首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

2.
At Deobhog, migmatitic gneisses and granulites of the Eastern Ghats Belt are juxtaposed against a cratonic ensemble of banded augen gneiss, amphibolite and calcsilicate gneiss, intruded by late hornblende granite and dolerite. In the migmatitic gneiss unit, early isoclinal folds (syn‐D1M and D2M) are reoriented along N–S‐trending and E‐dipping shear planes (S3M), with (S1M–S3M) intersection lineations having steep to moderate plunges. The near‐peak PT condition was syn‐D3M (≥900 °C, 9.5 kbar), as inferred from syn‐D3M Grt+Opx‐bearing leucosomes in mafic granulites, and from thermobarometry on Grt (corona)–Opx/Cpx–Pl–Qtz assemblages. The PT values are consistent with the occurrence of Opx–Spr–Crd assemblages in spatially associated high‐Mg–Al pelites. A subsequent period of cooling followed by isothermal decompression (800–850 °C, c. 7 kbar) is documented by the formation of coronal garnet and its decomposition to Opx+Pl symplectites in mafic granulites. Hydrous fluid infiltration accompanying the retrograde changes is manifested in biotite replacing Opx in some lithologies. The cratonic banded gneiss–granite unit also documents two phases of isoclinal folding (D1B & D2B), with the L2B lineation girdle different from the lineation spread in the migmatitic gneiss unit. Calcsilicate gneiss (Hbl–Pl–Cpx–Scap–Cal) and amphibolite (Hbl–Pl±Grt±Cpx) within banded gneisses record syn‐D2B peak metamorphic conditions (c. 700 °C, 6.5 kbar), followed by cooling (to c. 500 °C) manifested in the stabilization of coronal clinozoisite–epidote. The D3B shear deformation post‐dates granite and dolerite intrusions and is characterized by top‐to‐the‐west movement along N–S‐trending, E‐dipping shear planes. Deformation mechanisms of quartz and feldspar in granites and banded gneisses and amphibole–plagioclase thermometry within shear bands in dolerites document an inverted syn‐D3B thermal gradient with temperature increasing from 350 to 550 °C in the west to ≥700 °C near the contact with the migmatitic gneiss unit. The thermal gradient is reflected in the stabilization of chlorite after hornblende in S3B shears to the west, and post‐D2B neosome segregation along D3B folds and shears to the east. The contrasting lithologies, early structures and peak metamorphic conditions in the two units indicate unconnected pre‐D3PT –deformation histories. The shared D3 deformation in the two units, the syn‐D3 inverted thermal gradient preserved in the footwall cratonic rocks and the complementary cooling and hydration of the hanging wall granulites across the contact are attributed to westward thrusting of ‘hot’ Eastern Ghats granulites on ‘cool’ cratonic crust. It is suggested that the Eastern Ghats migmatitic gneiss unit is not a reworked part of the craton, but a para‐autochthonous/allochthonous unit emplaced on and amalgamated to the craton.  相似文献   

3.
The Kurtoğlu metamorphic complex, that forms part of the pre-Liassic basement of the Sakarya zone in northern Turkey, consists of at least two tectonic units. Blueschist-facies rocks of unknown metamorphic age in the southern part of the complex are tectonically overlain by Variscan low-pressure high-temperature metamorphic rocks. The latter comprise mica schists and fine-grained gneisses, cut by metaleucogranitic dikes, as well as migmatitic biotite gneisses and subordinate amphibolite intercalations. Structural data indicate that metamorphism and penetrative deformation occurred after dyke intrusion. Peak metamorphic conditions of the mica schists, fine-grained gneisses and metaleucogranites are estimated to ∼650°C and ∼0.4 GPa, based on phase relationships in the system NCKFMASH, Fe–Mg partitioning between garnet and biotite as well as garnet-aluminosilicate-quartz-plagioclase (GASP) and garnet-plagioclase-biotite-quartz (GBPQ) barometry. Peak temperatures of the migmatitic biotite gneisses and amphibolite intercalations are not well constrained but might have been significantly higher (690–740°C), as suggested from hornblende-plagioclase thermometry. 40Ar–39Ar incremental dating on muscovite and biotite fractions from the mica schists and fine-grained gneisses yielded plateau ages of ∼323 Ma. Significantly older model ages of ∼329 and ∼337 Ma were obtained on muscovite fractions from two metaleucogranite samples. These fractions contain both relict igneous and newly formed metamorphic muscovite.  相似文献   

4.
Regionally developed migmatitic gneisses make up most of the Skagit Gneiss, though there are some orthogneisses also, derived from pre- to late-metamorphic intrusives. The migmatites contain countless, though quantitatively subordinate, remnants of biotite schists, less abundant amphibolitic rocks, and minor varieties of metasediments. Biotite schists (fine-grained paragneisses) predominantly are plagioclase-rich, having the compositions of highly immature graywackes; quartz-rich varieties are minor, and alumina-excess rocks very rare. There are para- and ortho-amphibolites, the latter of basaltic-gabbroic parentage. Leucocratic hornblende schists are largely meta-sedimentary. Apart from subordinate varieties in which K-feldspar is a major constituent, the leucocratic migmatitic gneisses have (leuco-) trondhjemitic and, to a lesser extent, quartz-dioritic compositions.The Skagit Gneiss comprises an epidote-bearing subfacies in which sodic andesine is the most calcic plagioclase, and a predominant epidote-free subfacies where plagioclase ranges from oligoclase to bytownite-anorthite. All of the former and at least most of the latter subfacies belongs in the staurolite-kyanite zone. Various mineralogical features suggest a low-P variant within the field of Barrovian-type metamorphism. Even the epidote-free subfacies did not reach the highest grades of regional metamorphism; temperatures are estimated to have been on the order of 600° C there. For the epidote-bearing subfacies, attainment of anatectic temperatures is still more improbable.A systematic study of composition and zoning of plagioclase reveals, statistically as well as for lit-par-lit samples, close relationships between the plagioclase of leucocratic migmatitic gneisses and that of associated schists, amphibolites, etc., indicating that the former was directly derived from the latter by metamorphic recrystallization, with a small shift towards more sodic plagioclase compositions in most, but not all, of the gneisses. Plagioclase relationships and other data seem to rule out igneous injection as the chief agent of migmatization. An anatectic origin of the leucocratic migmatitic gneisses is unlikely for the following reasons. (1) The plagioclase of the gneisses ranges widely in composition (up to, and locally even beyond, calcic andesine), depending on the parent-rock plagioclase. (2) Major K-feldspar is lacking in most of the gneisses which, actually, are impoverished in K2O compared to parent schists. (3) Most of the gneisses have bulk compositions far from those of lowest melting in the granite system. (4) There is no wholesale basification of schist and amphibolite remnants. (5) Ratios of leucocratic gneiss to remnant material commonly are far too high for all of the former to have been split off the latter. (6) The sequence of migmatization, such as amphibolite(quartz)-dioritic gneiss trondhjemitic gneissleuco-trondhjemitic pegmatitic gneiss, is opposite to that to be expected in progressive anatexis. (7) A similar solid-state history of deformation and recrystallization is recorded in gneisses and remnants. (8) The metamorphic grade does not support anatexis. Points (4) + (5) also argue against metamorphic differentiation having been the sole agent of migmatization.Small-scale metamorphic-differentiation features occur, but gradations from schist, etc., into leucocratic gneiss are widespread, not only across but also along the strike. Replacement commonly is associated with prominent development of porphyroblastic plagioclase. On a much larger scale, bulk-compositional changes are indicated where thick schist- or amphibolitederived leucocratic gneiss sequences contain only subordinate remnants of their parent rocks. Such changes imply introduction of material — if not by injection, then by metasomatism. An alternative model, namely, simple isoohemical recrystallization mimetic after patterns of primary sedimentary differentiation would require that (leuco)-trondhjemitic arkoses were intimately associated with and graded into highly immature graywackes and even basalts and gabbros. Nor can this model be reconciled with plagioclase relationships and other petrographic data, or with certain aspects of the actual geometry of the migmatites. Both metamorphic differentiation and metasomatism are believed to have contributed to migmatization. Plagioclase data point both ways. Overall compositional changes in large rock volumes suggest that metasomatism was a first-order agent of regional migmatization while metamorphic differentiation mostly played a more subsidiary role.In the sequences from predominant types of schist and amphibolite to leucocratic gneisses, alumina contents are nearly constant. Assuming that alumina approaches something like an internal standard, the chemical balance of migmatization can be estimated. Small but systematic increase in Na2O (by 1 to over 2 wt. %) is linked with marked increase in SiO2 (on the order of 5 to 10% for schist-, and more for amphibolite-derived gneisses) and with removal of iron and magnesia. CaO does not change systematically, except for decline during the first stages of migmatization of amphibolite. Removal of iron and magnesia is coupled with loss of about 0.5 to about 1.5% K2O in biotite-schist-derived gneisses (except in subordinate varieties with major K-feldspar). In the series amphibolite-gneiss, gain in K2O due to progressive biotitization of hornblende is followed by loss of K2O in leucocratic members. Some of the potash set free from migmatized schists is accounted for by late-metamorphic K activity (biotitization of hornblende in amphibolites and their derivatives, also biotitization of garnet, late growth of minor K-feldspar in many but not all gneisses).Small-scale but widespread late-stage features, such as local intrusive motion of crystalline migmatite, crosscutting pegmatites, etc., are not discussed, as the topic of the paper is the main-stage regional migmatization.Subordinate late-metamorphically intruded orthogneisses, most with major K-feldspar, postdate the autochthonous migmatites and are genetically unrelated to them. They rose from depths where T was high enough for melting to occur. They invaded a non-migmatized belt west of the Skagit Gneiss also.  相似文献   

5.
Eclogitic rocks were sampled from two zones in the basement of the Sredna Gora terrane (central western Bulgaria): (1) partially retrogressed eclogites and amphibolites embedded in sillimanite-bearing garnet-micaschists with kyanite relics and migmatites and (2) banded amphibolites associated with muscovite-bearing metagranites within two-mica paragneisses. Rutile relics and oligoclase + green hornblende + epidote ± biotite pseudomorphs after garnet suggest an eclogite facies event. A tholeiitic, transitional affinity was determined for the protoliths, suggesting a continental rift environment, consistent with several eclogite-bearing complexes in the eastern segments of the Variscan belt that arose from the Cambro-Ordovician Gondwana break-up. Decreasing pressure after the eclogite overprint was demonstrated by (a) diopside-albite symplectite, and (b) plagioclase + red–brown to green amphibole kelyphite. The early static re-equilibration, dated to 398 ± 5.2 Ma by 40Ar–39Ar technique, was followed by an amphibolite facies foliation, which was pervasive in amphibolites, gneisses and micaschists, and poorly developed in eclogites. The lithospheric PT paths corresponding to higher and lower metamorphic gradients reflect the juxtaposition of crustal and lithospheric mantle units, respectively. In the build-up of the basement of the Balkan orogen, the physical properties of the lithological complexes might have influenced the collisional pattern of involved microplates.  相似文献   

6.
Metabasic rocks interbedded in amphibolite facies supracrustal gneisses outcrop around Lac Carnu in the Aiguilles Rouges massif (Western Alps). The cores of the thickest boudinaged lenses are made up of eclogitic amphibolites grading outwards into amphibolites. The common assemblage is unzoned garnet + symplectitic clinopyroxebe + hornblende + plagioclase. In a slightly amphibolitized sample, minimum P and T conditions of equilibrium between garnet and omphacite inclusions are 780°C and 11 Kb. A polymetamorphic pre-Alpine evolution of the massif is thus demonstrated. Eclogitic amphibolites show variations in major element composition similar to the Skaergaard evolution in the Al2O3 ? FeO + Fe2O3 ? MgO triangle. Variation diagrams in which Zr is taken as differentiation index also indicate magmatic trends for Mn, Ti, P, Ni, Co, Y, V and Cr, Ca, K, Na, Sr, Rb and Si were mobile during the evolution of the rocks. The igneous trend can be described by a quantitative model of fractional crystallization in which a noritic assemblage separated in the initial stage. This provides evidence of crustal P, T conditions of differentiation for the original materoal and in situ evolution for the eclogites. A second group of amphibolites shows banded structure and transitional terms with the surrounding gneisses. A volcano-sedimentary origin is suggested though the process cannot be modelled. The rocks may result from complex interactions of magnetic, metasomatic and sedimentary processes. It is concluded that Lac Cornu metabasites were originally continental tholeiites, though several geochemical criteria tend to indicate an oceanic origin. This casts some doubt on the validity of these criteria, when applied to metamorphic rocks.  相似文献   

7.
Abstract A garnet–hornblende Fe–Mg exchange geothermometer has been calibrated against the garnet–clinopyroxene geothermometer of Ellis & Green (1979) using data on coexisting garnet + hornblende + clinopyroxene in amphibolite and granulite facies metamorphic assemblages. Data for the Fe–Mg exchange reaction between garnet and hornblende have been fitted to the equation. In KD=Δ (XCa,g) where KD is the Fe–Mg distribution coefficient, using a robust regression approach, giving a thermometer of the form: with very satisfactory agreement between garnet–hornblende and garnet–clinopyroxene temperatures. The thermometer is applicable below about 850°C to rocks with Mn-poor garnet and common hornblende of widely varying chemistry metamorphosed at low aO2. Application of the garnet–hornblende geothermometer to Dalradian garnet amphibolites gives temperatures in good agreement with those predicted by pelite petrogenetic grids, ranging from 520°C for the lower garnet zone to 565–610°C for the staurolite to kyanite zones. These results suggest that systematic errors introduced by closure temperature problems in the application of the garnet–clinopyroxene geothermometer to the ‘calibration’data set are not serious. Application to ‘eclogitic’garnet amphibolites suggests that garnet and hornblende seldom attain Fe–Mg exchange equilibrium in these rocks. Quartzo-feldspathic and mafic schists of the Pelona Schist on Sierra Pelona, Southern California, were metamorphosed under high pressure greenschist, epidote–amphibolite and (oligoclase) amphibolite facies beneath the Vincent Thrust at pressures deduced to be 10±1 kbar using the phengite geobarometer, and 8–9kbar using the jadeite content of clinopyroxene in equilibrium with oligoclase and quartz. Application of the garnet–hornblende thermometer gives temperatures ranging from about 480°C at the garnet isograd through 570°C at the oligoclase isograd to a maximum of 620–650°C near the thrust. Inverted thermal gradients beneath the Vincent Thrust were in the range 170 to 250°C per km close to the thrust.  相似文献   

8.
Reports of shoshonitic rocks in Precambrian terrains are relatively rare. Pl-Grt amphibolites and Hbl-Bt mafic granulites occurring in the migmatitic gneisses of the Chhotanagpur Gneissic Complex(CGC) show calc-alkaline and shoshonitic characteristics. Relict porphyritic, sub-ophitic and poikilitic textures are noted in these rocks. Their parent magma was emplaced during the waning phase of the regional metamorphism. Geochemically, these metamafics are similar to the Group Ⅲ potassic and ultrapo...  相似文献   

9.
A petrogenetic grid in the model system CaO–FeO–MgO–Al2O3–SiO2–H2O is presented, illustrating the phase relationships among the minerals grunerite, hornblende, garnet, clinopyroxene, chlorite, olivine, anorthite, zoisite and aluminosilicates, with quartz and H2O in excess. The grid was calculated with the computer software thermocalc , using an upgraded version of the internally consistent thermodynamic dataset HP98 and non‐ideal mixing activity models for all solid solutions. From this grid, quantitative phase diagrams (PT pseudosections) are derived and employed to infer a PT path for grunerite–garnet‐bearing amphibolites from the Endora Klippe, part of the Venetia Klippen Complex within the Central Zone of the Limpopo Belt. Agreement between calculated and observed mineral assemblages and garnet zonation indicates that this part of the Central Zone underwent a prograde temperature and pressure increase from c. 540 °C/4.5 kbar to 650 °C/6.5 kbar, followed by a post‐peak metamorphic pressure decrease. The inferred PT path supports a geotectonic model suggesting that the area surrounding the Venetia kimberlite pipes represents the amphibolite‐facies roof zone of migmatitic gneisses and granulites that occur widely within the Central Zone. In addition, the PT path conforms to an interpretation that the Proterozoic evolution of the Central Zone was controlled by horizontal tectonics, causing stacking and differential heating at c. 2.0 Ga.  相似文献   

10.
The Kazda?? metaophiolite crops out in the Kazda?? (Ida) Mountains in the Biga Peninsula in northwestern Turkey. It is in stratigraphic contact with the high–grade metamorphic rocks of the Kazda?? Massif. Metaophiolitic and high–grade metamorphic rocks are tectonically overlain by low–grade metamorphic units of the Permo‐Triassic Karakaya Complex of the Sakarya Zone. Late Oligocene‐Early Miocene granites intruded these tectonic units (Okay and Sat?r, 2000; Duru et al. 2012). In the Kazda?? metaophiolitic sequence, upper mantle peridotites are represented by metaharzburgite and metadunite, whereas the mantle transition zone metaperidotites are composed of metadunite, metapyroxenite and minor plagioclase‐bearing metalherzolite. The upper part of the metadunites in the mantle transition zone show intercalation with metagabbros. Gabbros of oceanic crust experienced amphibolite facies metamorphism and are transformed into amphibolite, garnet amphibolite and migmatitic gabbros. The metagabbros and amphibolites display MORB‐ and IAT‐like geochemical features. The Kazda?? metaophiolite is conformably overline by basal conglomerates and hemi‐pelagic carbonate rocks continuing upward into forearc‐type flysch–like detrital sedimentary rocks interspersed with mafic volcanic intervals. These cover units underwent high–grade metamorphism into gneisses, migmatites, amphibolites and marbles in a compressional regime during the Alpine orogeny. New U–Pb zircon data from the metagabbros show two crystallization peaks at ~52 Ma and ~73 Ma. This has implications for the age of subduction of the Izmir–Ankara–Erzincan Ocean, generally assumed to be northward under the Sakarya Zone. During the Triassic to Middle Eocene, progressive overthrusting of the Sakarya Zone via a N–S compresional regime created by the Alpine orogeny onto subduction–accretion‐ and forearc‐units resulted in high–grade metamorphic conditions in the Biga Peninsula.  相似文献   

11.
Petrological and structural investigations in metapelites and amphibolites were undertaken to unravel the Variscan tectonic and metamorphic evolution of the southwestern Aiguilles Rouges massif. The geometry of planar and linear structures indicates a transpressive deformation regime with a change from predominantly subhorizontal to subvertical movements during its evolution. In metapelite samples from gneiss areas, garnet zonation trends have been correlated with chemical variations in plagioclase and biotite by microstructural observations. Applied conventional cation-exchange and net-transfer geothermobarometers yielded anti-clockwise P–T-deformation paths. Clockwise P–T-deformation paths resulted from (Na, Ca)-amphibole zonations of amphibolite samples from a different lithotectonic unit. Notable differences in P–T conditions and the general shape of P–T paths for the gneisses and amphibolites indicate that the units do not represent a continuous metamorphic zonation and underwent no common tectono-metamorphic evolution throughout the entire deformation. The combination of P–T-deformation paths and structural investigations revealed first-stage thrust tectonics followed by a transpressive deformation which was responsible for the uplift of the southwestern Aiguilles Rouges massif.  相似文献   

12.
The migmatitic rocks exposed in Hafafit and Feiran areas exhibit some migmatitic structures as the banded, agmatic, boudinage and schlieren structures. The dominant type of these structures is the stromatic migmatites. Electron microprobe analyses of plagioclases, biotites and amphiboles from Hafafit and Feiran areas, in the Eastern Desert and Sinai, Egypt, are carried out and the metamorphic conditions are discussed. The present study revealed marked differences in the composition of plagioclases, biotites and amphiboles from Hafafit and Feiran localities. The obtained data indicated that plagioclases of the Feiran migmatites are of andesine and oligoclase composition, and display anorthite content from An20 to An38; whereas the Hafafit migmatites show a wider range of plagioclases from An10 to An60, and therefore plagioclases have labradorite, andesine and oligoclase composition. This may be due to the slow rate of the crystallisation processes. The analyses indicated that biotites of the studied areas are of metamorphic origin showing significant variation in Fe–Mg. It is worth mentioning that biotites from Hafafit migmatites have Mg–biotite composition while that of Feiram migmatites have Fe–biotite composition. High Mg and low Fe contents in biotite suggest higher crystallisation temperature. The composition of amphiboles in Hafafit migmatites is ferro-tschermakitic hornblende, while amphiboles from Feiram migmatites are magnesio-hornblende. High Ti content in the hornblende of Feiran migmatites suggests that they were formed at slightly higher temperatures and lower pressure than the Hafafit migmatites (i.e. Feiram migmatites and Hafafit migmatites were formed at granulite and amphibolite facies, respectively). Discrimination diagrams show that the muscovite is of secondary origin. Moreover, the present study confirmed that these migmatites are mainly formed by metamorphic differentiation via partial melting.  相似文献   

13.
ABSTRACT The northern Dabie terrane consists of a variety of metamorphic rocks with minor mafic-ultramafic blocks, and abundant Jurassic-Cretaceous granitic plutons. The metamorphic rocks include orthogneisses, amphibolite, migmatitic gneiss with minor granulite and metasediments; no eclogite or other high-pressure metamorphic rocks have been found. Granulites of various compositions occur either as lenses, blocks or layers within clinopyroxene-bearing amphibolite or gneiss. The palaeosomes of most migmatitic gneisses contain clinopyroxene; melanosomes and leucosomes are intimately intermingled, tightly folded and may have formed in situ. The granulites formed at about 800–830 °C and 10–14 kbar and display near-isothermal decompression P–T paths that may have resulted from crust thickened by collision. Plagioclase-amphibole coronae around garnets and matrix PI + Hbl assemblages from mafic and ultramafic granulites formed at about 750–800 °C. Partial replacement of clinopyroxene by amphibole in gneiss marks amphibolite facies retrograde metamorphism. Amphibolite facies orthogneisses and interlayered amphibolites formed at 680–750 °C and c. 6 kbar. Formation of oligoclase + orthoclase antiperthite after plagioclase took place in migmatitic gneisses at T ≤ 490°C in response to a final stage of retrograde recrystallization. These P–T estimates indicate that the northern Dabie metamorphic granulite-amphibolite facies terrane formed in a metamorphic field gradient of 20–35 °C km-1 at intermediate to low pressures, and may represent the Sino-Korean hangingwall during Triassic subduction for formation of the ultrahigh- and high-P units to the south. Post-collisional intrusion of a mafic-ultramafic cumulate complex occurred due to breakoff of the subducting slab.  相似文献   

14.
The Pan-African basement exposed in the Meatiq area west of Quseir, Egypt, consists of an infracrustal basement overthrusted by a supracrustal cover. The infracrustal rocks were developed as a result of an old orogeny referred to as the Meatiqian orogeny where granite—gneiss, migmatitic gneisses and migmatized amphibolites were formed. The granite—gneiss represents a deformed granite pluton emplaced at 626±2 Ma, whereas the migmatitic gneisses and amphibolites are of mixed igneous and sedimentary parentage. In view of the data so far available, the nature of the Meatiqian orogeny could not be deciphered. In spite of the young isotopic ages, it is suggested that at least the metasedimentary gneisses represent older rocks in the stratigraphic sequence of the infracrustal basement.The supracrustal cover represents a part of an extensive ophiolitic mélange obducted onto the infracrustal basement during the next orogeny (Abu Ziran orogeny) which culminated at 613±2 Ma. An active continental margin-type regime can adequately explain the evolution of such a supracrustal cover. During obduction, the ophiolitic mélange and the upper 2 km thick part of the infracrustal basement were intensely deformed and metamorphosed under PT conditions of the greenschist—epidote amphibolite facies. The deformed infracrustal basement was converted into mylonitic—blastomylonitic rocks and schists composing five thrust sheets, and subsequently intruded by synkinematic granitoid sheets. Later, both the infracrustal basement and the overlying supracrustal cover were isostatically uplifted, subjected to complex shallow folding giving rise to the major Meatiq domal structure, and were intruded by a postkinematic adamellite pluton at 579±6 Ma.  相似文献   

15.
Foliated garnet-bearing amphibolites occur within the West Bore Shear Zone, cutting through granulite facies gneisses of the Strangways Metamorphic Complex. In the amphibolites, large euhedral garnet (up to 3 cm) occurs within fine-grained recrystallized leucocratic diffusion haloes of plagioclase–quartz. The garnet and their haloes include a well-developed vertical foliation, also present in the matrix. This foliation is the same as that cutting through the unconformably overlying Neoproterozoic Heavitree Quartzite. The textures indicate syn- to late kinematic growth of the amphibolite facies mineral assemblages.
All mineral assemblages record an arrested prograde reaction history. Noteworthy is the growth of garnet at the expense of hornblende and plagioclase, and the breakdown of staurolite–hornblende to give plagioclase–gedrite. These dehydration reactions indicate increasing P – T  conditions during metamorphism, and suggest heating towards the end of a period of intense deformation. Temperature estimates for the garnet–amphibolite and related staurolite–hornblende assemblages from the shear zone are about 600 °C. Pressure is estimated at about 5 kbar.
An Sm–Nd isochron gives an age of 381±7 Ma for the peak metamorphism and associated deformation. This age determination confirms that amphibolite facies conditions prevailed during shear zone development within the Strangways Metamorphic Complex during the Alice Springs Orogeny. These temperature conditions are significantly higher than those expected at this depth assuming a normal geothermal gradient. The Alice Springs Orogeny was associated with significant crustal thickening, allowing exhumation of the granulite facies, Palaeoproterozoic, lower crust. Along-strike variations of the tectonic style suggest a larger amount of crustal shortening in the eastern part of the Alice Springs Orogeny.  相似文献   

16.
Magnesium isotopic compositions, along with new Sr–Nd–Pb isotopic data and elemental analyses, are reported for 12 Miocene tourmaline-bearing leucogranites, 15 Eocene two-mica granites and 40 metamorphic rocks to investigate magnesium isotopic behaviors during metamorphic processes and associated magmatism and constrain the tectonic-magmatic-metamorphic evolution of the Himalayan orogeny. The gneisses, granulites and amphibolites represent samples of the Indian lower crust and display large range in δ26Mg from −0.44‰ to −0.09‰ in mafic granulites, −0.44‰ to −0.10‰ in amphibolites, and −0.70‰ to −0.03‰ in granitic gneisses. The average Mg isotopic compositions of the granitic gneisses (−0.19 ± 0.34‰), mafic granulites (−0.22 ± 0.17‰) and amphibolites (−0.25 ± 0.24‰) are similar, indicating the limited Mg isotope fractionation during prograde metamorphism from granitic gneisses to mafic granulites and retrograde metamorphism from mafic granulites to amphibolites. The Eocene two-mica granites and Miocene leucogranites are characterized by large variations in elemental and Sr–Nd–Pb isotopic compositions. The leucogranites and two-mica granites have their corresponding (87Sr/86Sr)i varying from 0.7282 to 0.7860 and 0.7163 to 0.7191, (143Nd/144Nd)i from 0.511888 to 0.512040 and 0.511953 to 0.512076, 207Pb/204Pb from 15.7215 to 15.7891 and 15.7031 to 15.7317, 208Pb/204Pb from 38.8521 to 39.5286 and 39.2710 to 39.4035, and 206Pb/204Pb from 18.4748 to 19.0139 and 18.7834 to 18.9339. However, they have similar Mg isotopic compositions (−0.21‰ to +0.06‰ versus −0.24‰ to +0.09‰), which did not originate from fractional crystallization nor source heterogeneity. Based on hornblende/biotite/muscovite dehydration melting reaction and Mg isotopic variations in two-mica granites and leucogranites with the proceeding metamorphism, along with elemental discrimination diagrams, Eocene two-mica granites and Miocene leucogranites could be related to hornblende dehydration melting and muscovite dehydration melting, respectively. Mg isotopic compositions of Eocene two-mica granites become heavier compared to the source because of residues of isotopically light garnet in the source; while those of Miocene leucogranites become lighter because of entrainment of isotopically light garnet from the source region. Thus, a new model for crustal anatexis and Himalayan orogenesis was proposed based on the Mg isotope fractionation in the leucogranites and metamorphic rocks. This model emphasizes a successive process from Indian continental subduction to rapid exhumation of the Higher Himalayan Crystalline Series (HHCS). The former underwent high-temperature (HT) and high-pressure (HP) granulite-facies prograde metamorphism, which resulted in the hornblende dehydration melting and the formation of Eocene two-mica granites; while the latter experienced amphibolite-facies retrogression and decompression, which resulted in the muscovite dehydration melting and the formation of Miocene leucogranites.  相似文献   

17.
The Eastern Ghats Frontal Thrust (EGFT) demarcates the boundary between the Archaean/Paleoproterozoic cratonic rocks to the west, and the Meso/Neoproterozoic granulites of the Eastern Ghats Mobile Belt (EGMB) to the east. At Jeypore (Orissa, India), mafic schists and granites of the cratonic domain document a spatial increase in the metamorphic grade from greenschist facies (garnet, clinozoisite – absent varieties) in the foreland to amphibolite facies (clinozoisite- and garnet-bearing variants) progressively closer to the EGFT. Across the EGFT, the enderbite–charnockite gneisses and mafic granulites of EGMB preserves a high-grade granulite facies history; amphibolite facies overprinting in the enderbite–charnockite gneisses at the cratonic fringe is restricted to multi-layered growth of progressively Al, Ti – poor hornblende at the expense of pyroxene and plagioclase. In associated mafic granulites, the granulite facies gneissic layering is truncated by sub-centimeter wide shear bands defined by synkinematic hornblende + quartz intergrowth, with post-kinematic garnet stabilized at the expense of hornblende and plagioclase. Proximal to the contact, these granulites of the Eastern Ghats rocks are intruded by dolerite dykes. In the metadolerites, the igneous assemblage of pyroxene–plagioclase is replaced by intergrown hornblende + quartz ± calcite that define the thrust-related fabric and are in turn mantled by coronal garnet overgrowth, while scapolite is stabilized at the expense of recrystallized plagioclase and calcite. Petrogenetic grid considerations and thermobarometry of the metamorphic assemblages in metadolerites intrusive into granulites and mafic schists within the craton confirm that the rocks across the EGFT experienced prograde heating (Tmax value ∼650–700 °C at P  6–8 kbar) along the prograde arm of a seemingly clockwise PT path. Since the dolerites were emplaced post-dating the granulite facies metamorphism, the prograde heating is correlated with renewed metamorphism of the granulites proximal to the EGFT. A review of available age data from rocks neighboring the EGFT suggests that the prograde heating of the cratonic granites and the re-heating of the Eastern Ghats granulites are Pan – African in age. The re-heating may relate to an Early Paleozoic Pan-Gondwanic crustal amalgamation of older terrains or reactivation along an old suture.  相似文献   

18.
长期以来,陇山杂岩的归属问题一直存在争议。本文对出露于秦岭-祁连山结合部位的陇山杂岩中石榴黑云斜长片麻岩和石榴斜长角闪岩进行了详细的岩石学、P-T温压计算、独居石和榍石U-Pb年代学研究。通过详细的岩相学观察,石榴黑云斜长片麻岩的变质峰期矿物组合为石榴子石+黑云母+斜长石+石英;石榴斜长角闪岩中则识别出了以石榴子石+单斜辉石+角闪石+斜长石+石英为峰期的变质矿物组合。通过传统温压计计算,石榴黑云斜长片麻岩(样品21LS40)和石榴斜长角闪岩样品(样品21LS42-1)的峰期变质P-T条件分别为700℃、0.72GPa和710℃、0.74GPa。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS) U-Pb数据表明,石榴黑云斜长片麻岩中独居石的206Pb/238U的加权平均年龄为407~435Ma。石榴斜长角闪岩中榍石的下交点年龄分别为410±7Ma、409±5Ma和426±10Ma,榍石中Zr含量温度计的计算结果分别为750℃、751℃和748℃(假定压力为0.7GPa)。本文从变质作用的角度出发,将陇山杂岩与秦岭杂岩进行温压条件和变质时代对比研究,认为陇山杂岩与东秦岭杂岩高压-超高压岩石的最后一期退变质作用和西秦岭天水地区的秦岭杂岩麻粒岩相变质作用类似,可能为北秦岭造山带的西延。  相似文献   

19.
Detailed field studies of the Precambrian Vijayan Complex terrain, Sri Lanka, reveal the occurrence of granites, gneisses and migmatites in association with calc-silicate gneisses, quartzites and dolerites. Microcline-rich granites and gneisses show both sharp and gradational contacts with the adjacent migmatites. Petrological observations favor a magmatic origin for the granites and gneisses. These bodies seem to have intruded into pre-existing metasedimentary rocks which were subsequently subjected to retrograde metamorphism under amphibolite facies conditions.  相似文献   

20.
黄杰  张聪  杨经绥  李鹏  王舒 《地球学报》2016,37(6):711-722
本文对位于青藏高原拉萨地体东南缘林芝杂岩中的两类石榴角闪岩进行了详细的地球化学和锆石U-Pb年代学研究。这两类石榴角闪岩分别为硅不饱和的含十字石石榴角闪岩和硅饱和的含石英石榴角闪岩。含十字石石榴角闪岩矿物组合为十字石、石榴子石、角闪石、钠云母、绿泥石、斜长石。石英石榴角闪岩矿物组合为石榴子石、角闪石、石英、斜长石、黑云母。岩石学及变质相平衡研究表明两类石榴角闪岩均经历了高压角闪岩相变质作用。含十字石石榴角闪岩和石英石榴角闪岩具有MORB的地球化学特征,锆石U-Pb年代学分析获得了800~200 Ma的206Pb/238U年龄范围,出现了~430 Ma、~268 Ma和~216 Ma年龄峰值。~430 Ma年龄可能和拉萨地体岩浆活动有关,~268 Ma变质年龄和~216 Ma变质年龄和拉萨地块经历的高压变质作用有关。其中~268 Ma年龄和拉萨地块内部松多高压带榴辉岩的峰期变质年龄一致,而~216 Ma年龄和榴辉岩的围岩含石榴子石片岩年龄一致。对比该区域的年代学研究成果,这表明林芝杂岩体不仅经历了中新生代的变质和岩浆再造活动,还经历了古特提斯洋闭合,南北拉萨地块发生碰撞的晚二叠世的高压变质作用和三叠纪的中压变质作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号