首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Glaciofluvial De Geer moraines have rarely been described in detail in the literature. This study presents a model for the genesis of moraines of this type in the Chapais area, Québec. The model is based mainly on facies and deformatin structures analysis, and geomorphological data. Well-stratified glaciofluvial material is commonly found in the core of the moraines, whereas till or glacial diamicton may be present as surficial cover on their proximal side or as injected lenses in the sorted sediments. The paleocurrents are systematically directd downglacier. The moraines were built up in subglacial crevasses in areas where meltwater was channelized. Water flowed under pressure from small upglacier cavities, carrying a load of coars-grained material When flowing water entered crevasses already occupied by water, flow sparation occurred, reducing the capacity of the flow to carry the particles, and avalanching glaciofluvial material on the leeside of the piled sediments. The occurrence, in these sediments, of glaciotectonic deformation structures such as overturned to recumbent folds and thrust faults is evidence that the glacier was still active to some degree during and after the sedimentation phase.  相似文献   

2.
De Geer moraines are very common in the Møre area, western Norway. These moraines occur below the marine limit and outside the Younger Dryas ice limit and occupy tributaries that connect the main fjords through the mountain passes. During deglaciation, ice in these tributaries flowed to the major ice streams. Sections across three De Geer moraines show that the ridges are composed of diamictons and fine-grained sediment, partly in stacked sequences. The diamicton units are interpreted as being composed of water-lain tills, lodgements tills and subaqueous flow deposits. The fine-grained sediment is though to have formed in a proglacial marine environment. Clast fabric of diamictons and deformation structures in underlying sands show that depositional directions for diamicton units and the direction of deformation for the sands is perpendicular to the ridge crests. Mainly based on this evidence, the ridges are thought to have formed by push at the glacier grounding line. The formation of transverse ridges (relative to ice flow) do occur in basal crevasses on modern glaciers, as do swarms of ridges along the front of retreating glaciers. The first mechanism of deposition does not seem to explain the ridges studied in the present paper and hence the importance of this process in the formation of De Geer moraines is questioned. The De Geer moraines were deposited by ice lobes advancing from one main fjord into another; therefore by studying the drainage pattern of the tributary lobes and their sequence of deglaciation, many features of the style of deglaciation of the ice sheet across the area can be determined. The northwestern part of the area was deglaciated earliest. After that, deglaciation proceeded to the southwest parallel to the coast. Subsequently the outer and the central part of Romsdalsfjorden were deglaciated causing ice to drain towards this fjord from both the north and south. The last fjord to be deglaciated was Storfjorden in the south.  相似文献   

3.
De Geer moraine ridges occur in abundance in the coastal zone of northern Sweden, preferentially in areas with proglacial water depths in excess of 150 m at deglaciation. From detailed sedimentological and structural investigations in machine‐dug trenches across De Geer ridges it is concluded that the moraines formed due to subglacial sediment advection to the ice margin during temporary halts in grounding‐line retreat, forming gradually thickening sediment wedges. The proximal part of the moraines were built up in submarginal position as stacked sequences of deforming bed diamictons, intercalated with glaciofluvial canal‐infill sediments, whereas the distal parts were built up from the grounding line by prograding sediment gravity‐flow deposits, distally interfingering with glaciolacustrine sediments. The rapid grounding‐line retreat (ca. 400 m yr?1) was driven by rapid calving, in turn enhanced by fast iceflow and marginal thinning of ice due to deforming bed conditions. The spatial distribution of the moraine ridges indicates stepwise retreat of the grounding line. It is suggested that this is due to slab and flake calving of the ice cliff above the waterline, forming a gradually widening subaqueous ice ledge which eventually breaks off to a new grounding line, followed by regained sediment delivery and ridge build‐up. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Approximately 35 parallel, discontinuous glacial ridges occur in an area of about 100 km2 in north‐central Wisconsin. The ridges are located between about 6 and 15 km north (formerly up‐ice) of the maximum extent of the Wisconsin Valley Lobe of the Laurentide Ice Sheet. The ridges are between 1 and 4 m high, up to 1 km long, and spaced between 30 and 80 m apart. They are typically asymmetrical with a steep proximal (ice‐contact) slope and gentle distal slope. The ridges are composed primarily of subglacial till on their proximal sides and glacial debris‐flow sediment on the distal sides. In some ridges the till and debris‐flow sediment are underlain by sorted sediment that was deformed in the former direction of ice flow. We interpret the ridges to be recessional moraines that formed as the Wisconsin Valley Lobe wasted back from its maximum extent, with each ridge having formed by a sequence of (1) pushing of sorted ice‐marginal sediment, (2) partial overriding by the glacier and deposition of subglacial till on the proximal side of the ridge, and (3) deposition of debris‐flow sediment on the distal side of the ridge after the frozen till at the crest of the ridge melted. The moraines are similar to annual recessional moraines described at several modern glaciers, especially the northern margin of Myrdalsjokull, Iceland. Thus, we believe the ridges probably formed as a result of minor winter advances of the ice margin during deglaciation. Based on this assumption, we calculate the net rate of ice‐surface lowering of the Wisconsin Valley Lobe during the period when the moraines formed. Various estimates of ice‐surface slope and rates of ice‐margin retreat yield a wide range of values for ice‐surface lowering (1.7–14.5 m/yr). Given that ablation rates must exceed those of ice‐surface lowering, this range of values suggests relatively high summer temperatures along the margin of the Wisconsin Valley Lobe when it began retreating from its maximum extent. In addition, the formation of annual moraines indicates that the glacier toe was thin, the ice surface was clean, and the ice margin experienced relatively cold winters.  相似文献   

5.
Transverse-to-iceflow ribbed moraine occurs in abundance in the coastal zone of northern Sweden, particularly in areas below the highest shoreline (200–230 m a.s.l.), but occasionally also slightly above. Based on detailed sedimentological and structural investigations of machine-dug sections across five ribbed moraine ridges, it is concluded that these vertically and distally prograding moraine ridges were formed as a result of subglacial folding/thrust stacking and lee-side cavity deposition. The proximal part of the moraines (Proximal Element) was formed by subglacial folding and thrust stacking of sequences of pre-existing sediments, whereas the distal part (Distal Element) was formed by glaciofluvial and gravity-flow deposition in lee-side cavities. The initial thrusting and folding is suggested to be a result of differences in bed rheology at the ice-marginal zone during the early or late melt season, and that generated a compressive zone transverse to ice flow as a result of a more mobile bed up-glacier compared to a less mobile bed down-glacier. It is considered that the lee-side cavities were formed as a result of ice-bed separation on the distal slope of the thrust/fold-created obstruction. The lee-side cavities formed an integral part of a subglacial linked-cavity drainage network regulated in their degree of interconnection, size and shape by fluctuations in basal meltwater pressure/discharge and basal iceflow velocity. The proximal and distal elements of the ribbed moraine ridges are erosively cut and/or draped with a consistently more homogeneous deforming bed till (Draping Element) marking the final phase of ribbed moraine formation considered to be contemporaneous with De Geer moraine formation further down-flow at the receding ice-sheet margin.  相似文献   

6.
Understanding the processes that deposit till below modern glaciers provides fundamental information for interpreting ancient subglacial deposits. A process‐deposit‐landform model is developed for the till bed of Saskatchewan Glacier in the Canadian Rocky Mountains. The glacier is predominantly hard bedded in its upper reaches and flows through a deep valley carved into resistant Palaeozoic carbonates but the ice margin rests on a thick (<6 m) soft bed of silt‐rich deformation till that has been exposed as the glacier retreats from its Little Ice Age limit reached in 1854. In situ tree stumps rooted in a palaeosol under the till are dated between ca 2900 and 2700 yr bp and record initial glacier expansion during the Neoglacial. Sedimentological and stratigraphic observations underscore the importance of subglacial deformation of glaciofluvial outwash deposited in front of the advancing glacier and mixing with glaciolacustrine carbonate‐rich silt to form a soft bed. The exposed till plain has a rolling drumlinoid topography inherited from overridden end moraines and is corrugated by more than 400 longitudinal flute ridges which record deformation of the soft bed and fall into three genetically related types: those developed in propagating incipient cavities in the lee of large subglacial boulders embedded in deformation till, and those lacking any originating boulder and formed by pressing of wet till up into radial crevasses under stagnant ice. A third type consists of U‐shaped flutes akin to barchan dunes; these wrap around large boulders at the downglacier ends of longitudinal scours formed by the bulldozing of boulders by the ice front during brief winter readvances across soft till. Pervasive subglacial deformation during glacier expansion was probably facilitated by large boulders rotating within the soft bed (‘glacioturbation’).  相似文献   

7.
Glacier thermal regime is shown to have a significant influence on the formation of ice‐marginal moraines. Annual moraines at the margin of Midtdalsbreen are asymmetrical and contain sorted fine sediment and diamicton layers dipping gently up‐glacier. The sorted fine sediments include sands and gravels that were initially deposited fluvially directly in front of the glacier. Clast‐form data indicate that the diamictons have a mixed subglacial and fluvial origin. Winter cold is able to penetrate through the thin (<10 m) ice margin and freeze these sediments to the glacier sole. During winter, sediment becomes elevated along the wedge‐shaped advancing glacier snout before melting out and being deposited as asymmetrical ridges. These annual moraines have a limited preservation potential of ~40 years, and this is reflected in the evolution of landforms across the glacier foreland. Despite changing climatic conditions since the Little Ice Age and particularly within the last 10 years when frontal retreat has significantly speeded up, glacier dynamics have remained relatively constant with moraines deposited via basal freeze‐on, which requires stable glacier geometry. While the annual moraines on the eastern side of Midtdalsbreen indicate a slow steady retreat, the western foreland contains contrasting ice‐stagnation topography, highlighting the importance of local forcing factors such as shielding, aspect and debris cover in addition to changing climate. This study indicates that, even in temperate glacial environments, restricted or localised areas of cold‐based ice can have a significant impact on the geomorphic imprint of the glacier system and may actually be more widespread within both modern and ancient glacial environments than previously thought.  相似文献   

8.
Flutes are a distinctive type of glacial landform and comprise closely-spaced, streamlined ridges and furrows usually developed on till surfaces and aligned parallel to ice movement direction. Several models proposed to explain their formation involve, at least in part, post-depositional deformation or transfer of subglacial sediments; others involve primary deposition or erosion. The flutes on several glacier forelands in the mountains of the southern Lyngen peninsula in North Norway are associated with glaciers with cold-based margins. To explain the formation of the flutes three main sets of variables are investigated: 1, the landforms and their shapes, dimensions and field relationships; 2, the physical properties of the materials comprising the flutes; and 3, the glacier properties, and in particular, the basal thermal regime and ice-debris relationships at the glacier margin. Existing models of flute formation which involve post-depositional deformation or transfer of subglacial sediments do not explain satisfactorily several aspects of the flutes found in Lyngen. Instead, a model is proposed in which the flutes are primary features formed by deformation of the basal ice layer around subglacial boulders or other obstacles.  相似文献   

9.
Evidence for former fast glacier flow (ice streaming) in the southwest Laurentide Ice Sheet is identified on the basis of regional glacial geomorphology and sedimentology, highlighting the depositional processes associated with the margin of a terrestrial terminating ice stream. Preliminary mapping from a digital elevation model of Alberta identifies corridors of smoothed topography and corridor‐parallel streamlined landforms (megaflutes to mega‐lineations) that display high levels of spatial coherency. Ridges that lie transverse to the dominant streamlining patterns are interpreted as: (a) series of minor recessional push moraines; (b) thrust block moraines or composite ridges/hill–hole pairs constructed during readvances/surges; and (c) overridden moraines (cupola hills), apparently of thrust origin. Together these landforms demarcate the beds and margins of former fast ice flow trunks or ice streams that terminated as lobate forms. Localised cross‐cutting and/or misalignment of flow sets indicates temporal separation and the overprinting of ice streams/lobes. The fast‐flow tracks are separated by areas of interlobate or inter‐stream terrain in which moraines have been constructed at the margins of neighbouring (competing) ice streams/outlet glaciers; this inter‐stream terrain was covered by more sluggish, non‐streaming ice during full glacial conditions. Thin tills at the centres of the fast‐flow corridors, in many places unconformably overlying stratified sediments, suggest that widespread till deformation may have been subordinate to basal sliding in driving fast ice flow but the general thickening of tills towards the lobate terminal margins of ice streams/outlet glaciers is consistent with subglacial deformation theory. In this area of relatively low relief we speculate that fast glacier flow or streaming was highly dynamic and transitory, sometimes with fast‐flowing trunks topographically fixed in their onset zones and with the terminus migrating laterally. The occurrence of minor push moraines and flutings and associated landforms, because of their similarity to modern active temperate glacial landsystems, are interpreted as indicative of ice lobe marginal oscillations, possibly in response to seasonal climatic forcing, in locations where meltwater was more effectively drained from the glacier bed. Further north, the occurrence of surging glacier landsystems suggests that persistent fast glacier flow gave way to more transitory surging, possibly in response to the decreasing size of ice reservoir areas in dispersal centres and also locally facilitated by ice‐bed decoupling and drawdown initiated by the development of ice‐dammed lakes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Subglacial and subaqueous sediments deposited near the margin of a Late-glacial ice-dammed lake near Achnasheen, northern Scotland, are described and interpreted. The subglacial sediments consist of deformation tills and glacitectonites derived from pre-existing glaciolacustrine deposits, and the subaqueous sediments consist of ice-proximal outwash and sediment flow deposits, and distal turbidites. Sediment was delivered from the glacier to the lake by two main processes: (1) subglacial till deformation, which fed debris flows at the grounding line; and (2) meltwater transport, which fed sediment-gravity flows on prograding outwash fans. Beyond the ice-marginal environment, deposition was from turbidity currents, ice-rafting and settling of suspended sediments. The exposures support the conclusion that the presence of a subglacial deforming layer can exert an important influence on sedimentation at the grounding lines of calving glaciers.  相似文献   

11.
The Kuannersuit Glacier surged 11 km between 1995 and 1998. The surge resulted in the formation of an ice cored thrust moraine complex constructed by subglacial and proglacial glaciotectonic processes. Four main thrust zones are evident in the glacier snout area with phases of compressional folding and thrusting followed by hydrofracture in response to the build-up of compressional stresses and the aquicludal nature of submarginal permafrost and naled. Various types of stratified debris-rich ice facies occur within the marginal zone: The first (Facies I) comprises laterally continuous strata of ice with sorted sediment accumulations, and is reworked and thrust naled ice. The second is laterally discontinuous stratified debris-rich ice with distinct tectonic structures, and is derived through subglacial extensional deformation and localised regelation (Facies II), whilst the third type is characterised by reworked and brecciated ice associated with the reworking and entrainment of meteoric ice (Facies III). Hydrofracture dykes and sills (Facies IV) cross-cut the marginal ice cored thrust moraines, with their sub-vertically frozen internal contact boundaries and sedimentary structures, suggesting supercooling operated as high-pressure evacuation of water occurred during thrusting, but this is not related to the formation of basal stratified debris-rich ice. Linear distributions of sorted fines transverse to ice flow, and small stratified sediment ridges that vertically cross-cut the ice surface up-ice of the thrust zone relate to sediment migration along crevasse traces and fluvial infilling of crevasses. From a palaeoglaciological viewpoint, marginal glacier tectonics, ice sediment content and sediment delivery mechanisms combine to control the development of this polythermal surge valley landsystem. The bulldozing of proglacial sediments and the folding and thrusting of naled leads to the initial development of the outer zone of the moraine complex. This becomes buried in bulldozed outwash sediment and well-sorted fines through surface ablation of naled. Up-ice of this, the heavily thrust margin becomes buried in sediment melted out from basal debris-rich ice and subglacial diamicts routed along thrusts. These mechanisms combine to deliver sediment to supraglacial localities, and promote the initial preservation of structurally controlled moraines through insulation, and the later development of kettled dead ice terrain.  相似文献   

12.
The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (<10 km long) also strike southwest-northeast. The mapped pattern of moraines implies that, shortly after the last maximum glaciation, the tidewater ice sheet began to retreat north from German Bank, forming De Geer moraines at the grounding line with at least one glacial re-advance during the general retreat. The results indicate that the Laurentide Ice Sheet extended onto the continental shelf.  相似文献   

13.
The foreground of Elisebreen, a retreating valley glacier in West Svalbard, exhibits a well-preserved assemblage of subglacial landforms including ice-flow parallel ridges (flutings), ice-flow oblique ridges (crevasse-fill features), and meandering ridges (infill of basal meltwater conduits). Other landforms are thrust-block moraine, hummocky terrain, and drumlinoid hills. We argue in agreement with geomorphological models that this landform assemblage was generated by ice-flow instability, possibly a surge, which took place in the past when the ice was thicker and the bed warmer. The surge likely occurred due to elevated pore-water pressure in a thin layer of thawed and water-saturated till that separated glacier ice from a frozen substratum. Termination may have been caused by a combination of water drainage and loss of lubricating sediment. Sedimentological investigations indicate that key landforms may be formed by weak till oozing into basal cavities and crevasses, opening in response to accelerated ice flow, and into water conduits abandoned during rearrangement of the basal water system. Today, Elisebreen may no longer have surge potential due to its diminished size. The ability to identify ice-flow instability from geomorphological criteria is important in deglaciated terrain as well as in regions where ice dynamics are adapting to climate change.  相似文献   

14.
Traditionally, geometrical ridge networks are interpreted as the product of the flow of subglacial sediment into open basal crevasses at the cessation of a glacier surge (‘crevasse-fill’ ridges). They are widely regarded as a characteristic landform of glacier surges. Understanding the range of processes by which these ridge networks form is therefore of importance in the recognition of palaeosurges within the landform record. The geometrical ridge network at the surge-type glacier Kongsvegen in Svalbard, does not form by crevasse filling. The networks consist of transverse and longitudinal ridges that can be seen forming at the current ice margin. The transverse ridges form as a result of the incorporation of basal debris along thrust planes within the ice. The thrusts were apparently formed during a glacier surge in 1948. Longitudinal ridges form through the meltout of elongated pods of debris, which on the glacier surface are subparallel to the ice foliation and pre-date the surge. This work adds to the range of landforms associated with glacier surges.  相似文献   

15.
Terminal-moraine ridges up to 6 m high have been forming at the snout of Styggedalsbreen for two decades. Based on intermittent observations during this period, combined with a detailed study of ridge morphology, sedimentary structures and composition during the 1993 field season, a model of terminal-moraine formation that involves the interaction of glacial and glacio-fluvial processes at a seasonally oscillating ice margin is presented. In winter, subglacial debris is frozen-on to the glacier sole; in summer, ice-marginal and supraglacial streams deposit sediments on the wasting ice tongue. The ice tongue overrides an embryonic moraine ridge during a late-winter advance and a double layer of sediment (diamicton overlain by sorted sands and gravels) is added to the moraine ridge during the subsequent ablation season. Particular ridges grow incrementally over many years and exert positive feedback by enhancing snout up-arching during the winter advance and constraining the course of summer meltwater streams close to the ice margin. The double-layer annual-meltout model is related to moraine formation by the stacking of subglacial frozen-on sediment slabs (Krüger 1993). Moraine ridges of this type have a complex origin. are not push moraines, and may be characteristic of dynamic high-latitude and high-altitude temperate glaciers.  相似文献   

16.
Much previous research at surge-type glaciers has sought to identify features diagnostic of surge-type behaviour. However, in comparatively little work have subglacial landform–sediment characteristics been used to reconstruct changing basal processes and conditions during surge events. Subglacial bedforms described in this article are associated with the 1991 surge of Skeiðarárjökull, Iceland, and include a series of drumlins with superimposed flutes and basal crevasse-fill ridges. The drumlins were formed by the subglacial erosion of ice-contact fans. Sedimentary evidence indicates a shift from rigid-bed to soft-bed conditions during the surge. The presence of eroded but undeformed fan sediments suggests that they acted as a rigid bed when initially overridden. Subsequent deposition of a layer of deformation till resulted in a change to soft-bed conditions and the generation of flutes and subglacial crevasse-fill ridges. The lack of mixing between this till and the underlying stratified sediments indicates that subglacial sediment deformation was restricted to a thin layer and that its deposition resulted in a cessation of subglacial erosion. The drumlin is therefore a composite of both rigid-bed and soft-bed processes that illustrates changes in basal conditions and processes during the course of the event. The limited time frame in which the drumlin formed and the presence of kettleholes across its surface are distinctive features that may warrant further investigation in the search for features diagnostic of past surge events.  相似文献   

17.
18.
Burki, V., Hansen, L., Fredin, O., Andersen, T. A., Beylich, A. A., Jaboyedoff, M., Larsen, E. & Tønnesen, J.‐ F. 2009: Little Ice Age advance and retreat sediment budgets for an outlet glacier in western Norway. Boreas, Vol. 39, pp. 551–566. 10.1111/j.1502‐3885.2009.00133.x. ISSN 0300‐9483 Bødalsbreen is an outlet glacier of the Jostedalsbreen Ice Field in western Norway. Nine moraine ridges formed during and after the maximum extent of the Little Ice Age (LIA). The stratigraphy of proglacial sediments in the Bødalen basin inside the LIA moraines is examined, and corresponding sediment volumes are calculated based on georadar surveys and seismic profiling. The total erosion rates (etot) by the glacier are determined for the periods AD 1650–1930 and AD 1930–2005 as 0.8 ± 0.4 mm/yr and 0.7 ± 0.3 mm/yr, respectively. These rates are based on the total amount of sediment delivered to the glacier margin. The values are almost one order of magnitude higher than total erosion rates previously calculated for Norwegian glaciers. This is explained by the large amount of pre‐existing sediment that was recycled by Bødalsbreen. Thus, the total erosion rate must be considered as a composite of eroded bedrock and of removed pre‐existing sediments. The total erosion rate is likely to vary with time owing to a decreasing volume of easily erodible, unconsolidated sediment and till under the glacier. A slight increase in the subglacial bedrock erosion is expected owing to the gradually increasing bedrock surface area exposed to subglacial erosion.  相似文献   

19.
The glacier Sefstrombreen in Spitsbergen surged across an arm of the sea between 1882 and 1886 and rode up onto the island Coraholmen. Marine and terrestrial geological observations and archive records show that the glacier advanced on a deforming carpet of marine mud which was eroded from its original location, transported, and smeared over the sea bed and Coraholmen as a deformation till. The glacier emplaced about 2108M3 (0.2 km3) of drift in the terminal 2 km of its advance in a maximum of 14 years, leaving a thickness of up to 20 m on Coraholmen, which was doubled in size as a result.During the surge, subglacial muds were characterised by high water pressures, low effective pressures and low frictional resistance to glacier movement. Original sedimentary inhomogenities permit fold structures to be identified, but repeated refolding and progressive remoulding produce mixing and homogenisation of deformation tills.The surge was probably shortlived, and as the heavily crevassed glacier stagnated, underlying water saturated muds were intruded into crevasses and then extruded on the glacier surface. Reticulate “crevasse-intrusion” ridges on Coraholmen and the sea floor reflect the orientation of surge generated crevasses. Water and sediment was also extruded beyond the glacier at its maximum extent, to form extensive flows producing “till tongues” both on Coraholmen and the sea floor extending over 1.3 km from the glacier.It is argued that subglacial deformation of pre-existing sediment will almost invariably be associated with glaciation of marine areas and that this process will not only produce deformation tills through remoulding of pre-existing sediments, but will also play a fundamental role in glacier dynamics. Criteria which permit glacial tills produced by such events from marine and glaciomarine muds are discussed.  相似文献   

20.
The morphology, sedimentology and architecture of an end moraine formed by a ~9 km surge of Brúarjökull in 1963–64 are described and related to ice‐marginal conditions at surge termination. Field observations and accurate mapping using digital elevation models and high‐resolution aerial photographs recorded at surge termination and after the surge show that commonly the surge end moraine was positioned underneath the glacier snout by the termination of the surge. Ground‐penetrating radar profiles and sedimentological data reveal 4–5 m thick deformed sediments consisting of a top layer of till overlying gravel and fine‐grained sediments, and structural geological investigations show that the end moraine is dominated by thrust sheets. A sequential model explaining the formation of submarginal end moraines is proposed. The hydraulic conductivity of the bed had a major influence on the subglacial drainage efficiency and associated porewater pressure at the end of the surge, thereby affecting the rates of subglacial deformation. High porewater pressure in the till decreased its shear strength and raised its strain rate, while low porewater pressure in the underlying gravel had the opposite effect, such that the gravel deformed more slowly than the till. The principal velocity component was therefore located within the till, allowing the glacier to override the gravel thrust sheets that constitute the end moraine. The model suggests that the processes responsible for the formation of submarginal end moraines are different from those operating during the formation of proglacial end moraines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号