首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
采用中国区域2017~2018年与GNSS站并址的49个探空站资料对GPT3模型估算的气象参数的精度进行评估,再利用49个GNSS站结合GPT3模型估算的气象参数反演日均大气可降水量PWV,并采用与GNSS站并址的探空站数据对其精度进行评定。实验得出:1)在中国地区,1°分辨率的GPT3模型的精度和稳定性优于5°分辨率,其气压、气温和大气加权平均温度Tm的偏差均值分别为0.73 hPa、1.34 K和-1.67 K,均方根误差均值分别为4.21 hPa、3.75 K和4.15 K;2)利用GPT3模型提供的气温结合Bevis经验公式反演的PWV与GPT3模型提供的Tm反演的PWV精度相当,且2种方法反演的PWV和探空资料实测地表温度反演的PWV呈现很好的一致性,在我国青藏高原和西北地区反演PWV的精度优于我国南方和北方地区。  相似文献   

2.
使用亚洲区域18个IGS测站和中国区域内16个探空站2016~2018年的数据,研究GPT3模型反演天顶对流层延迟(ZTD)和大气可降水量(PWV)的精度,并与其他GPT系列模型进行对比。结果表明,GPT3-1模型估计的ZTD的bias均值和最大值均最小,分别为1.34 mm和14.06 mm;GPT3模型整体精度略优于GPT2w模型,优于GPT2模型。探空站处GPT3模型反演的PWV的bias和RMSE均表现出较强的季节性特征;由GPT3模型反演的PWV的月均值可知,GPT3-1模型比GPT3-5模型具有更高的精度和稳定性。  相似文献   

3.
针对GPT2w模型误差累积所导致的天顶对流层延迟(zenith tropospheric delay, ZTD)和大气可降水量(precipitable water vapor, PWV)精度不高的问题,利用2017年长三角地区7个探空站和2个GNSS站的实测数据检验GPT2w模型获取的气压、温度、水汽压、加权平均温度(Tm)和ZTD等参数的精度,并融合GNSS解算得到的ZTD(GNSS-ZTD)与GPT2w模型获取的气象参数,提高PWV反演精度。结果表明:1)近地面处的气压、温度和水汽压的bias分布在-3~4 mbar、-7~7 K和-9~2 mbar之间,精度较高;2)GPT2w模型获取的Tm在长三角地区适用性较好,年均bias和RMS分别为-1.21 K和6.89 K;3)基于GPT2w模型解算的ZTD的bias和RMS均值分别为1.4 cm和9.4 cm,精度明显低于基于实测气象数据获得的GNSS-ZTD;4)参数融合法计算的PWV与GNSS-PWV精度相当,该方法可用于无实测气象参数时实时获取PWV。  相似文献   

4.
利用MATLAB实现UNB3m、GPT2w+Hopfield、GPT2w+Saastamoinen、GPT3+Hopfield、GPT3+Saastamoinen等5种模型,分析它们在陕西地区的适用性。结果表明,5种模型结果普遍偏小。GPT2w+Saastamoinen和GPT3+Saastamoinen模型整体精度相当,且优于其他3种模型,bias为1.41 cm,RMS分别为4.68 cm和4.67 cm,且随着高程增加精度越来越高。5种策略精度均随季节变化而变化,其中UNB3m变化最为明显,夏冬2季bias差达到7.92 cm,RMS差达到7.67 cm。更高精度计算时,秋季应使用GPT3,而春夏2季时使用GPT2w效果更好。选用同样的气象参数模型时,Saastamoinen模型比Hopfield模型更适用于陕西地区,并且陕北地区精度最好。对比最新的全球气压温度模型GPT3与GPT2w发现,2种模型算得的地面气压P、地面温度T、地面水汽压e、大气加权平均温度Tm等4种气象参数均相差细微,所以在陕西地区利用GPT2w或GPT3分别算得的对流层总延迟ZTD和对流层干延迟ZHD相差很小,通过对流层湿延迟ZWD算得的PWV也几乎相当。  相似文献   

5.
基于Fortran语言对GAMIT10.7软件进行二次开发,实现了Hopfield模型、Saastamoinen模型、Black模型、UNB3模型、EGNOS模型、GPT2w_1+Saastamoinen模型和GPT2w_5+Saastamoinen模型在中国西北地区的对流层延迟解算服务,并分析不同对流层延迟模型在西北地区的适应性问题。实验表明,在实测气象数据模型中,Saastamoinen模型在中国西北地区获取的天顶对流层延迟精度最高,各个测站平均bias值和RMS值分别是-1.67 cm、3.83 cm;Hopfield模型和Black模型精度相当。在非实测气象数据模型中,GPT2w_1+Saastamoinen模型精度最高,GPT2w_5+Saastamoinen模型次之,EGNOS模型最低。不同对流层延迟模型的精度均受季节变化影响,夏季bias的绝对值和RMS值最大,冬季最小,春季和秋季结果相当。  相似文献   

6.
利用中国区域2015~2017年探空数据,建立一种顾及地表温度、地表水汽压、高程和纬度的中国区域大气加权平均温度Tm模型(BET模型)。以2018年探空站Tm数据为参考值,分析BET模型精度,并与Bevis模型和GPT3模型进行对比。结果表明,BET模型年均RMSE与bias分别为3.15 K和0.04 K,相比于Bevis模型、1°×1°分辨率的GPT3模型和5°×5°分辨率的GPT3模型,年均RMSE分别降低29.2%、32.8%和39.1%,年均bias分别降低96.4%、96.7%和97.4%,且该模型在中国区域不同高程和纬度上的精度与稳定性优于Bevis模型和GPT3模型。  相似文献   

7.
以中国西南地区2015~2017年探空数据为实验数据,使用多层感知器(MLP)神经网络回归方法建立西南地区的加权平均温度(Tm)模型。将气象参数(地表温度、水汽压)和非气象参数(高程、纬度和年积日)作为模型输入因子,由数值积分法计算得到的Tm作为学习目标,通过神经网络模型进行迭代训练从而得到中国西南地区的Tm。以2018年探空站Tm数据为参考值,对MLP模型精度进行验证,并与Bevis模型和GPT3模型进行对比分析。结果表明,MLP模型的年均RMSE和年均bias分别为1.99 K和0.15 K,比Bevis模型、GPT3模型年均RMSE分别降低1.36 K(40.6%)和1.51 K(43.1%),年均bias分别下降0.70 K(82.4%)和1.04 K(87.4%),且该模型在中国西南区域不同高程、纬度和季节的精度与稳定性优于Bevis模型和GPT3模型。  相似文献   

8.
针对中国南部地区地势西高东低、沿海与内陆存在差异等情况,分析中国南部地区Tm与地面温度、测站高度、季节变化以及纬度的关系,利用中国南部地区19个探空站2015~2017年的探空数据,在Bevis公式的基础上建立只考虑地面温度的线性模型(Tm-SC1模型)和与地面温度、高程、季节变化以及纬度有关的新Tm模型(Tm-SC2模型)。以2018年的探空数据为参考值,对Tm-SC1模型和Tm-SC2模型进行精度验证,并与广泛使用的Bevis公式和GPT3模型进行精度比较。结果表明,Tm-SC1模型的年均偏差和均方根误差(RMS)分别为0.76 K和2.57 K,相比Bevis模型和GPT3模型,其精度(RMS值)分别提高13.8%和2.2%;Tm-SC2模型的年均偏差和均方根误差(RMS)分别为-0.10 K和1.64 K,相比Bevis模型和GPT3模型其精度(RMS值)分别提高44.9%和37.6%。Tm-SC2模型用于GNSS水汽计算导致的理论RMS误差和相对误差分别为0.16 mm和0.43%。因此,Tm-SC2模型更适用于中国南部地区的GNSS水汽探测以及气象研究。  相似文献   

9.
选用2012~2017年Kings Park 站探空资料,基于迭代最小二乘方法构建2种香港地区顾及高度改正的加权平均温度模型--Tm_hk1和Tm_hk2,并利用2018年探空资料对模型在香港地区的精度和适用性进行评估。结果表明,在香港地区,依赖测站温度的Tm_hk1模型具有较高的精度,年均偏差优于0.3 K,均方根误差优于1.8 K,与Bevis公式和GPT2w模型相比,Tm_hk1模型的精度分别提升35.4%和29.7%;而不依赖气象参数的Tm_hk2模型与GPT2w模型的精度相当,年均方根误差均优于2.5 K,Bevis公式的精度最差(RMS为2.7 K),且具有较大负偏差(bias为-1.8 K)。从季节性分析可知,Bevis公式、Tm_hk2 和GPT2w模型精度具有明显的季节性变化,总体为夏季精度较高(RMSE为1.3~2.2 K),冬季精度较低(RMSE为3.0~4.4 K);Tm_hk1模型在各季节均具有最高精度(RMSE为1.4~2.4 K)和适用性。  相似文献   

10.
利用精密单点定位(PPP)技术处理贵州地基GNSS观测数据,获得高精度天顶对流层延迟(ZTD),进而开展水汽反演获得大气可降水量(PWV)产品。基于斜路径可降水量(SWV),使用自适应联合代数重构算法进行三维水汽层析,空间分辨率优于30 km×30 km,时间分辨率为5 min。以无线电探空数据为参考评估ZTD和PWV精度,其RMS分别为3.55 mm和1.03 mm。以ERA5再分析资料为参考评估三维层析精度,无暴雨发生时,三维层析相对误差不超过10%,偏差最大值为1.03 g/m3。以无线电探空数据为参考评估三维层析精度,层析结果与无线电探空数据的相关系数在0.97以上,具有较好的一致性。贵阳站和威宁站的平均RMS分别优于0.5 g/m3和1.2 g/m3。  相似文献   

11.
本文采用中国沿海地区13个探空站2010~2014年实测地表温度Ts与平均温度Tm数据,利用傅里叶级数分析法精化中国沿海地区Tm模型,并将2015年探空站实测Tm数据与精化模型进行对比检验。结果表明,精化模型在Tm探测方面具有更高的计算精度,其计算大气可降水量的误差概率分布趋近于正态分布,具有较强的稳定性。  相似文献   

12.
利用长三角地区多个探空站气象资料、GNSS观测数据和GPT3模型,以探空资料的大气可降水量(PWV)为参考值,评估GPT3模型、两种地面气象资料法和GNSS等4种方法计算的PWV精度、可靠性和时效性.结果表明,GPT3模型可实时获取PWV,但精度较低;GNSS-PWV精度最高,但需要实测气象参数,会限制其应用范围;两种...  相似文献   

13.
提出一种基于主成分分析(PCA)的ZTD时空建模方法,并利用GNSS连续运行参考站获取的ZTD数据,建立香港、云南、中国3个区域范围的ZTD时空模型。结果表明,所建立的区域对流层延迟时空模型不仅精度明显高于Saastamoinen、EGNOS和UNB3m模型,而且建模过程简单,模型参数较少,使用方便。  相似文献   

14.
针对东南沿海地区GNSS大气可降水量(PWV)计算过程参数多、数据量大、效率不高且易产生累积误差等问题,本文基于中国东南沿海地区2017~2018年18个CORS站的GNSS数据,分析GNSS-PWV与对流层延迟(ZTD)、地面气温(Ts)和地面大气压(Ps)之间的线性关系,并利用多元线性拟合方法建立多因子GNSS-PWV直接转换模型,为研究区提供简捷高效的PWV计算方法。结果表明,GNSS-PWV与ZTD、Ps和Ts之间具有良好的相关性,相关系数分别为0.98、-0.65和0.78;基于ZTD、Ps和Ts的多因子PWV模型RMS为0.33 mm,精度最高,明显优于基于ZTD的单因子PWV模型(4.66 mm),而基于ZTD和Ps的双因子PWV模型RMS为0.50 mm。  相似文献   

15.
提出一种综合GNSS及探空仪数据的对流层折射指数剖面反演模型新方法,利用GNSS观测数据直接采用参数估计计算测站高精度ZTD(zenith troposphere delay)值,结合探空数据构建测站上空折射指数分层剖面反演模型。通过BJFS(北京站)、WUHN(武汉站)、WIND(Windhoek站)和DARW(Darwin站)的实测数据进行相应计算与验证。结果表明,该反演模型与基于探空数据的反演模型精度相当,二者均优于Hopfield模型。同时该方法计算简便,且在模型建立后可以大大减少探空仪观测。  相似文献   

16.
针对传统对流层延迟模型精度较低的缺点,基于神经网络模型误差补偿技术,在Hopfield模型基础上建立一个适用于北半球的高精度融合模型。以Wyoming大学提供的2010年全球120多个观测台站的气象探空数据精密解算的天顶对流层延迟(ZTD)作为近似“真值”,分析比较Hopfield模型、传统BP模型和融合模型的计算精度。结果表明,Hopfield模型的均方根误差(RMSE)为35.31 mm,传统BP模型为30.34 mm,融合模型为23.31 mm。  相似文献   

17.
利用ERA5大气再分析资料研究ZTD高程尺度因子的精细时间变化特征,构建顾及高程尺度因子精细时间变化的云贵川地区ZTD垂直剖面格网模型(YZTD-H模型)。以云贵川地区探空站分层ZTD数据作为参考值,检验YZTD-H模型的精度,并将其与GPT2w模型和GPT3模型进行比较。结果表明,顾及精细时间变化和垂直剖面变化的YZTD-H模型在时间维度和垂直剖面维度上均表现出较好的稳定性。  相似文献   

18.
采用IGRA提供的2017年81个无线电探空站的探空资料,对4种对流层延迟模型在中国区域的精度进行综合评估与分析。结果表明,GPT2w模型的性能要优于依赖气象参数的Saastamoinen模型及基于球谐函数的GZTD和UNB3m模型;GPT2w模型的偏差均值MB(mean bias)和均方根误差RMSE分别为-0.8 cm和4.1 cm,各测站的MB和RMSE分别处于-2~2 cm和1.3~7.9 cm之间。UNB3m模型在中国区域存在较大的MB和RMSE,模型的RMSE最大可达10.2 cm。4种模型的精度对测站纬度具有一致的敏感性,表现为随测站纬度的升高而降低;模型精度呈明显季节性变化,且不同模型对季节的敏感程度有所差异;对流层湿延迟难以精确建模导致模型精度在夏季(RMSE为6~9 cm)低于冬季(RMSE为2~2.5 cm)。  相似文献   

19.
利用ECMWF再分析地表资料,结合GPT2w模型提供的水汽递减率和温度递减率计算中国区域对流层延迟值的精度。首先,以中国地区75个探空站2015年地表实测气象参数为参考值,利用ECMWF地表资料得到的气象参数(P,T,e)的精度分别为1.76 hPa、1.96 K、1.98 hPa。然后,以相同测站2010~2015年探空站分层数据算得的ZTD为参考值,对ECMWF地表资料计算的ZTD的精度进行分析,并与利用探空仪地面观测数据为输入参数计算的ZTD的精度进行对比。结果显示,利用ECMWF地表资料计算的ZTD的平均bias为0.07 cm,平均RMS为3.72 cm,在低纬度地区优于利用探空仪地面观测数据为输入参数计算的ZTD的结果。以陆态网237个GNSS测站2015年的ZTD作为参考值,比对利用ECMWF地表资料计算的ZTD的精度,结果为3.41 cm。由此可知,ECMWF地面资料计算的ZTD的精度能满足普通用户对流层延迟的计算需求,可用于缺少气象参数的测站进行对流层延迟值的计算及其他相关应用。  相似文献   

20.
采用线性回归和最小二乘法拟合建立无线电探空可降水量(RS-PWV)与GPS对流层延迟(GPS-ZTD)、地面温度及大气压之间的直接转换模型,并将直接转换模型得到的PWV分别与RS-PWV及GPS反演得到的可降水量(GPS-PWV)进行比较。结果表明,RS-PWV与GPS-ZTD之间存在良好的线性关系,相关系数达0.927 6;RS-PWV与4阶拟合温度和大气压呈现较好的相关性,相关系数分别为0.640 1和-0.626 3;基于ZTD的单阶单因子模型PWV与GPS-PWV的相关系数达到0.969 9;基于ZTD、温度及大气压的单阶多因子模型PWV比基于ZTD的单阶单因子模型PWV精度明显提高,RMS从4.3 mm提高到3.3 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号