首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract This paper provides untilted paleomagnetic data obtained from the early Miocene strata around the Kanazawa‐Iozen area, in the eastern part of south‐west Japan. A thick pile of volcaniclastics and marine transgressive sediments underlie the area; they were deposited in the early stage of the Japan Sea opening event. Progressive thermal demagnetization tests isolated stable primary magnetic vectors from eight sites in the upper part of the Iozen Formation. Overall, the tilt‐corrected mean direction of this unit is D = 36.4°, I = 51.6° and α95 = 12.1. Together with a published paleomagnetic and chronological database, the present results suggest that clockwise rotation of south‐west Japan, linked to the back‐arc opening, commenced in the early Miocene and accelerated at the same time as rapid subsidence along the Japan Sea coast. Post‐opening, differential rotation within the eastern part of south‐west Japan is assumed, based on selected paleomagnetic data from the latest Early Miocene.  相似文献   

2.
The reconstruction of the tectonic evolution of the oceanic crust, including the recognition of ancient oceanic plumes and the differentiation between multiple and single oceanic arcs, relies on the paleogeographic analysis of accreted oceanic fragments found in orogenic belts. Here we present paleomagnetic and gravity data from Cretaceous oceanic basaltic and gabbroic rocks, the continental metamorphic basement, and their associated cover from northwestern Colombia. Based on regional scale tectonic reconstructions and geochemical constraints, such rocks have been interpreted as remnants of an oceanic large igneous province formed in southern latitudes, which was accreted to the sialic continental margin during the Late Cretaceous. Gravity analyses suggest the existence of a coherent high density segment separated by major suture zones from a lower density material related to the continental crust and/or thick sedimentary sequences trapped during collision. A characteristic paleomagnetic direction in Early and Late Cretaceous oceanic volcano-plutonic rocks, revealing a southeastern declination (D) and a negative inclination (I), may be interpreted in two different ways: (1a primary magnetization (tilt-corrected direction D = 130.3°, I = -23.3°, k = 23.4, α95 = 26.4°), suggesting clockwise rotation around 130°, and magnetization acquired in southern latitudes (range of 4°S to 21°S); or (2) a remagnetization event during a reverse interval of the Earth’s magnetic field in the Cenozoic (in situ direction D = 128.7°, I = -6.2°, k = 23.1, α95 = 26.1°), suggesting a counter-clockwise rotation around 50°. The first scenario seems more plausible, as it is consistent with previous paleomagnetic studies at other localities; it is compatible with a southern paleogeography for this block, and when integrated with other regional geological and paleomagnetic studies, supports a southern Pacific origin of a major oceanic block, formed as a part of a broader Cretaceous plateau that may have extended south or southwest of Galapagos. After its initial accretion, this block was subsequently fragmented due to the oblique SW-NE approach to the continental margin during the Late Cretaceous.  相似文献   

3.
The Paleo‐Kuril Arc in the eastern Hokkaido region of Japan, the westernmost part of the Kuril Arc in the northwestern Pacific region, shows a tectonic bent structure. This has been interpreted, using paleomagnetic data, to be the result of block rotations in the Paleo‐Kuril Arc. To understand the timing and origin of this tectonic bent structure in the Paleo‐Kuril arc‐trench system, paleomagnetic surveys and U–Pb radiometric dating were conducted in the Paleogene Urahoro Group, which is distributed in the Shiranuka‐hill region, eastern Hokkaido. The U–Pb radiometric dating indicated that the Urahoro Group was deposited at approximately 39 Ma. Paleomagnetic analysis of the Urahoro Group suggested that the Shiranuka‐hill region experienced a 28° clockwise rotation with respect to East Asia. The degree of clockwise rotation implied from the Urahoro Group is smaller than that of the underlying Lower Eocene Nemuro Group (62°) but larger than that of the overlying Onbetsu Group (?9°). It is thus suggested that the Shiranuka‐hill region experienced a clockwise rotation of approximately 34° between the deposition of the Nemuro and Urahoro Groups (50–39 Ma), and a 38° clockwise rotation between the deposition of the Urahoro and Onbetsu Groups (39–34 Ma). The origin of the curved tectonic belt of the Paleo‐Kuril Arc was previously explained by the opening of the Kuril Basin after 34 Ma. The age constraint for the rotational motion of the Shiranuka‐hill region in this study contradicts this hypothesis. Consequently, it is suggested that the process of arc–arc collision induced the bent structure of the western Paleo‐Kuril Arc.  相似文献   

4.
The Caledonian geology of western Ireland records the collision of two arc complexes with the Laurentian Margin during the closure of the Iapetus Ocean. An earlier complex collided with this hitherto passive margin in the mid-Ordovician during the Grampian Orogeny. Subsequently, arc magmatism developed along the Laurentian margin and continued until the late Silurian collision between Laurentian and Avalonia. The Ordovician volcanic and sedimentary rocks comprising the South Connemara Group lie along the Southern Uplands Fault, the terrane boundary separating these two arc complexes. Palaeontological dating indicates an Arenig-Llanvirn age for part of this complex (Williams, Armstrong and Harper, 1988), making it contemporaneous with the earlier arcs. However, most authors correlate this complex with the northern belt of the Southern Uplands (Morris, 1983; Williams, D.M., 1984. The stratigraphy and sedimentology of the Ordovician Party Group, south-eastern Murrisk, Ireland. Geological Journal, 19, 173–186; Williams et al., 1988), associated with post-Grampian subduction of north directed polarity. We present new field evidence that the South Connemara Group is tectonically disrupted by bedding parallel shear zones and that contacts previously interpreted as conformable are marked by units of tectonic mélange. We present structural and provenance arguments consistent with the mélanges forming above a north-dipping subduction zone after 463Ma. This Group is reinterpreted as occurring within a subduction–accretion complex that was generated by the accretion of early Ordovician mafic seamounts into a post-Grampian trench, thus reconciling the age of the Group with its generally accepted tectonic setting. We discuss the regional significance of this finding with respect to the Caledonide-Appalachian orogeny and argue that this is the site along which the Iapetus Ocean closed.  相似文献   

5.
The results of the paleomagnetic investigation of the sediments pertaining to the Silasinskaya Formation of the Kiselevka–Manoma terrane within the Sikhote Alin orogenic belt are presented. The ancient prefolding magnetization component is revealed: Decs = 271.7°, Incs = 52.2°, Ks = 13.5, and a 95s = 5.1° (positive fold and reversal tests); and the coordinates of the corresponding paleomagnetic pole for ~103 ± 10 Ma are calculated: Plat = 26.3°, Plong = 70.5°, dp = 4.8°, and dm = 7.0°. As a result of this study, the geodynamical settings and paleolatitudes of the formation of three objects in the northern part of Sikhote Alin orogen are established: (a) the Kiselevskaya Formation of the Kiselevka–Manoma terrane was formed 133 Ma ago at 19° N under the seamount condition on the Izanagi Plate; (b) the Silasinskaya Formation of the Kiselevka–Manoma terrane was formed 103 Ma ago at 35° N under the oceanic island arc conditions; and (c) the Utitskaya Formation of the Zhuravlevsk–Amur terrane was formed 95 Ma ago at 54° N in the active continental margin conditions. It is found that the transform continental margin of Eurasia developed in the time interval from 105 to 65 Ma ago in the regime of a left-lateral submeridional shear from 30° to 60° N. The complete attachment of the studied rocks of the Kiselevka–Manoma terrane to the Eurasia’s margin (to the Zhuravlevsk–Amur terrane) occurred at the boundary of 60–70 Ma. Simultaneously, the sense of the displacement in the submeridional shears changed from left-lateral to right-lateral with the formation of pullapart type basins (Lake Udyl’).  相似文献   

6.
青藏高原东南缘构造旋转的古地磁学证据   总被引:6,自引:2,他引:4       下载免费PDF全文
本文在总结青藏高原东南缘近年来地质研究进展的基础上,从古地磁学的角度讨论其新生代以来的构造运动特征.结果表明:相对稳定的欧亚大陆,新生代以来山泰地块发生了约20°~80°顺时针旋转,局部地区旋转量甚至高达135°,且中部地区的旋转量明显高于南北地区;印支地块经历了~30°的顺时针旋转;川滇地块的顺时针旋转量沿102°E...  相似文献   

7.
A paleomagnetic and potassium-argon dating investigation has been carried out on a 530-km-long dike system which transects the western Iberian Peninsula in a northeasterly direction. The K-Ar age determinations were made on mineral separates exclusively. They range between 160 and 200 Ma and the authors suppose that this reflects the actual time interval of the intrusion, in accord with previous results. The paleomagnetic pole derived from 12 sites regularly distributed along the dike (71°N, 236°E) coincides well with other Mesozoic paleomagnetic poles from the western Africa. A contemporaneous pole from stable Europe is tentatively deduced from African and North American Late Triassic/Early Jurassic poles using different reconstruction models around the North Atlantic Ocean. The divergence between this pole and the Iberian pole corresponds to the result obtained for Permian poles.  相似文献   

8.
Mio-Pliocene hypabyssal rocks of the Combia event in the Amagá basin (NW Andes-Colombia), contain a deformational record of the activity of the Cauca-Romeral fault system, and the interaction of terranes within the Choco and northern Andean blocks. Previous paleomagnetic studies interpreted coherent counterclockwise rotations and noncoherent modes of rotation about horizontal axes for the Combia intrusives. However, rotations were determined from in-situ paleomagnetic directions and the existing data set is small. In order to better understand the deformational features of these rocks, we collected new paleomagnetic, structural, petrographic and magnetic fabric data from well exposed hypabyssal rocks of the Combia event. The magnetizations of these rocks are controlled by a low-coercivity ferromagnetic phase. Samples respond well to alternatingfield demagnetization isolating a magnetization component of moderate coercivity. These rocks do not have ductile deformation features. Anisotropy of magnetic susceptibility and morphotectonic analysis indicate that rotation about horizontal axes is consistently to the south-east, suggesting the need to apply a structural correction to the paleomagnetic data. The relationships between magnetic foliations and host-rock bedding planes indicate tectonic activity initiated before ~10 Ma. We present a mean paleomagnetic direction (declination D = 342.8°, inclination I = 12.1°, 95% confidence interval α95 = 12.5°, precision parameter k = 8.6, number of specimens n = 18) that incorporates structural corrections. The dispersion S = 27° of site means cannot be explained by secular variation alone, but it indicates a counterclockwise rotation of 14.8° ± 12.7° relative to stable South America. Paleomagnetic data within a block bounded by the Sabanalarga and Cascajosa faults forms a more coherent data set (D = 336.5°, I = 17.4°, α95 = 11.7°, k = 12.5, n = 14), which differs from sites west of the Sabanalarga fault and shows a rotation about a vertical axis of 20.2° ± 10.7°. Deformation in the Amagá basin may be tentatively explained by the obduction of the Cañas Gordas terrane over the northwestern margin of the northern Andean block. However, it can also be related to the local effects of the Cauca-Romeral fault system.  相似文献   

9.
Abstract Understanding the evolution and destruction of past oceans not only leads to a better understanding of earth history, but permits comparison with extant ocean basins and tectonic processes. This paper reviews the history of the Early Paleozoic circum-Atlantic oceans by analogy with the Pacific Ocean and Mesozoic Tethys. Rifting and continental separation from 620 to 570 Ma led to the development of passive margins along parts of the northern margin of Gondwana (the western coast of South America); eastern Laurentia (eastern North America, NW Scotland and East Greenland), and western Baltica (western Scandinavia). Meagre paleomagnetic data suggest that western South America and eastern North America could have been joined together to form facing margins after breakup. Although western Baltica is an apparently obvious candidate for the margin facing NW Scotland and East Greenland, the paleomagnetic uncertainties are so large that other fragments could have been positioned there instead. The Iapetus Ocean off northeastern Gondwana was probably a relatively wide Pacific-type ocean with, during the late Precambrian to early Ordovician, the northern margin of Gondwana as a site of continentward-dipping subduction zone(s). The 650-500 Ma arc-related igneous activity here and the associated deformation gave rise to the Cadomian, ‘Grampian’, Penobscotian, and Famantinian igneous and orogenic events. By 490-470 Ma, marginal basins had formed along the eastern Laurentian margin as far as NE Scotland, along parts of the northern margin of Gondwana, and off western Baltica, but none are known from the East Greenland margin. These basins closed and parts were emplaced as ophiolites shortly after their formation by processes that, at least in some cases, closely resemble the emplacement of the late Cretaceous Semail ophiolite of Oman. This orogenic phase seems to have involved collision and attempted subduction of the continental margin of Laurentia, Gondwana and Baltica. In Baltica it gave rise to some eclogite facies metamorphism. Marginal basin development may have been preceded by arc formation as early as ca 510 Ma. A double arc system evolved outboard from the eastern Laurentian and western Baltica margins, analogous to some of the arc systems in the present-day western Pacific. At 480-470 Ma, there was a second phase of breakup of Gondwana, affecting the active Gondwanan margin. Eastern and Western Avalonia, the Carolina Slate Belt, Piedmont, and other North American exotic continental blocks rifted away from Gondwana. Farther east, Armorica, Aquitainia, Iberia and several European exotic continental blocks also rifted away, though it is unlikely that they all rifted at the same time. Between 460-430 Ma, peaking at ca 450 Ma, orogenic events involved continuing arc-continent collision(s). From 435-400 Ma the remaining parts of the Eastern Iapetus Ocean were destroyed and the collision of Baltica with Laurentia caused the 430-400 Ma Scandian orogeny, followed by suturing of these continents during the Siluro-Devonian Acadian orogeny or Late Caledonian orogeny to 380 Ma, leaving a smaller but new ocean south of the fragments that had collided with the Laurentian margin farther south. The Ligerian orogeny 390-370 Ma collision of Gondwana-derived Aquitaine-Cantabrian blocks with Eastern Avalonia-Baltica and removed the part of the Iapetus south of Baltica. Prior to any orogenic events, the Eastern Iapetus Ocean between Baltica and Laurentia may have resembled the present-day central Atlantic Ocean between Africa and North America. The ocean appears to have closed asymmetrically, with arcs forming first outboard of the western margin of Baltica while the East Greenland margin was unaffected. The Western Iapetus Ocean between Laurentia and Gondwana also closed asymmetrically with a dual arc system developing off Laurentia and an arc system forming off the northern margin of Gondwana. Like the Pacific Ocean today, the Eastern Iapetus Ocean had a longer and more complex history than the Western Iapetus Ocean: it was already in existence at 560 Ma, probably developed over at least 400 million years, by mid-Cambrian time was many thousands of kilometres wide at maximum extent, and was associated with a < 30 million year phase of marginal basin formation. In contrast, the Western Iapetus Ocean appears to have been much narrower, shorter lived (probably < 100 million years), and associated with the rifting to form two opposing passive carbonate margins, analogous to the Mesozoic Tethys or the present-day Mediterranean.  相似文献   

10.
P. FRYER    H. SUJIMOTO    M. SEKINE    L. E. JOHNSON    J. KASAHARA    H. MASUDA    T. GAMO    T. ISHII    M. ARIYOSHI  & K. FUJIOKA 《Island Arc》1998,7(3):596-607
Until recently it was thought that the volcanoes of the Mariana island arc of the western Pacific terminated at Tracey Seamount at ∼ 14°N immediately west of Guam. Sea floor mapping in 1995 shows a series of large volcanic seamounts stretching westward for nearly 300 km beyond that point. The morphology, spacing, and composition of those sampled are consistent with their having formed as a consequence of eruption of suprasubduction zone arc magmas. The relationships of the volcanoes to the tectonic processes of subduction of the Pacific plate beneath the southern portion of the Mariana convergent plate margin are becoming increasingly clear as new bathymetry and geochemical data are amassed. The volcanoes along this trend that lie closest to Guam are forming where the center of active extension in the back-arc basin intersects the line of arc volcanoes. They develop well-defined rifts that are parallel to rift structures along the extension center, whereas volcanoes of the spreading axis to the north are smaller than the frontal arc volcanoes and tend to form along lineaments. Compositions of lavas from these intersection volcanoes bear some similarities to back-arc basin basalt, but are on the whole well within the range of compositions for Mariana island arc lavas. The Pacific plate subducts nearly orthogonal to the strike of the trench along the southern part of the Mariana system and the distance to the arc line from the trench axis is only ∼ 150 km. Several deep fault-controlled canyons on the inner slope of the southern Mariana trench indicate an enhanced tectonic extension of this plate margin. The presence of these active arc volcanoes and the existence of the orthogonal normal faulting along the southern Mariana forearc supports a model of radial extension for formation of the Mariana Trough, a model previously dismissed because of the lack of evidence of these two major geological features.  相似文献   

11.
Paleomagnetic study of China and its constraints on Asia tectonics has been a hot spot. Some new paleomagnetic data from three major blocks of China. North China Block (NCB), Yangtze Block (YZB) and Tarim Block (TRM) are first reported, and then available published Phanerozoic paleomagnetic poles from these blocks with the goal of placing constraints on the drift history and paleocontinental reconstruction are critically reviewed. It was found that all three major blocks were located at the mid-low latitude in the Southern Hemisphere during the Early Paleozoic. The NCB was probably independent in terms of dynamics. its drift history was dominant by latitudinal placement accompanying rotation in the Early Paleozoic. The YZB was close to Gondwanaland in Cambrian, and separated from Gondwanaland during the Late-Middle Ordovician. The TRM was part of Gondwanaland, and might be close to the YZB and Australia in the Early Paleozoic. Paleomagnetic data show that the TRM was separated from Gondwanaland during the Late-Middle Ordovician, and then drifted northward. The TRM was sutured to Siberia and Kazakstan blocks during the Permian, however, the composite Mongolia-NCB block did not collide with Siberia till Late Jurassic. During Late Permian to Late Triassic, the NCB and YZB were characterized by northern latitudinal placement and rotation on the pivot in the Dabie area. The NCB and YZB collided first in the eastern part where they were located at northern latitude of about 6°—8°, and a triangular oceanic basin remained in the Late Permian. The suturing zone was located at northern latitude of 25° where the two blocks collided at the western part in the Late Triassic. The collision between the two blocks propagated westward after the YZB rotated about 70° relative to the NCB during the Late Permian to Middle Jurassic. Then two blocks were northward drifting (about 5°) together with relative rotating and crust shortening. It was such scissors-like collision procedure that produced intensive compression in the eastern part of suturing zone between the NCB and YZB, in which continental crust subducted into the upper mantle in the Late Permian, and then the ultrahigh-pressure rocks extruded in the Late Triassic. Paleomagnetic data also indicate that three major blocks have been together clockwise rotating about 20° relative to present-day rotation axis since the Late Jurassic. It was proposed that Lahsa Block and India subcontinent successively northward subducted and collided with Eurasia or collision between Pacific/Philippines plates and Eurasia might be responsible for this clockwise rotating of Chinese continent.  相似文献   

12.
The Kohistan–Ladakh Arc in the Himalaya–Karakoram region represents a complete section of an oceanic arc where the rocks from mantle to upper crustal levels are exposed. Generally this arc was regarded as of Jurassic–Cretaceous age and was welded to Asia and India by Northern and Southern Sutures respectively. Formation of this arc, timings of its collisions with Asia and India, and position of collision boundaries have always been controversial. Most authors consider that the arc collided with Asia first during 102–75 Ma and then with India during 55–50 Ma, whereas others suggest that the arc collided with India first at or before 61 Ma, and then the India–arc block collided with Asia ca 50 Ma. Recently published models of the later group leave several geological difficulties such as an extremely rapid drifting rate of the Indian Plate (30 ± 5 cm/year) northwards between 61–50 Ma, absence of a large ophiolite sequence and accretionary wedge along the Northern Suture, obduction of ophiolites and blueschists along the Southern Suture, and the occurrence of a marine depositional environment older than 52 Ma in the Indian Plate rocks south of the Southern Suture. We present a review based on geochemical, stratigraphic, structural, and paleomagnetic data to show that collision of the arc with Asia happened first and with India later.  相似文献   

13.
Yuzuru  Yamamoto  Shunsuke  Kawakami 《Island Arc》2005,14(2):178-198
Abstract   The structure, paleomagnetism and biostratigraphy of the Nishizaki and Kagamigaura formations on the southern Boso Peninsula, central Japan, were investigated to determine the chronographic constraints on the accretion, post-Late Miocene rotation and regional tectonics in the Izu–Bonin island arc collision zone. The geological structures on the southern Boso Peninsula are characterized by an east–west trending and south-verging fold and thrust belt that curves toward the northwest–southeast in the northwest extent of the Nishizaki Formation. Two stages of tectonic rotation were revealed by paleomagnetic and structural studies. The first is believed to have occurred after the accretion of the Nishizaki Formation and before the deposition of the Kagamigaura Formation, while the second is confidently correlated with the 1 Ma Izu block collision. The northwest extent of the Nishizaki Formation was rotated clockwise by approximately 65–80°, whereas the rotation was only 25–30° in the east, and 11–13° in the overlying Kagamigaura Formation. Radiolarian biostratigraphy suggests a depositional age of 9.9–6.8 Ma (Upper Miocene period) for the Nishizaki Formation and 4.19-3.75 Ma (Pliocene period) for the lower Kagamigaura Formation. These results indicate that the age of accretion and first-stage rotation of the Nishizaki Formation can be constrained to the interval of 6.80–3.75 Ma. This structure most likely represents the northward bending caused by collisions of the Tanzawa and Izu blocks with the Honshu island arc, and suggests rapid processes of accretion, collision, uplift and the formation of new sedimentary basins within a relatively short period of time (2.61–3.05 my).  相似文献   

14.
Asymmetric rifting of the northern Mariana Trough   总被引:3,自引:0,他引:3  
The evolution of rifting in the northern Mariana Trough was studied, based on single-channel seismic reflection profiles and heat flow. The rift showed structural asymmetry. The northernmost part of the Mariana Trough at 24°N, just south of Minami-Iwojima Island, is now in an incipient rifting stage and shows a half-graben structure. The arc crust just behind the volcanic front is cut by a few major east-dipping normal faults. The major faults extend southward behind the Hiyoshi seamounts around 23°30'N. The rift develops to a full-graben stage at ∼ 23°N, where the width of the trough increases to 80 km. The trough is comprised of several faulted and tilted blocks of island-arc crust. Maximum subsidence occurs along a row of small grabens on the eastern margin of the trough. These grabens are separated by arc volcanoes, and their depths increase southward from 2500 m at 23°20'N to 4500 m at 22°N. The strike of each graben is north-northwest–south-southeast, which is close to the trend of the remnant West Mariana Ridge, but oblique to the active Mariana arc. Crustal extension becomes concentrated along the eastern margin of the trough as rifting progresses. The transition from rifting to sea floor spreading may occur at ∼ 22°N, where the width of the trough is ∼ 120 km. The possible spreading center lies along the southern extension of the grabens on the eastern margin. The period of back-arc rifting before spreading begins is estimated to be less than 3 million years. Heat flow is asymmetric in the rift. High heat flow was observed only in or close to the row of grabens along the eastern margin of the trough. The asymmetric pure shear extension model fits the observed heat flow distribution better than the simple shear extension model.  相似文献   

15.
Over 500 oriented samples of felsic rocks of Cretaceous to Middle Miocene age were collected along the Go¯River in the central part of Southwest Japan, in an attempt to detect the process of tectonic rotation of Southwest Japan from the paleomagnetic view point. Thermal demagnetization was successful in isolating characteristic directions from the remanent magnetization of samples. Reliability of the paleomagnetic direction is ascertained through the agreement of directions from different kinds of rocks as well as the presence of both normal and reversed polarities. The paleomagnetic results establish that Southwest Japan began to rotate clockwise through58 ± 14° later than 28 Ma and ceased its motion by about 12 Ma. Southwest Japan has undergone no detectable north-south translation since 28 Ma. These results imply that southwest Japan was rotated about the pivot around 34°N, 129°E between 28 Ma and 12 Ma in association with the opening of the Japan Sea.  相似文献   

16.
The Taebaeksan Basin comprises the lower Paleozoic Joseon Supergroup and the upper Paleozoic Pyeongan Supergroup, which are separated by a disconformity representing a 140 myr‐long hiatus. This paper deals mainly with the late Paleozoic paleogeographical and tectonic evolution of the Taebaeksan Basin on the basis of updated stratigraphy, sedimentation, and geochronology of the Pyeongan Supergroup. Late Paleozoic sedimentation in the Taebaeksan Basin recommenced at ~ 320 Ma and formed a thick siliciclastic succession of marginal marine and non‐marine alluvial deposits, the Pyeongan Supergroup. The Pyeongan Supergroup was deposited in a retroarc foreland basin formed by build‐up of a magmatic arc along the northern margin of the Sino‐Korean Craton. The formation of sedimentary deposits ceased at ~ 250 Ma due to the collision of the Sino‐Korean Craton and South China Craton that generated the Triassic Songnim orogeny in Korea. Diverse tectonic models have been proposed for assembly of the proto‐Korean Peninsula, but the indented wedge model is considered to best explain the geological features of the peninsula. The indented wedge model entails northward subduction of the central block of the Korean Peninsula (part of the South China Craton) beneath the northern block of the Korean Peninsula (part of the Sino‐Korean Craton) along the Sulu‐Imjingang Belt.  相似文献   

17.
塔里木地块侏罗、白垩纪的古地磁   总被引:5,自引:0,他引:5       下载免费PDF全文
本文对塔里木地块西北缘库车、拜城一带中新生代剖面进行了古地磁研究。库车与拜城两剖面具有不同方向产状,经产状校正之后,均为同一方向,表明磁性是在第三系褶皱之前获得的。热退磁结果表明500℃之前为现代地磁场方向,解阻温度为675℃,说明磁性载体为赤铁矿。 古地磁结果表明,塔里木地块在晚侏罗—晚白垩世之间没有经历大规模的构造运动。有可能自晚白垩世之后相对西伯利亚地块向北东方向移动过  相似文献   

18.
为进一步研究帕米尔东北缘晚新生代演化特征,在塔里木盆地西部英吉沙背斜上新世地层中采集了11个采点共111块古地磁样品.对样品进行系统热退磁测定,揭示了一组高温特征剩磁分量,获得了采样剖面的上新世古地磁极.特征剩磁方向为:Dg=342.4°,Ig=59.2°,κg=32.3,α95=8.6°;Ds=352.4°,Is=49.9°,κs=59.1,α95=6.3°,相对应的古地磁极位置为:79.7°N,295.9°E,dp=5.6°,dm=8.4°,α95=6.9°.这一高温分量通过了倒转检验,代表了研究区上新世时期的原生特征剩磁.通过对英吉沙背斜周缘断裂及形成的大地构造背景分析,结合其地貌特征、GPS数据,认为英吉沙背斜在开始形成至今经历了明显的逆时针构造旋转,该旋转同晚新生代以来帕米尔东北缘喀什凹陷发生刚性构造旋转运动有着密切的关系.  相似文献   

19.
In many anoxic sedimentary environments, the onset of sulfate reduction, and pyritization of detrital iron-bearing minerals, leads to a precipitous decline in magnetic mineral concentration during early diagenesis. The usefulness of the surviving paleomagnetic record in such environments is usually argued to depend on how much of the primary detrital magnetic assemblage survives diagenetic dissolution. Detailed rock magnetic and electron microscope analyses of rapidly deposited (~ 7 cm/kyr) latest Pleistocene–Holocene sediments from the continental margins of Oman (22°22.4′N, 60°08.0′E) and northern California (38°24.8′N, 123°58.2′W) demonstrate that pyritization during early diagenesis also leads to the progressive down-core growth of the ferrimagnetic iron sulfide greigite. Greigite growth begins with nucleation of large concentrations of superparamagnetic (SP) nanoparticles at the inferred position of the sulfate–methane transition, which can explain the apparently paradoxical suggestion that diagenetically reduced sediments contain enhanced concentrations of SP particles. Looping of hysteresis parameters on a “Day” plot records the dissolution of single domain (SD) (titano-)magnetite and the formation of SP greigite, which then slowly and progressively grows through its SD blocking volume and acquires a stable paleomagnetic signal. This looping trend is also evident in data from several published records (Oregon margin, Korea Strait, Japan Sea, Niger Fan, Argentine margin, and the Ontong–Java Plateau), indicating that these processes may be widespread in reducing environments. Our observations have profound implications for paleomagnetic records from sulfate-reducing environments. The paleomagnetic signal recorded by greigite is offset from the age of the surrounding sediments by 10's of kyr, and ongoing growth of greigite at depth results in smoothing of the recorded signal over intervals of 10's to 100's of kyr. We therefore expect the presence of greigite to compromise paleomagnetic records in a wide range of settings that have undergone reductive diagenesis.  相似文献   

20.
Tectonic reconstructions based on the geodynamic analysis of geologic, paleomagnetic, structural and kinematic data of Cenozoic age from the western Bering Sea region are proposed in the present paper. The most active tectonic and magmatic processes took place in the Komandorsky segment of the Bering Sea, exemplified by the Late Cretaceous–Early Eocene Olutorsky Arc and Eocene–Oligocene Govena–Karaginsky Arc, which was built on the structures of the Olutorsky Arc. A model of the complex collision of these two arcs with the paleocontinental margin, which considers rotations of the geological blocks from the various structural zones of the western margin of the Bering Sea in the horizontal plane (paleomagnetic data), was proposed by the authors. According to this model the collision of the flanks of the Olutorsky and Govena–Karaginsky arcs took place in the Eocene, before the collision of the central parts in the Miocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号