首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines textural inhomogeneity and variable chemical composition of Upper Jurassic glaucony in relation to small‐scale synsedimentary and postsedimentary authigenic processes controlled by the palaeonvironmental and palaeogeographical context. Four glaucony types with complex textural and compositional features have been recognized in cores of the Georgiev Formation of the West Siberian Basin. Samples exclusively made of light green type 1 glaucony (K2O < 6·5%: the less mature type, richer in glauconite–smectite mixed layer) formed under dysoxic conditions in the deepest distal marine environments of the northern sectors of the West Siberian Basin. Dark green type 2 glaucony is the most mature (richest in glauconitic mica: K2O up to 8·5%), is sometimes associated with type 1 glaucony, and is typical of high bottom areas with a low sedimentation rate within the central sectors of the basin. Type 3 glaucony is formed by brown grains, poorer in K and Fe but richer in Al and Si than type 2 glaucony, and is only present in strongly condensed successions of the central‐eastern sectors of the West Siberian Basin. Type 4 glaucony is much richer in Fe than any other type, shows fresh yellowish green cores slightly less mature than type 2 glaucony, and brown rims and cracks with composition similar to that of type 3 grains; it was formed in western sectors of the West Siberian Basin, close to Urals. Weathering under a subtropical to temperate climate, and erosion of badly drained peneplaned lowland areas around the basin, provided Al‐rich terrigenous clays as substratum for glauconitization, which explains Al and Si enrichment in Siberian glaucony. Maturation from glauconite–smectite to glauconitic mica is monitored by a change from light to dark green colour related to decrease in Al, Si, Mg, Ca and Na, and to increase in K and Fe. Brown rims of type 4 glaucony, and brown type 3 grains formed after leaching of Fe and K from mature glauconite, with formation of clays and Fe oxyhydroxides as reaction products, as a result of free oxygen exposure related to a hydrodynamic regime and temporary sea‐level fall. Glauconitization stopped and diagenetic pyrite formed due to basin deepening and burial under black shales during the latest Jurassic–earliest Cretaceous transgression. This study demonstrates that, due to the complex nature of glaucony, the authigenesis of glauconitic minerals in the rock record cannot be correctly understood if the palaeoenvironmental context and the palaeogeographical context of glaucony‐bearing sediments are not considered.  相似文献   

2.
The Oligo‐Miocene Torquay Group at Bird Rock in south‐eastern Australia comprises a sequence of fine‐grained skeletal carbonates and argillaceous and glauconitic sandstones, deposited in a cool‐water, mid‐shelf environment. The Bird Rock glaucony is autochthonous and consists predominantly of randomly interstratified glauconitic smectite, which constitutes bioclast infills and faecal pellet replacements. The results of Rb–Sr and oxygen isotopic analysis of samples taken from a single glauconitic horizon (the BW horizon) indicate that the glaucony developed through a series of simultaneous dissolution–crystallization reactions, which occurred during very early diagenesis in a closed or isochemical system, isolated from the ambient marine environment. The constituent ions of the glaucony were derived primarily from terrigenous clay minerals, but considerable potassium may have been sourced indirectly from sea water, through potassium enrichment of clay precursors. The pore fluids associated with glauconitization were marine derived, but progressively modified by the dissolution–crystallization of detrital clay minerals and autochthonous glaucony. Rb–Sr data for the BW horizon indicate that dating glauconies may be somewhat problematic, as co‐genetic glauconitic minerals can show a range of initial strontium compositions, which reflect the incorporation of strontium derived from mineralogical precursors and/or contemporaneous sea water. Rb–Sr isochrons indicate that the glaucony of the BW horizon formed at 23 ± 3 Ma. This age is in good agreement with both the established biostratigraphy and a 87Sr/86Sr age for the horizon (23 ± 1 Ma), but could only be determined using the independent age constraint and the estimate of the 87Sr/86Sr ratio of contemporaneous sea water provided by analysis of associated biogenic carbonate.  相似文献   

3.
西藏札达地区夏拉剖面海绿石砂岩之下的地层中含有少量处于不同演化阶段的海绿石质物质。为了更好的理解海绿石化过程、查明海绿石的形成机制和控制因素,本文利用岩相学和扫描电镜(SEM)以及电子探针微分析(EPMA)等技术,对其中处于不同演化阶段的海绿石进行了系统的矿物学研究。分析表明,海绿石呈微晶片状集合体形态,具明显的交代特征。海绿石化过程主要表现为交代碱性长石或岩屑中的富钾组分,这种交代反应为溶解-沉淀-重结晶机制控制的界面迁移反应。交代形成的海绿石继承了原矿物或岩屑颗粒的外形,表明其形成于很弱的水动力学条件。交代过程受沉积物供应速率、母源物质的溶解速率和反应界面附近的氧化还原条件控制。铁铝蛇纹石的大量存在表明当时的环境主要为一种还原环境,而海绿石则形成于局部的亚氧化(sub-oxic)环境中。砂岩中不同演化程度的海绿石都表现出富钾贫铁的特征,表明交代碱性长石(或钾长石)或岩屑中的富钾组分的海绿石化过程不同于前人提出的新生理论和两阶段模式。元素的富集是通过与交代作用同时进行的重结晶作用完成的,该过程不需要前人提及的后期单独的钾富集的过程,并区别于交代贫钾矿物的过程。  相似文献   

4.
Detrital glaucony in the Palaeogene glauconitic sandstones in Siri Canyon, Danish North Sea, has been analysed from 15 exploration wells by X‐ray diffraction, electron microprobe and scanning electron microscopy. These sandstones consist of mixed‐layer illite/smectite and have a large variability in chemical composition and structure. In the most shallow wells (ca 1700 m), the glaucony is rich in Fe and consists of mixed‐layer illite/smectite with random‐interstratification (R = 0). In the depth interval from 1700 to 2000 m, the composition changes as Si is incorporated. The structure changes to ordered R = 1. Further increase in burial leads to the loss of Fe. Ordered R = 3 mixed‐layer illite/smectite is recognized from burial depths of 2200 m. The proportion of illite in illite/smectite mixed layers increases only slightly with depth and temperature. Although the structural changes generally are associated with chemical changes, they can also take place isochemically when the detrital glaucony is tightly embedded in earlier cement, which prevented chemical exchange. The glaucony transformation in the Siri Canyon sandstones partly reflects a supply of Si and partly significant loss of Fe. Thus, the glaucony transformation relates to the general diagenesis of the host sandstone. These sandstones are cemented by microquartz at an early stage, followed by precipitation of Fe‐rich grain‐coating berthierine or chlorite.  相似文献   

5.
在内蒙古西乌珠穆沁旗晚石炭世—早二叠世阿木山组第三段泥晶灰岩中发现有海绿石。对海绿石的微观特征分析表明,阿木山组海绿石呈团粒状结构,同时呈胶体产出于方解石周边,显示了原生海绿石的基本特点。电子探针的组分分析表明,阿木山组中的海绿石为高成熟度的海绿石。通过对不同地区和不同环境下海绿石的组分特征分析,建立了一种海绿石沉积的理想模式,同时揭示了阿木山组第三段海绿石化作用是在含氧量不够充分的弱还原状态下的正常浅海中进行的。本区阿木山组的下碎屑岩段和上灰岩段是在海水两进两退环境下的沉积,阿木山组灰岩中发现的海绿石则有可能代表了一个海进的开始。本区海绿石的发现及研究,对于进一步研究该区层序地层特征、地层格架及区域地层对比具有重要意义。  相似文献   

6.
Upper Eocene detrital silica grains (chert and quartz) of the Hampshire Basin display alteration and replacement fabrics by glauconite. Silica grains have etched surfaces due to glauconitization which appear green in reflected light and thin section. Quartz grains were glauconitized by surface nucleation and replacement, which spreads from the margin with progressive glauconitization, replacing the quartz grain interior. Chert grains were glauconitized by surface replacement and nucleation internally along cracks and in pores. Different forms of glauconite are associated with the two minerals; glauconite associated with quartz is generally highly-evolved whereas glauconite associated with chert is of the evolved variety. This is interpreted as being due to different surface-reaction control mechanisms associated with the two forms of silica. There is no evidence to suggest that glauconite evolved in stages from a nascent form. Two crystalline morphological forms of glauconite are found associated with both quartz and chert. Glauconite growing within a confined space has a laminated morphology whilst glauconite occurring on the surface has a rosette morphology.  相似文献   

7.
A detailed mineralogical study is presented of the matrix of mudrocks sampled from spot coring at three key locations along the San Andreas Fault Observatory at depth (SAFOD) drill hole. The characteristics of authigenic illite–smectite (I–S) and chlorite–smectite (C–S) mixed-layer mineral clays indicate a deep diagenetic origin. A randomly ordered I–S mineral with ca. 20–25% smectite layers is one of the dominant authigenic clay species across the San Andreas Fault zone (sampled at 3,066 and 3,436 m measured depths/MD), whereas an authigenic illite with ca. 2–5% smectite layers is the dominant phase beneath the fault (sampled at 3,992 m MD). The most smectite-rich mixed-layered assemblage with the highest water content occurs in the actively deforming creep zone at ca. 3,300–3,353 m (true vertical depth of ca. 2.7 km), with I–S (70:30) and C–S (50:50). The matrix of all mudrock samples show extensive quartz and feldspar (both plagioclase and K-feldspar) dissolution associated with the crystallization of pore-filling clay minerals. However, the effect of rock deformation in the matrix appears only minor, with weak flattening fabrics defined largely by kinked and fractured mica grains. Adopting available kinetic models for the crystallization of I–S in burial sedimentary environments and the current borehole depths and thermal structure, the conditions and timing of I–S growth can be evaluated. Assuming a typical K+ concentration of 100–200 ppm for sedimentary brines, a present-day geothermal gradient of 35°C/km and a borehole temperature of ca. 112°C for the sampled depths, most of the I–S minerals can be predicted to have formed over the last 4–11 Ma and are probably still in equilibrium with circulating fluids. The exception to this simple burial pattern is the occurrence of the mixed layered phases with higher smectite content than predicted by the burial model. These minerals, which characterize the actively creeping section of the fault and local thin film clay coating on polished brittle slip surfaces, can be explained by the influence of either cooler fluids circulating along this segment of the fault or the flow of K+-depleted brines.  相似文献   

8.
Abstract The hydrothermal metamorphism of a sequence of Pliocene-aged seamount extrusive and volcanoclastic rocks on La Palma includes a relatively complete low-P-T facies series encompassing the zeolite, prehnite-pumpellyite, and greenschist facies. The observed mineral zonations imply metamorphic gradients of 200–300° C km-1. The transition from smectite to chlorite in the La Palma seamount series is characterized by discontinuous steps between discrete smectite, corrensite and chlorite, which occur ubiquitously as vesicles and, to a much lesser extent, vein in-fillings. Trioctahedral smectites [(Mg/(Fe + Mg) = 0.4–0.75] occur with palagonite and Na-Ca zeolites such as analcime and a thompsonite/natrolite solid solution. Corrensite [(Mg/(Fe + Mg) = 0.5–0.65] first appears at stratigraphic depths closely corresponding to the disappearance of analcime and first appearance of pumpellyite. Discrete chlorite [(Mg/(Fe + Mg) = 0.4–0.6] becomes the dominant layer silicate mineral coincident with the appearance of epidote and andraditic garnet. Within the stratigraphic section there is some overlap in the distribution of the three discrete layer silicate phases, although random interstratifications of these phases have not been observed. Although smectite occurs as both low- and high-charge forms, the La Palma corrensite is a compositionally restricted, 1:1 mixture of low-charge, trioctahedral smectite and chlorite. Electron microprobe analyses of coarse-grained corrensite yield structural formulae close to ideal values based on 50 negative charge recalculations. Calcium (average 0.20 cations/formula unit) is the dominant interlayer cation, with lesser Mg, K and Na. The absence of randomly interlayered chlorite/smectite in the La Palma seamount series may reflect high, time-integrated fluid fluxes through the seamount sequence. This is consistent with the ubiquity of high-variance metamorphic mineral assemblages and the general absence of relict igneous minerals in these samples.  相似文献   

9.
Detailed sedimentological and geochemical analyses of Upper Cretaceous glaucony-bearing deposits from the middle portion of the Castro de Fuentidueña Formation, in Central Spain, enable identification of a multiphase history of glaucony accumulation. Despite its relatively high maturity (K2O > 7%), glaucony from the transgressive subtidal sandstones has anomalously low concentration in the host rock (generally <10%), suggesting remobilization from a different source. The remarkable thickness of the glaucony-bearing horizons, concurrently with concentration of glaucony in laminae, small size, and high degree of roundness and sorting provide further evidence for an allochthonous origin of the green grains. In contrast, authigenic glaucony from the overlying offshore clays exhibits higher abundance (up to 45%) and lower maturity (K2O < 7%) and is interpreted to have formed in situ. Allochthonous glaucony originally developed in more distal areas during a prolonged period of sediment starvation. The green grains were then swept away from their place of origin and concentrated into tidal bars and channels within the upper transgressive systems tract of the third-order depositional sequence. Maximum concentration of autochthonous glaucony is recorded at the transition from tidal-influenced to offshore deposits: this glaucony, which is relatively less evolved due to lower time available for maturation, is interpreted to reflect the turnaround from transgressive to highstand conditions, marking the condensed section of the depositional sequence. As postulated by previous sequence-stratigraphic models, this study documents that allochthonous glaucony can be widespread throughout the transgressive systems tract (TST), while the condensed section (CS) typically hosts autochthonous glaucony. Contrary to the existing literature, however, this study shows that glaucony from the TST may be even more mature than glaucony from the CS, if enough time for maturation during transgression is allowed before the ultimate concentration of the green grains. Identification of spatial and temporal characteristics of glaucony, thus, is critical to a reliable sequence-stratigraphic interpretation of the glaucony-bearing deposits.  相似文献   

10.
The Himalia Ridge Formation (Fossil Bluff Group), AlexanderIsland is a 2·2-km-thick sequence of Upper Jurassic–LowerCretaceous conglomerates, sandstones and mudstones, derivedfrom an andesitic volcanic arc and deposited in a fore-arc basin.The metamorphic and thermal history of the formation has beendetermined using authigenic mineral assemblages and vitrinitereflectance measurements. Metamorphic effects include compaction,pore-space reduction, cementation and dissolution and replacementof detrital grains by clay minerals (smectite, illite/smectite,corrensite and kaolinite), calcite, chlorite, laumontite, prehnite,pumpellyite, albite and mica, with less common quartz, haematite,pyrite and epidote. The authigenic mineral assemblages exhibita depth-dependence, and laumontite and calcite exhibit a strongantipathetic relationship. Detrital organic matter in the argillaceouslayers has vitrinite reflectance values (Ro) ranging from 2·3to 3·7%. This indicates considerable thermal maturation,with a systematic increase in reflectivity with increasing depth.There is good correlation of metamorphic mineral assemblageswith chlorite crystallinity and vitrinite reflectance values—allindicating temperatures in the range of 140 ± 20°Cat the top of the sequence to 250 ± 10°C at the baseof the sequence. The temperatures suggest a geothermal gradientof 36–64°C/km and a most likely gradient of 50°C/km.It is suggested that this higher-than-average gradient for afore-arc basin resulted either from rifting during basin formationor from a late-stage arc migration event. KEY WORDS: Antarctica; diagenesis; fore-arc basin; low-temperature metamorphism; vitrinite reflectance  相似文献   

11.
Greenish veins occurring in brecciated bentonite were found in the Kawasaki bentonite deposit of the Zao region in Miyagi Prefecture, Japan. Their occurrence possibly indicates the interaction of bentonite with Fe-rich hydrothermal solutions. In order to prove the hypothesis and understand the long-term mineralogical and petrographic evolution of bentonite during such interactions, the greenish veins and the surrounding altered bentonite were analyzed using X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron probe micro-analysis (EPMA), scanning transmission electron microscopy with energy dispersed spectroscopy (STEM-EDS) and micro X-ray absorption near-edge structure (XANES). The greenish veins resulting from hydrothermal solution are composed of mixed-layer minerals consisting of smectite and glauconite (glaucony), pyrite and opal. The occurrences indicate that glaucony and pyrite formed almost simultaneously from hydrothermal solution prior to opal precipitation. The mineral assemblages of the greenish veins and their surroundings indicate that the hydrothermal activity had most likely taken place at a temperature of less than 100 °C and that the pH and Eh conditions of the reacted solution were neutral to alkaline pH and reducing. The unaltered bentonite is composed mainly of Al smectite and opal. These minerals coexist as a mixture within the resolution level of the microprobe analyses. On the other hand, the bentonite in contact with the greenish veins consists of discrete opal grains and dioctahedral Al smectite containing Fe and was altered mineralogically and petrographically by the hydrothermal activity. Both the clay minerals and the opal were formed by dissolution and subsequent precipitation from the interaction of the original bentonite with the hydrothermal solution.  相似文献   

12.
Bacterially-mediated authigenesis of clays in phosphate stromatolites   总被引:1,自引:0,他引:1  
Authigenic clays in close textural relation to carbonate fluorapatite within finely laminated phosphate stromatolites of Upper Jurassic age have been studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and analytical electron microscopy (AEM). Stromatolite laminae consist of hexagonal prisms of francolite (sizes ranging between 0·1 and 1 μm) that are surrounded by poorly crystalline smectite and amorphous Fe–Si–Al oxyhydroxides. Microanalyses show that smectite is Fe rich, with highly variable composition, particularly regarding Fe and Si contents. Smectite has significant beidellitic, montmorillonitic and non-tronitic substitutions. Although the lack of fringe contrast in some areas adjacent to the smectite packets with 1·0–1·3 nm spacing is due to differences in orientation of layers, textural and analytical data clearly indicate the presence of Fe–Si–Al amorphous phases intimately intergrown with smectite. The occurrence of poorly crystalline smectite and associated amorphous phases within microbially precipitated stromatolite laminae, both as envelopes around, and as pore-fillings between extremely small calcium phosphate crystals, demonstrates authigenic smectite growth from a precursor Fe–Si–Al amorphous material. This material is formed in close association with a phosphate-rich precursor. The textural and structural relations, the preservation of chemical precursors of glauconite such as nontronitic montmorillonite, and the presence of Fe–Si–Al amorphous mineral phases, imply crystallization of the observed crystalline phases from synsedimentary (bacterially precipitated) amorphous precursors during early diagenesis in postoxic environments. Carbonate fluorapatite was the first phase to crystallize from the primary gel; smectite and associated amorphous Fe–Si–Al oxyhydroxides were the residual material of the crystallization process. The slow rate of transformation (at low temperatures) from Fe–Si–Al-rich gels to smectite, explains the textural relations between the poorly crystalline phases and the phosphate crystals, as well as the preservation of amorphous substances in relation to clays. Authigenic smectite represents the first step in glauconitization.  相似文献   

13.
Samples of glauconite, representing different stages of glauconitisation, as well as different formation environments, were analysed for rare earth elements (REE) and other trace elements using a combination of bulk sample and spatially-resolved in situ techniques. The results indicate that the high-sensitivity, spatially-resolved technique of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) produces values up to two orders of magnitude lower than the bulk sample analyses. This suggests that submicroscopic rare earth element-bearing phases are distributed within the glauconite aggregates comprising the bulk samples. Analytical scanning electron microscopy (ASEM) revealed the presence of micrometre-sized grains of apatite and pore filling precipitates of an unidentified (REE, Ca)-phosphate (approximate composition Ca0.3–0.4(Ce0.4La0.1–0.2Nd0.1)PO4) in some glauconite grains.The inherent REE concentrations of the glauconite aggregates (i.e., glauconite crystallites without accidental mechanical inclusions or authigenic, not layer silicate mineral precipitates) was found to be relatively low (e.g., typically less than 100 ppm), and this value decreased with increasing glauconitisation (smectite–mica transformation through a series of recrystallisation processes). These results suggest that the REEs substitute for Ca in the interlayer space of the layer silicate structure and, therefore, the REE content decreases as Ca is progressively removed from the interlayer (smectite–mica transition).LA-ICP-MS, when combined with electron probe microanalysis (EPMA) or ASEM, offers an opportunity to exclude submicroscopic accessory minerals from glauconite trace element analyses, and so produces reliable trace element data for the respective minerals which host those elements.These results illustrate that accessory minerals are difficult to eliminate from clay samples, and that care needs to be taken in the interpretation of clay mineral REE distributions, irrespective of the aggregation state of the studied clay (i.e., whether finely dispersed within the sedimentary rock, or forming millimetre-sized aggregates). Model calculations showed that authigenic apatite associated with the studied green marine clays tends to have higher REE content than “bioapatites”, the total REE content being above 10 000 ppm.  相似文献   

14.
Petrographic studies undertaken on samples from outcrops of the Jurassic Pilliga Sandstone intake beds in the extreme southeastern portion of the Great Australian Basin reveal an abundance of low birefringent clay material filling pore spaces and detrital grain fractures. Thin-section petrography and scanning electron microscopy indicate that much of this material is authigenic and X-ray diffraction studies show it to be essentially monomineralic, consisting of well-ordered kaolinite. Although the Pilliga Sandstone is quartz-rich, micrometric analysis indicates that potassium feldspar is present in quantities up to 20% of the total detrital material. Sporadic biotite mica is also present, constituting up to 3% of the detrital volume.Mechanisms for the formation of authigenic kaolinite are discussed in terms of chemical equilibrium and detrital mineral stability in aqueous systems. Chemical data from bore water and surface waters from this stratigraphic unit indicate that kaolinite is the major stable mineral phase in contact with these natural waters and that minerals such as potassium feldspar or mica would chemically alter to kaolinite. Such alteration of detrital mineral grains is supported by thin-section petrography and this mechanism is considered to be the source for the majority of the authigenic kaolinite observed.The hydrogeological characteristics of the Pilliga Sandstone intake beds are related to the extent of development of authigenic kaolinite.  相似文献   

15.
We used the K–Ar ages of clay-sized mineral grains to investigate the timing of activity on the Minami-Awa Fault, which is a fossil seismogenic fault along a subducting plate interface separating the coherent strata of the Shimanto accretionary complex to the north from the tectonic mélange to the south. The K–Ar ages from the matrix shale of the mélange range from 85 to 48 Ma and decrease with decreasing amount of detrital mica, indicating that they record a mixture of authigenic illite related to burial diagenesis and detrital mica. In contrast, the K–Ar ages of an ultracataclasite within the fault core are significantly younger, ranging from 29 to 23 Ma, and are unrelated to grain size and amount of detrital mica. This indicates that s Ar diffused completely from the ultracataclasite between 29 and 23 Ma, which postdates the formation of authigenic illite by at least several million years. The diffusion of 40Ar in the ultracataclasite was probably caused by frictional heating or high-temperature fluid migration that occurred when the fault was reactivated. The results indicate that seismogenic faults that separate tectonic mélange from coherent strata in accretionary complexes may slip, not only during accretion, but also long after accretion.  相似文献   

16.
Glauconitic minerals constitute a family ranging from green smectite to a 10Ådioctahedral mica (glauconite). Chamositic minerals include a 7Åtrioctahedral serpentine (berthierine) and a 14Åtrioctahedral chlorite (chamosite). These green iron-rich, neoformed or transformed clay minerals are most commonly concentrated in sand-size granules.Recent berthierine and Recent and ancient glauconitic minerals occur mainly in structureless peloids, most of which are believed to have been fecal pellets. In contrast, most of the ancient chamositic minerals are in multi-coated ooids generally assumed to have been made by gentle rolling on the sea floor.Glauconitic and chamositic granules accumulated most commonly in marine shelf environments during episodes of reduced influx of sediment. In modern deposits chamositic peloids predominate on the inner shelf, whereas glauconitic peloids are most abundant on the middle and outer shelf. In general, ancient glauconitic and chamositic deposits had a rather similar environmental distribution; in detail, however, they reflect more varied and overlapping marine habitats.Glauconitic greensands and chamositic ironstones commonly occur above a coarsening- or shoaling-upward facies sequence. Many of them are cross-bedded and burrowed, and some are interbedded with a ferruginized or phosphatized hardground. Although differing in detail, their temporal distributions throughout Phanerozoic time were rather similar. Both attained a maximum when cratonic blocks were widely dispersed and sea level was high in Early Paleozoic and Late Mesozoic time. In addition, recurring development of chamositic ooids commonly coincided with repeated regional transgressions.This review of current information and differing interpretations leads to significant questions that are essential subjects for future research. Moreover, some of these relate to unsolved problems of phosphorite genesis.  相似文献   

17.
Iron silicate minerals are a significant component of sedimentary systems but their modes of formation remain controversial. Our analysis of published data identifies end‐member compositions and mixtures and allows us to recognize controls of formation of different mineral species. The compositional fields of glaucony, Fe‐illite, Fe–Al smectites are determined in the M+/4Si vs. Fe/Sum of octahedral cations (M+ = interlayer charge). Solid solutions could exist between these phases. The Fe–Al and Fe‐rich clay minerals form two distinct solid solutions. The earliest phases to be formed are Fe–Al smectites or berthierine depending on the sedimentation rate. Reductive microsystems appear in the vicinity of organic debris in unconsolidated sediments. The Fe is incorporated first in pyrite and then in silicates after oxidation. Potassium ions diffuse from the sea‐water–sediment interface. If not interrupted, the diffusion process is active until reaction completion is reached, i.e. formation of Fe‐illite or glauconite or a mineral assemblage (berthierine–nontronite) according to the available Al ion amounts in the microsystem. Mixed‐layer minerals are formed when the diffusion process is interrupted because of sedimentation, compaction or cementation. Despite the common belief of their value as palaeoenvironment indicators, these minerals can form in a variety of environments and over a period of millions of years during sediment burial.  相似文献   

18.
Reactive surface area is one of the key parameters for studying the kinetics of mineral dissolution. The common practice in experimental kinetics is to normalize the dissolution rate to the surface area measured by the BET method. The relationship between BET surface area and the reactive surface area is not trivial in minerals such as smectites, which possess both internal and external surface areas, and in which the dissolution is controlled by the chemical attack on the edge surface. The present study examines two proxies for the reactive surface area of the Clay Mineral Society reference smectite SAz-1: BET surface area and the edge surface area measured using AFM.Since smectites are very microporous, their BET surface area is strongly influenced by the degassing procedure. It is demonstrated that outgassing the smectite powder at 135°C in a 15 mL min−1 N2 gas flow for at least 24 hours minimizes contribution from micropores to less than 11% of the BET surface area.Following dissolution experiments in solutions with a low electrolyte concentration, the BET surface area increased from 34 ± 2 m2 g−1 in raw SAz-1 to 127 ± 13 m2 g−1 in SAz-1 sample recovered from dissolution experiments. This increase in BET surface area is explained by a decrease in the average size of the smectite aggregates, and by an increase in microporosity due to the depletion in the major interlayer cation, i.e., Ca2+. As the BET surface area of the raw smectite sample includes considerably less microporosity compared to the BET surface area of the smectite recovered from dissolution experiments, the former is a better approximation of the external surface area of the dried sample powder.AFM measurements show that there is no correlation between the specific external surface area of the sample and its specific edge surface area. This observation is explained by the platy morphology of the smectite particle in which the specific external surface area depends linearly on the height reciprocal, whereas the specific edge surface area is independent of the particles height and depends linearly on the sum of the reciprocals of the length of the axes. Therefore, there is no reason to expect a correlation between the BET and the edge surface area. Our results show that the edge surface area (4.9 ± 0.7 m2 g−1) of the smectite particles cannot be predicted based on its external surface area (136 ± 20 m2 g−1). Therefore, the BET surface area cannot serve as a proxy for the reactive surface area. We suggest using AFM measurements of the specific edge surface area as an alternative proxy for the reactive surface area of smectite.  相似文献   

19.
The Tamana Formation of the Central Range of Trinidad was studied in order to determine its importance in the stratigraphical and structural development of north-eastern South America. Biostratigraphical, petrological and mineralogical data, combined with field mapping show that the Tamana sediments are composed of five distinct lithofacies: inner to outer shelf, burrowed shaley mudstone; outer shelf, Fe-rich sandy limestone; submarine channel, conglomeratic mudstone; middle shelf to nearshore, algal-foram packstone/grainstone; and intertidal to nearshore, algal-stromatolite-coral boundstone with coral bioherms. Maximum thickness of the Tamana Formation is 244 m. Deposition of the Tamana limestones occurred between the Praeorbulina glomerosa (latest early Miocene) and Globorotalia fohsi robusta (middle part of the middle Miocene) planktonic foraminiferal zones, and in a more continuous trend than is seen in the current outcrop belt. Detailed biostratigraphy shows that the Tamana Formation is a facies equivalent of the shallow- and deep-water shales of the Brasso Formation, and the deep water turbidites of the Herrera Member of the Cipero Formation. The early diagenetic history of the Tamana limestones was dominated by the precipitation of authigenic glauconitic smectite, and the dissolution of skeletal grains and carbonate matrix. Late burial diagenesis was dominated by the precipitation of illite and illite/smectite. Comparative mineralogy and textural analyses indicate a minimum range of burial depth for the Tamana Formation at 800–1500m, with a maximum of 2400 m. Alteration of Fe-bearing minerals to geothite and late fracturing occurred during post-Pliocene tectonic uplift and unroofing of the Central Range. The Tamana Formation sediments can be used as a structural and stratigraphical event marker within the Late Tertiary geological history of Trinidad. These units record a phase of the tectonic interaction between the Caribbean and South American plates in the south-eastern Caribbean, and reflect the onset of contractile deformation in the Central Range.  相似文献   

20.
The glaucony of the early Cretaceous Kurnub Group in Jordan has been isotopically dated using the K–Ar method. The glaucony occurs in an arenaceous dolomite unit, referred to here to as glaucony marker unit (GMU), located in the upper part of the Kurnub Group, that persists throughout Jordan. The glaucoliths of the heavy fraction are dark green in colour, ovoidal or mammilated, with a mainly cracked smooth surface, whereas the light fraction glaucoliths are light green in colour, irregular in shape and have a rough or porous surface. Both fractions exhibit boxwork and rosette microstructure, whereas lamellar microstructure is restricted to the heavy glaucoliths. X-ray diffraction and chemical analysis placed the glauconies of the GMU of the Kurnub Group in Odin and Matter's evolved to highly evolved class corresponding to glauconitic mica and suggested that they should be well-closed chronometers. On the other hand, petrographic investigation proved these glauconies to be unaltered, whereas the other altered ones are discarded from the age determination. The unweathered, highly evolved, heavy glauconies that are neither tectonized nor deeply buried best fulfil recommendations regarding appropriate samples for K–Ar dating. The apparent age constrained, within the analytical uncertainty limits, from the most evolved glaucony is 96·1±1·1 Ma and suggests that the GMU is of Albian age. The other less evolved glauconies, which are still within the evolved to highly evolved class of Odin and Matter, yield a mean apparent age of 93·6±1·0 Ma, which is probably slightly younger than the true depositional age by 2–3 Ma due to genetic and historical uncertainties, as indicated by the petrographic and sedimentological data. Thus the upper part of the Kurnub Group, where the GMU is located, is of Albian age. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号