in the correlation diagrams, where R in is the inner boundary of the solar-wind transition region and |B R| is the intensity of the magnetic field at the source surface. On such diagrams, the solar wind is resolved into discrete branches, streams of different types. The analysis of the stream types using a continuous series of data from 1997 to 2008 allowed us to propose a physical criterion for delimiting the epochs in the current activity cycle.  相似文献   

12.
The large-scale photospheric magnetic field, measured by the Mt. Wilson magnetograph, has been analyzed in terms of surface harmonics (P n m )()cosm and P n m ()sinm) for the years 1959 through 1972. Our results are as follows. The single harmonic which most often characterized the general solar magnetic field throughout the period of observation corresponds to a dipole lying in the plane of the equator (2 sectors, n = m = 1). This 2-sector harmonic was particularly dominant during the active years of solar cycles 19 and 20. The north-south dipole harmonic (n = 1, m = 0) was prominent only during quiet years and was relatively insignificant during the active years. (The derived north-south dipole includes magnetic fields from the entire solar surface and does not necessarily correlate with either the dipole-like appearance of the polar regions of the Sun or with the weak polar magnetic fields.) The 4-sector structure (n = m = 2) was prominent, and often dominant, at various times throughout the cycle. A 6-sector structure (n = m = 3) occasionally became dominant for very brief periods during the active years. Contributions to the general solar magnetic field from harmonics of principal index 4 n 9 were generally relatively small throughout this entire solar cycle with one outstanding exception. For a period of several months prior to the large August 1972 flares, the global photospheric field was dominated by an n = 5 harmonic; this harmonic returned to a low value shortly after the August 1972 flare events. Rapid changes in the global harmonics, in particular, relative and absolute changes in the contributions of harmonics of different principal index n to the global field, imply that the global solar field is not very deep or that very strong fluid flows connect the photosphere with deeper layers.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

13.
A model for the sharp transition from differential rotation in the solar convection zone to rigid rotation in the radiative interior is presented. Differential rotation in the radiative zone is shown to be quenched efficiently by an internal magnetic field. The poloidal field amplitude, B0, is the input parameter for our model which determines the transition layer thickness and the toroidal field strength. It is illustrated analytically and confirmed numerically that a rather small field, B0 = 10−4 Gauss, suffices to satisfy the helioseismological restrictions on the depth of the differential rotation penetration below the convection zone. The transition layer thickness decreases further with increasing B0. The toroidal field amplitude B ≃ 200 Gauss is almost independent of B0.  相似文献   

14.
The large-scale azimuth magnetic field is pumping to the bottom of the solar convective zone due to the diamagnetic action of turbulent conductive fluids. When the field at the bottom is of about 103 G, an equilibrium is established between diamagnetic pumping and buoyancy.If, in addition to the density gradient, an additional anisotropy exists (for instance, due to rotation), another mechanism of the magnetic field transfer appears, the efficiency of which greatly depends on the magnitude of the anistropy parameter.  相似文献   

15.
In this study, magnetic field measurements obtained by the Venus Express spacecraft are used to determine the bow shock position at solar minimum. The best fit of bow shock location from solar zenith angle 20-120° gives a terminator bow shock location of 2.14 RV (1 RV=6052 km) which is 1600 km closer to Venus than the 2.40 RV determined during solar maximum conditions, a clear indication of the solar cycle variation of the Venus bow shock location. The best fit to the subsolar bow shock is 1.32 RV, with the bow shock completely detached. Finally, a global bow shock model at solar minimum is constructed based on our best-fit empirical bow shock in the sunlit hemisphere and an asymptotic limit of the distant bow shock which is a Mach cone under typical Mach number of 5.5 at solar minimum. We also describe our approach to making the measurements and processing the data in a challenging magnetic cleanliness environment. An initial evaluation of the accuracy of measurements shows that the data are of a quality comparable to magnetic field measurements made onboard magnetically clean spacecraft.  相似文献   

16.
We have found correlated variations of the yearly averaged north-south asymmetry in the polar solar wind speed (sol) and the ratio of the zonal quadrupolar to the zonal dipolar contribution in the inferred coronal magnetic field during the declining phase of sunspot cycle 21. A physically meaningful association between sol and some polar solar magnetic field proxies is also observed during the low sunspot activity periods of the above cycle.  相似文献   

17.
Wavelet Analysis of solar,solar wind and geomagnetic parameters   总被引:3,自引:0,他引:3  
Prabhakaran Nayar  S.R.  Radhika  V.N.  Revathy  K.  Ramadas  V. 《Solar physics》2002,208(2):359-373
The sunspot number, solar wind plasma, interplanetary magnetic field, and geomagnetic activity index A p have been analyzed using a wavelet technique to look for the presence of periods and the temporal evolution of these periods. The global wavelet spectra of these parameters, which provide information about the temporal average strength of quasi periods, exhibit the presence of a variety of prominent quasi periods around 16 years, 10.6 years, 9.6 years, 5.5 years, 1.3 years, 180 days, 154 days, 27 days, and 14 days. The wavelet spectra of sunspot number during 1873–2000, geomagnetic activity index A p during 1932–2000, and solar wind velocity and interplanetary magnetic field during 1964–2000 indicate that their spectral power evolves with time. In general, the power of the oscillations with a period of less than one year evolves rapidly with the phase of the solar cycle with their peak values changing from one cycle to the next. The temporal evolution of wavelet power in R z, v sw, n, B y, B z, |B|, and A p for each of the prominent quasi periods is studied in detail.  相似文献   

18.
The distance to the dayside magnetopause is statistically analyzed in order to detect the possible dependence of the dayside magnetic flux on the polarity of the interplanetary magnetic field. The effect of changing solar wind pressure is eliminated by normalizing the observed magnetopause distances by the simultaneous solar wind pressure data. It is confirmed that the normalized size of the dayside magnetosphere at the time of southward interplanetary magnetic field is smaller than that at the time of northward interplanetary magnetic field. The difference in the magnetopause position between the two interplanetary field polarity conditions ranges from 0 to 2RE. Statistics of the relation between the magnetopause distance and the magnetic field intensity just inside the magnetopause testifies that the difference in the magnetopause position is not due to a difference in the magnetosheath plasma pressure. The effect of the southward interplanetary magnetic field is seen for all longitudes and latitudes investigated (|λGM|? 45°, |φSM|? 90°). These results strongly suggest that a part of the dayside magnetic flux is removed from the dayside at the time of southward interplanetary magnetic field.  相似文献   

19.
High resolution KPNO magnetograph measurements of the line-of-sight component of the photospheric magnetic field over the entire dynamic range from 0 to 4000 gauss are used as the basic data for a new analysis of the photospheric and coronal magnetic field distributions. The daily magnetograph measurements collected over a solar rotation are averaged onto a 180 × 360 synoptic grid of equal-area elements. With the assumption that there are no electric currents above the photospheric level of measurement, a unique solution is determined for the global solar magnetic field. Because the solution is in terms of an expansion in spherical harmonics to principal index n = 90, the global photospheric magnetic energy distribution can be analyzed in terms of contributions of different scale-size and geometric pattern. This latter procedure is of value (1) in guiding solar dynamo theories, (2) in monitoring the persistence of the photospheric field pattern and its components, (3) in comparing synoptic magnetic data of different observatories, and (4) in estimating data quality. Different types of maps for the coronal magnetic field are constructed (1) to show the strong field at different resolutions, (2) to trace the field lines which open into interplanetary space and to locate their photospheric origins, and (3) to map in detail coronal regions above (specified) limited photospheric areas.The National Center for Atmospheric Research is sponsored by the National Science foundation.Kitt Peak National Observatory is operated by the Association of Universities for Research in Astronomy, Inc. Under contract with the National Science Foundation.  相似文献   

20.
A consistent account of plasma turbulence in magnetohydrodynamics equations describing transport processes across the magnetic field is presented. The structure of the perpendicular shock wave generated in the solar atmosphere, as a result of either local disturbance of the magnetic field or dense plasma cloud motion with a frozen-in magnetic field, has been investigated. The region of parameters in the solar atmosphere at which the electron-ion relative drift velocity u exceeds the electron thermal velocity V eand generation of radio emission becomes possible, has been determined. The plasma turbulence inside the front has been shown, under conditions of solar corona, not to cause the oscillation structure of shock front to break down. Under chromospheric conditions, the shock profile is aperiodical. Then, the condition u > Vecan be satisfied and shock waves having an Alfvén Mach number M which exceeds the critical value M c 3.3 for aperiodical shock waves can exist (Eselevich et al., 1971a). Arguments are given in favour of the fact that perpendicular shock waves are generated in the Sun's atmosphere when dense plasma clouds, with a frozen-in magnetic field, are expanded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号