首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We explore the link between solar energetic particles (SEPs) observed at 1 AU and large-scale disturbances propagating in the solar corona, named after the Extreme ultraviolet Imaging Telescope (EIT) as EIT waves, which trace the lateral expansion of a coronal mass ejection (CME). A comprehensive search for SOHO/EIT waves was carried out for 179 SEP events during Solar Cycle 23 (1997?–?2006). 87 % of the SEP events were found to be accompanied by EIT waves. In order to test if the EIT waves play a role in the SEP acceleration, we compared their extrapolated arrival time at the footpoint of the Parker spiral with the particle onset in the 26 eastern SEP events that had no direct magnetic connection to the Earth. We find that the onset of proton events was generally consistent with this scenario. However, in a number of cases the first near-relativistic electrons were detected too early. Furthermore, the electrons had in general only weakly anisotropic pitch-angle distributions. This poses a problem for the idea that the SEPs were accelerated by the EIT wave or in any other spatially confined region in the low corona. The presence of weak electron anisotropies in SEP events from the eastern hemisphere suggests that transport processes in interplanetary space, including cross-field diffusion, play a role in giving the SEPs access to a broad range of helio-longitudes.  相似文献   

2.
I. G. Richardson 《Solar physics》2014,289(10):3843-3894
Previous studies have discussed the identification of interplanetary coronal mass ejections (ICMEs) near the Earth based on various solar wind signatures. In particular, methods have been developed of identifying regions of anomalously low solar wind proton temperatures (T p) and plasma compositional anomalies relative to the composition of the ambient solar wind that are frequently indicative of ICMEs. In this study, similar methods are applied to observations from the Ulysses spacecraft that was launched in 1990 and placed in a heliocentric orbit over the poles of the Sun. Some 279 probable ICMEs are identified during the spacecraft mission, which ended in 2009. The identifications complement those found independently in other studies of the Ulysses data, but a number of additional events are identified. The properties of the ICMEs detected at Ulysses and those observed near the Earth and in the inner heliosphere are compared.  相似文献   

3.
Magnetic field and plasma properties of the solar wind measured in near-Earth space are a convolution of coronal source conditions and in-transit processes which take place between the corona and near-Earth space. Elemental composition and heavy ion charge states, however, are not significantly altered during transit to Earth and thus such properties can be used to diagnose the coronal source conditions of the solar wind observed in situ. We use data from the Advanced Composition Explorer (ACE) spacecraft to statistically quantify differences in the coronal source properties of interplanetary coronal mass ejections (ICMEs). Magnetic clouds, ICMEs which contain a magnetic flux-rope signature, display heavy ion properties consistent with significantly hotter coronal source regions than non-cloud ICMEs. Specifically, magnetic clouds display significantly elevated ion charge states, suggesting they receive greater heating in the low corona. Further dividing ICMEs by speed, however, shows this effect is primarily limited to fast magnetic clouds and that in terms of heavy ion properties, slow magnetic clouds are far more similar to non-cloud ICMEs. As such, fast magnetic clouds appear distinct from other ICME types in terms of both ion charge states and elemental composition. ICME speed, rather ICME type, correlates with helium abundance and iron charge state, consistent with fast ICMEs being heated through the more extended corona. Fast ICMEs also tend to be embedded within faster ambient solar wind than slow ICMEs, though this could be partly the result of in-transit drag effects. These signatures are discussed in terms of spatial sampling of ICMEs and from fundamentally different coronal formation and release processes.  相似文献   

4.
Shocks driven by fast coronal mass ejections (CMEs) are the dominant particle accelerators in large, “gradual” solar energetic particle (SEP) events. In these events, the event-integrated value of the iron-to-oxygen ratio (Fe/O) is typically ~?0.1, at least at energies of a few MeV/nucleon. However, at the start of some gradual events, when intensities are low and growing, initially Fe/O is ~?1. This value is also characteristic of small, “impulsive” SEP events, in which particle acceleration is due to magnetic reconnection. These observations suggested that SEPs in gradual events also include a direct contribution from the flare that accompanied the CME launch. If correct, this interpretation is of critical importance: it indicates a clear path to interplanetary space for particles from the reconnection region beneath the CME. A key issue for the flare origin is “magnetic connectedness”, i.e., proximity of the flare site to the solar footpoint of the observer’s magnetic field line. We present two large gradual events observed in 2001 by Wind at L1 and by Ulysses, when it was located at >?60° heliolatitude and beyond 1.6 AU. In these events, transient Fe/O enhancements at 5?–?10 MeV/nucleon were seen at both spacecraft, even though one or both is not “well-connected” to the flare. These observations demonstrate that an initial Fe/O enhancement cannot be cited as evidence for a direct flare component. Instead, initial Fe/O enhancements are better understood as a transport effect, driven by the different mass-to-charge ratios of Fe and O. We further demonstrate that the time-constant of the roughly exponential decay of the Fe/O ratio scales as R 2, where R is the observer’s radial distance from the Sun. This behavior is consistent with radial diffusion. These observations thus also provide a potential constraint on models in which SEPs reach high heliolatitudes by cross-field diffusion.  相似文献   

5.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

6.
We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within ±?15° from the central meridian). The ICMEs consisted of 23 magnetic-cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in ion charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge-state enhancement is also considerably smaller than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge-state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational geometry may be responsible for the appearance of non-MC structures at 1 AU. We do not find any evidence for an active region expansion resulting in ICMEs lacking a flux-rope structure because the mechanism of producing high charge states and the flux-rope structure at the Sun is the same for MC and non-MC events.  相似文献   

7.
We probe the spectral hardening of solar flares emission in view of associated solar proton events (SEPs) at earth and coronal mass ejection (CME) acceleration as a consequence. In this investigation we undertake 60 SEPs of the Solar Cycle 23 along with associated Solar Flares and CMEs. We employ the X-ray emission in Solar flares observed by Reuven Ramaty Higly Energy Solar Spectroscopic Imager (RHESSI) in order to estimate flare plasma parameters. Further, we employ the observations from Geo-stationary Operational Environmental Satellites (GOES) and Large Angle and Spectrometric Coronagraph (LASCO), for SEPs and CMEs parameter estimation respectively. We report a good association of soft-hard-harder (SHH) spectral behavior of Flares with occurrence of Solar Proton Events for 16 Events (observed by RHESSI associated with protons). In addition, we have found a good correlation (R=0.71) in SEPs spectral hardening and CME velocity. We conclude that the Protons as well as CMEs gets accelerated at the Flare site and travel all the way in interplanetary space and then by re-acceleration in interplanetary space CMEs produce Geomagnetic Storms in geospace. This seems to be a statistically significant mechanism of the SEPs and initial CME acceleration in addition to the standard scenario of SEP acceleration at the shock front of CMEs.  相似文献   

8.
Comparing Solar Minimum 23/24 with Historical Solar Wind Records at 1 AU   总被引:1,自引:0,他引:1  
Based on the variations of sunspot numbers, we choose a 1-year interval at each solar minimum from the beginning of the acquisition of solar wind measurements in the ecliptic plane and at 1 AU. We take the period of July 2008??C?June 2009 to represent the solar minimum between Solar Cycles 23 and 24. In comparison with the previous three minima, this solar minimum has the slowest, least dense, and coolest solar wind, and the weakest magnetic field. As a result, the solar wind dynamic pressure, dawn?Cdusk electric field, and geomagnetic activity during this minimum are the weakest among the four minima. The weakening trend had already appeared during solar minimum 22/23, and it may continue into the next solar minimum. During this minimum, the galactic cosmic ray intensity reached the highest level in the space age, while the number of solar energetic proton events and the ground level enhancement events were the least. Using solar wind measurements near the Earth over 1995??C?2009, we have surveyed and characterized the large-scale solar wind structures, including fast-slow stream interaction regions (SIRs), interplanetary coronal mass ejections (ICMEs), and interplanetary shocks. Their solar cycle variations over the 15 years are studied comprehensively. In contrast with the previous minimum, we find that there are more SIRs and they recur more often during this minimum, probably because more low- and mid-latitude coronal holes and active regions emerged due to the weaker solar polar field than during the previous minimum. There are more shocks during this solar minimum, probably caused by the slower fast magnetosonic speed of the solar wind. The SIRs, ICMEs, and shocks during this minimum are generally weaker than during the previous minimum, but did not change as much as did the properties of the undisturbed solar wind.  相似文献   

9.
An extended Ulysses interplanetary coronal mass ejections (ICMEs) list is used to statistically study the occurrence rate of ICMEs, the interaction of ICMEs with solar wind, and the magnetic field properties in ICMEs. About 43% of the ICMEs are identified as magnetic clouds (MCs). It is found that the occurrence rate of ICMEs approximately follows the solar activity level, except for the second solar orbit; the rate is higher in the southern heliolatitude than in the northern heliolatitude; and it roughly decreases with the increase of ICME speeds. Our results show that the speed difference between the ICME and the solar wind in front of it shows a slight decrease with increasing heliocentric distance for ICMEs preceded by a shock, whereas no such dependence is found for the ICMEs without shock association. It is also found that approximately 23% of the ICMEs are associated with radial field events, in which the interplanetary magnetic field with near-radial direction lasts for many hours, in the Ulysses detected range, and these associated events are not necessarily confined to fast ICMEs or the trailing portions of ICMEs. Nearly all these associated events occur during the period of declining solar wind speed and most of them occur at low heliolatitudes.  相似文献   

10.
We examine solar sources for 20 interplanetary coronal mass ejections (ICMEs) observed in 2009 in the near-Earth solar wind. We performed a detailed analysis of coronagraph and extreme ultraviolet (EUV) observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar and Heliospheric Observatory (SOHO). Our study shows that the coronagraph observations from viewpoints away from the Sun–Earth line are paramount to locate the solar sources of Earth-bound ICMEs during solar minimum. SOHO/LASCO detected only six CMEs in our sample, and only one of these CMEs was wider than 120°. This demonstrates that observing a full or partial halo CME is not necessary to observe the ICME arrival. Although the two STEREO spacecraft had the best possible configuration for observing Earth-bound CMEs in 2009, we failed to find the associated CME for four ICMEs, and identifying the correct CME was not straightforward even for some clear ICMEs. Ten out of 16 (63 %) of the associated CMEs in our study were “stealth” CMEs, i.e. no obvious EUV on-disk activity was associated with them. Most of our stealth CMEs also lacked on-limb EUV signatures. We found that stealth CMEs generally lack the leading bright front in coronagraph images. This is in accordance with previous studies that argued that stealth CMEs form more slowly and at higher coronal altitudes than non-stealth CMEs. We suggest that at solar minimum the slow-rising CMEs do not draw enough coronal plasma around them. These CMEs are hence difficult to discern in the coronagraphic data, even when viewed close to the plane of the sky. The weak ICMEs in our study were related to both intrinsically narrow CMEs and the non-central encounters of larger CMEs. We also demonstrate that narrow CMEs (angular widths ≤?20°) can arrive at Earth and that an unstructured CME may result in a flux rope-type ICME.  相似文献   

11.
The minimum variance analysis of interplanetary coronal mass ejections (ICMEs) observed close to the Earth's orbit around solar cycle 23 maximum (1998–2002) was performed. The ICMEs were classified in three categories: magnetic clouds (MC), undefined ejecta (UE), and complex ejecta (CE). An analysis of the full ICMEs set shows that the average of minimum variance direction inclination angle is 1.6°± 24.8° in relation to the ecliptic plane, with more than 33% of the events presenting inclination angles lower than 10°. The average of minimum variance direction azimuthal angle (in relation to the Sun–Earth line) was 56°. However, around 60% of the ICMEs presented an azimuthal angle lower than 30°, close to the radial direction. It was also observed that the MC set had lower axial (intermediate variance) inclinations relative to the ecliptic plane than the UE and CE events. The intermediate variance axis is close to 90° to the Sun–Earth line. The results obtained in the present analysis were also compared with previous works, permitting a comparison of the ICMEs orientations in solar cycle 23 with previous sor cycles.  相似文献   

12.
It is generally believed that gradual solar energetic particles (SEPs) are accelerated by shocks associated with coronal mass ejections (CMEs). Using an ice-cream cone model, the radial speed and angular width of 95 CMEs associated with SEP events during 1998 – 2002 are calculated from SOHO/LASCO observations. Then, we investigate the relationships between the kinematic properties of these CMEs and the characteristic times of the intensity-time profile of their accompanied SEP events observed at 1 AU. These characteristic times of SEP are i) the onset time from the accompanying CME eruption at the Sun to the SEP arrival at 1 AU, ii) the rise time from the SEP onset to the time when the SEP intensity is one-half of peak intensity, and iii) the duration over which the SEP intensity is within a factor of two of the peak intensity. It is found that the onset time has neither significant correlation with the radial speed nor with the angular width of the accompanying CME. For events that are poorly connected to the Earth, the SEP rise time and duration have no significant correlation with the radial speed and angular width of the associated CMEs. However, for events that are magnetically well connected to the Earth, the SEP rise time and duration have significantly positive correlations with the radial speed and angular width of the associated CMEs. This indicates that a CME event with wider angular width and higher speed may more easily drive a strong and wide shock near to the Earth-connected interplanetary magnetic field lines, may trap and accelerate particles for a longer time, and may lead to longer rise time and duration of the ensuing SEP event.  相似文献   

13.
The intensities and timescales of gradual solar energetic particle (SEP) events at 1 AU may depend not only on the characteristics of shocks driven by coronal mass ejections (CMEs), but also on large-scale coronal and interplanetary structures. It has long been suspected that the presence of coronal holes (CHs) near the CMEs or near the 1-AU magnetic footpoints may be an important factor in SEP events. We used a group of 41 E≈ 20 MeV SEP events with origins near the solar central meridian to search for such effects. First we investigated whether the presence of a CH directly between the sources of the CME and of the magnetic connection at 1 AU is an important factor. Then we searched for variations of the SEP events among different solar wind (SW) stream types: slow, fast, and transient. Finally, we considered the separations between CME sources and CH footpoint connections from 1 AU determined from four-day forecast maps based on Mount Wilson Observatory and the National Solar Observatory synoptic magnetic-field maps and the Wang–Sheeley–Arge model of SW propagation. The observed in-situ magnetic-field polarities and SW speeds at SEP event onsets tested the forecast accuracies employed to select the best SEP/CH connection events for that analysis. Within our limited sample and the three analytical treatments, we found no statistical evidence for an effect of CHs on SEP event peak intensities, onset times, or rise times. The only exception is a possible enhancement of SEP peak intensities in magnetic clouds.  相似文献   

14.
Applying ACE data and pressure-corrected Dst index (Dst*), annual distributions of solar wind structures detected at L1 point (the first Lagrangian point between solar-terrestrial interval) and correlations between solar wind structures and geomagnetic storms in 1998-2008 have been studied. It was found that, within the Earth's upstream solar wind, the dominant feature was interplanetary coronal mass ejections (ICMEs), primarily magnetic clouds, during solar maximum period but corotating interaction regions (CIRs) at solar minimum. During rising and declining phases, solar wind features became unstable for the complicated solar corona transition processes between the maximum and minimum phases, and there was a high CIR occurrence rate in 2003, the early period of the declining phase, for the Earth's upstream solar wind was dominated by high-speed southern coronal-hole outflows at that time. The occurrence rate of sector boundary crossing (SBC) events was evidently higher at the late half of declining phase and minimum period. ICMEs mainly centered on the maximum period but CIRs on all the declining phase. The occurrence rate of ICMEs was 1.3 times of that of CIRs, and more than half of ICMEs were magnetic clouds (MCs). Half of magnetic clouds could drive interplanetary shock and played a crucial role for geomagnetic storms generation, especially intense storms (Dst*≤100 nT), in which 45% were jointly induced by sheath region and driving MC structure. Sixty percent of intense storms were totally induced by shock-driving MCs; moreover, 74% of intense storms were driven by magnetic clouds, 81% of them driven by ICMEs. Shock-driving MC was the most geoeffective interplanetary source for four fifths of it able to lead to storms and more than one-third to intense storms. The rest of intense storms (19%) were induced just by 3% of all detected CIRs, and most of CIRs (53%) were corresponding to nearly 40% moderate and small storms (−100 nT<Dst*≤−30 nT). The true sector boundary crossing (SBC) events actually had no obvious geoeffectiveness, just 6% of them corresponding to small storms.  相似文献   

15.
If all coronal mass ejections (CMEs) have flux ropes, then the CMEs should keep their helicity signs from the Sun to the Earth according to the helicity conservation principle. This study presents an attempt to answer the question from the Coordinated Data Analysis Workshop (CDAW), “Do all CMEs have flux ropes?”, by using a qualitative helicity sign comparison between interplanetary CMEs (ICMEs) and their CME source regions. For this, we select 34 CME–ICME pairs whose source active regions (ARs) have continuous SOHO/MDI magnetogram data covering more than 24 hr without data gap during the passage of the ARs near the solar disk center. The helicity signs in the ARs are determined by estimation of cumulative magnetic helicity injected through the photosphere in the entire source ARs. The helicity signs in the ICMEs are estimated by applying the cylinder model developed by Marubashi (Adv. Space. Res., 26, 55, 2000) to 16 second resolution magnetic field data from the MAG instrument onboard the ACE spacecraft. It is found that 30 out of 34 events (88 %) are helicity sign-consistent events, while four events (12 %) are sign-inconsistent. Through a detailed investigation of the source ARs of the four sign-inconsistent events, we find that those events can be explained by the local helicity sign opposite to that of the entire AR helicity (28 July 2000 ICME), incorrectly reported solar source region in the CDAW list (20 May 2005 ICME), or the helicity sign of the pre-existing coronal magnetic field (13 October 2000 and 20 November 2003 ICMEs). We conclude that the helicity signs of the ICMEs are quite consistent with those of the injected helicities in the AR regions from where the CMEs erupted.  相似文献   

16.
Solar energetic particles (SEPs) detected in space are statistically associated with flares and coronal mass ejections (CMEs). But it is not clear how these processes actually contribute to the acceleration and transport of the particles. The present work addresses the question why flares accompanied by intense soft X-ray bursts may not produce SEPs detected by observations with the GOES spacecraft. We consider all X-class X-ray bursts between 1996 and 2006 from the western solar hemisphere. 21 out of 69 have no signature in GOES proton intensities above 10 MeV, despite being significant accelerators of electrons, as shown by their radio emission at cm wavelengths. The majority (11/20) has no type III radio bursts from electron beams escaping towards interplanetary space during the impulsive flare phase. Together with other radio properties, this indicates that the electrons accelerated during the impulsive flare phase remain confined in the low corona. This occurs in flares with and without a CME. Although GOES saw no protons above 10 MeV at geosynchronous orbit, energetic particles were detected in some (4/11) confined events at Lagrangian point L1 aboard ACE or SoHO. These events have, besides the confined microwave emission, dm-m wave type II and type IV bursts indicating an independent accelerator in the corona. Three of them are accompanied by CMEs. We conclude that the principal reason why major solar flares in the western hemisphere are not associated with SEPs is the confinement of particles accelerated in the impulsive phase. A coronal shock wave or the restructuring of the magnetically stressed corona, indicated by the type II and IV bursts, can explain the detection of SEPs when flare-accelerated particles do not reach open magnetic field lines. But the mere presence of these radio signatures, especially of a metric type II burst, is not a sufficient condition for a major SEP event.  相似文献   

17.
Magnetic field orientations in the sheaths of ten fast interplanetary coronal mass ejections (ICMEs) that cover the solar longitude range roughly from 20° East to 33° West (as determined from the associated flare or filament disruption) are overlain on the MHD-computed magnetic field pattern showing draping in Earth’s magnetosheath. The general draping pattern is evident in the ICME sheath orientations including, most importantly, the east flank where draping causes the greatest distortion of the magnetic field away from the general Parker spiral. Deviations from the general draping pattern are also evident which, we suggest, result from the history of accretion of the inhomogeneous interplanetary magnetic field (IMF) into the ICME sheath over a long stretch of solar wind before arriving at one AU. The profiles of magnetic field intensity between the ICME shock and the nose of the ICME deviate significantly from the corresponding profile in Earth’s magnetosheath. The ICME samples are much more irregular and show no general tendency to increase toward the stagnation point. We suggest that again this difference reflects the history of IMF accretion by the ICME sheath. The long stretch of accreted inhomogeneous field (a significant fraction of one AU) can account for the irregularity, and the weakness of the field close to the body possibly reflects a weaker ICME shock closer to the Sun.  相似文献   

18.
Kocharov  Leon  Torsti  Jarmo  Laitinen  Timo  Teittinen  Matti 《Solar physics》1999,190(1-2):295-307
We have analyzed five solar energetic particle (SEP) events observed aboard the SOHO spacecraft during 1996–1997. All events were associated with impulsive soft X-ray flares, Type II radio bursts and coronal mass ejections (CMEs). Most attention is concentrated on the SEP acceleration during the first 100 minutes after the flare impulsive phase, post-impulsive-phase acceleration, being observed in eruptions centered at different solar longitudes. As a representative pattern of a (nearly) well-connected event, we consider the west flare and CME of 9 July 1996 (S10 W30). Similarities and dissimilarities of the post-impulsive-phase acceleration at large heliocentric-angle distance from the eruption center are illustrated with the 24 September 1997 event (S31 E19). We conclude that the proton acceleration at intermediate scales, between flare acceleration and interplanetary CME-driven shock acceleration, significantly contributes to the production of ≳10 MeV protons. This post-impulsive-phase acceleration seems to be caused by the CME lift-off.  相似文献   

19.
Magnetic decreases (MDs) are structures observed in interplanetary space with significant decreases in magnetic-field magnitude. Events with little or no change in the field direction are called linear magnetic decreases (LMDs), the others are called nonlinear MDs (NMDs). In this article we focus on LMD and NMD trains, where LMD trains are defined as at least three LMDs in a row and NMD trains as trains (≥ three MDs in a row) that are not all linear. If the temporal separation between two MDs was shorter than five minutes, they were considered as one train event. A total of 16?273 MD trains (including 897 LMD trains and 15?376 NMD trains) were identified and studied. The details of the background magnetic-field and plasma (e.g. ion-density and velocity) features were examined and compared with the average solar-wind properties. LMD trains are found to occur in regions with relatively low magnetic-field strengths, high ion-number densities, and large plasma βs (ratio of the plasma thermal pressure to the magnetic pressure). In sharp contrast, NMD trains have plasma properties similar to the average solar wind. Forty-three LMD trains are related to interplanetary coronal mass ejections (ICMEs) (including 19 events that occurred in ICME sheaths and 24 in the ICME proper), while 222 LMD trains occurred in corotating interaction regions (CIRs), and the remaining 632 events in the normal solar wind. The LMD trains that occurred in ICME sheaths are thought to be associated with the generation mechanism of the mirror-mode instability. Only 552 of the NMD trains are related to ICMEs (including 236 events in ICME sheaths and 316 in ICMEs proper), while 3889 (25 %) NMD trains occurred in CIRs, and the remaining 71 % occurred in the normal solar wind. Because the NMD trains have various plasma properties that differ from the LMD trains, we suggest that NMD trains may be generated by different mechanisms, for instance by a steepening of Alfvén waves.  相似文献   

20.
In the current solar cycle, the concentration of flare activity peaked during the period from October 19 to November 5, 2003, 3.5 years after the maximum point of the current solar-activity cycle. During this time, 56 high-(16) and medium-class flares occurred on the Sun, including 11 X flares. The flux of every such flare exceeded by a factor of 30 to 600 the 1–8 Å soft X-ray background flux of the entire Sun during flare-free periods. The disturbances caused by these flares produced six major S2-to S4-level proton events and four G1-to G5-class magnetic storms in the Earth’s space environment. Among the solar events observed were the most powerful X-ray flare of the current solar cycle, the eighth solar proton event in terms of particle flux during the entire history of observations, and the seventh magnetic storm in terms of Ap index. The most powerful flare resulted in the fastest coronal mass ejection during the current solar cycle with the solar plasma moving through interplanetary space at a velocity of 106 km/s, which is about four times higher than the average velocity. Severe magnetic storms during the period from September 29 through October 3 posed a lot of problems for research and technological satellites (Advanced Composition Explorer (ACE), Aqua, Chandra, Chips, Cluster, Geostationary Operational Environmental Satellites (GOES) 9, 10, and 12, etc.) and spacecraft in interplanetary space (Mars Explorer Rover and Microwave Anisotropy Probe). The Advanced Earth Observing Satellite 2 (ADEOS 2), a Japanese satellite for monitoring the Earth’s environment, was disabled at the time of the arrival of the powerful interplanetary shock from the superflare of October 28, 2003. During this period, the ISS astronauts were forced to escape into the aft part of the station five times, which ensured the strongest protection against radiation. This paper is dedicated to the study of the solar situation and individual flare events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号