首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ground water discharge is often a significant factor in the quality of fish spawning and rearing habitat and for highly biologically productive streams. In the present study, water temperatures (stream and hyporheic) and seepage fluxes were used to characterize shallow ground water discharge and recharge within thestreambed of Catamaran Brook, a small Atlantic salmon (Salmo salar) stream in central New Brunswick, Canada. Three study sites were instrumented using a total of 10 temperature sensors and 18 seepage meters. Highly variable mean seepage fluxes, ranging from 1.7 x 10(-4) to 2.5 cm3 m(-2) sec(-1), and mean hyporheic water temperatures, ranging from 10.5 degrees to 18.0 degrees C, at depths of 20 to 30 cm in the streambed were dependent on streambed location (left versus right stream bank and site location) and time during the summer sampling season. Temperature data were usefulfor determining if an area of the streambed was under discharge (positive flux), recharge (negative flux), or parallel flow (no flux) conditions and seepage meters were used to directly measure the quantity of water flux. Hyporheic water temperature measurements and specific conductance measurements of the seepage meter sample water, mean values ranging from 68.8 to 157.9 microS/cm, provided additional data for determining flux sources. Three stream banks were consistently under discharge conditions, while the other three stream banks showed reversal from discharge to recharge conditions over the sampling season. Results indicate that the majority of the water collected in the seepage meters was composed of surface water. The data obtained suggests that even though a positive seepage flux is often interpreted as ground water discharge, this discharging water may be of stream water origin that has recently entered the hyporheic zone.The measurement of seepage flux in conjunction with hyporheic water temperature or other indicators of water origin should be considered when attempting to quantify the magnitude of exchange and the source of hyporheic water.  相似文献   

2.
Stream restoration goals include improving habitat and water quality through reconstruction of morphological features found at analogous, pristine stream reaches. Enhancing hyporheic exchange may facilitate achieving these goals. Although hyporheic exchange at restoration sites has been explored in a few previous studies, comparative studies of restored versus reference or control streams are largely absent. We hypothesized that restoration cross‐vanes enhance hyporheic exchange, resulting in biogeochemical alteration of stream water chemistry in the streambed. Two streams restored using cross‐vanes to control erosion and improve habitat were compared with their associated reference reaches, which provided the basis for the restoration design. Thirteen temperature profile rods with vertically stacked sensors were installed at each site for 2 weeks. Heat tracing was used to quantify vertical flux in the streambed from the diurnal temperature fluctuations in the subsurface. Stream water and bed pore waters from mini‐piezometers were analysed for ion and nutrient chemistry. In general, mean vertical flux rates through the streambed were small throughout reference sites (?0.3 to 0.3 m/day) and at most locations at restored sites. Immediately adjacent to cross‐vanes, vertical flux rates were larger (up to 3.5 m/day). Geochemistry of pore waters shows distinct differences in the sources for the reference and restored sites. Strong downwelling zones adjacent to cross‐vanes showed high dissolved oxygen (10.75 mg/l) and geochemistry in the streambed similar to surface water. Reference sites had lower dissolved oxygen in the streambed (0.66–5.14 mg/l), and geochemical patterns suggest a mixture of discharging groundwater and surface water in the hyporheic zone. Restored sites also clearly show sulfate and nitrate reduction occurring in the streambed, which is not observed at the reference sites. The stream restoration sites studied here enhance rapid hyporheic exchange, but upwelling of groundwater has a stronger influence on streambed geochemistry at reference sites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Xi Chen  Xunhong Chen   《Journal of Hydrology》2003,280(1-4):246-264
During a flood period, stream-stage increases induce infiltration of stream water into an aquifer; subsequent declines in stream stage cause a reverse motion of the infiltrated water. This paper presents the results of the water exchange rate between a stream and aquifer, the storage volume of the infiltrated stream water in the surrounding aquifer (bank storage), and the storage zone. The storage zone is the part of aquifer where groundwater is replaced by stream water during the flood. MODFLOW was used to simulate stream–aquifer interactions and to quantify rates of stream infiltration and return flow. MODPATH was used to trace the pathlines of the infiltrated stream water and to determine the size of the storage zone. Simulations were focused on the analyses of the effects of the stream-stage fluctuation, aquifer properties, the hydraulic conductivity of streambed sediments, regional hydraulic gradients, and recharge and evapotranspiration (ET) rates on stream–aquifer interactions. Generally, for a given stream–aquifer system, larger flow rates result from larger stream-stage fluctuations; larger storage volumes and storage zones are produced by larger and longer-lasting fluctuations. For a given stream-stage hydrograph, a lower-permeable streambed, an aquitard, or an anisotropic aquifer of low vertical hydraulic conductivity can significantly reduce the rate of infiltration and limit the size of the storage zone. The bank storage solely caused by the stage fluctuation differs slightly between gaining and losing streams. Short-term rainfall recharge and ET loss in the shallow groundwater slightly influence on the flow rate, but their effects on bank storage in a larger area for a longer period can be considerable.  相似文献   

4.
Estimating streambed parameters for a disconnected river   总被引:1,自引:0,他引:1       下载免费PDF全文
Evaluation of stream–aquifer interaction and water balance for a catchment often requires specific information on streambed parameters, such as streambed hydraulic conductivity, seepage flux across the streambed and so on. This paper describes a simple, inexpensive instrument that is used to measure these streambed parameters under the condition of a stream disconnected from groundwater. Our method includes a seepage cylinder for simulation of river water depth. The proposed method was applied to estimate the vertical hydraulic conductivity of a streambed and the changes in vertical seepage rate from stream to groundwater with varied stream water depth in the Manasi River of Xinjiang Uygur Autonomous Region, China. The vertical hydraulic conductivities of the streambed determined from 12 sites along the Manasi River vary from 1.01 to 29.m/day where the stream disconnects from the groundwater. The experimental results suggest that there are two kinds of relations between the vertical seepage rate and the simulated stream water depth. One is a linear relation between the two variables with low Reynolds numbers (less than 10); the other is a nonlinear relation (exponential relation) between the two variables with larger Reynolds numbers (greater than 10). This second relationship is quite different from the traditional model that usually calculates the vertical seepage rate from stream to groundwater under the condition of disconnection using a linear relation (Darcy's Law). Our results suggest that a linear relation can only be used for a limited range of river water depth. This method gives a convenient tool for rapidly estimating the streambed hydraulic conductivity and the changes in the vertical seepage rate across streambed with varied stream water depths for the case of a stream disconnected from groundwater. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A key ecological role hypothesized for the hyporheic zone is as a refugium that promotes survival of benthic invertebrates during adverse conditions in the surface stream. Many studies have investigated use of the hyporheic refugium during hydrological extremes (spates and streambed drying), and recent research has linked an increase in the abundance of benthic invertebrates within hyporheic sediments to increasing biotic interactions during flow recession in a temporary stream. This study examined spatial variability in the refugial capacity of the hyporheic zone in two groundwater-dominated streams in which flow permanence varied over small areas. Two non-insect taxa, Gammarus pulex and Polycelis spp. were common to both streams and were investigated in detail. Hydrological conditions in both streams comprised a four-month period of flow recession and low flows, accompanied by reductions in water depth and wetted width. Consequent declines in submerged benthic habitat availability were associated with increases in population densities of mobile benthic taxa, in particular G. pulex. The reduction in the spatial extent of the hyporheic zone was minimal, and this habitat was therefore a potential refugium from increasing biotic interactions in the benthic sediments. Concurrent increases in the hyporheic abundance and hyporheic proportion of a taxon’s total (benthic + hyporheic) population were considered as evidence of active refugium use. Such evidence was species-specific and site-specific, with refugium use being observed only for G. pulex and at sites dominated by downwelling water. A conceptual model of spatial variability in the refugial capacity of the hyporheic zone during habitat contraction is presented, which highlights the potential importance of the direction of hydrologic exchange.  相似文献   

6.
Groundwater that bypasses the riparian zone by travelling along deep flow paths may deliver high concentrations of fertilizer‐derived NO3? to streams, or it may be impacted by the NO3? removal process of denitrification in streambed sediments. In a study of a small agricultural catchment on the Atlantic coastal plain of Virginia's eastern shore, we used seepage meters deployed in the streambed to measure specific discharge of groundwater and its solute concentrations for various locations and dates. We used values of Cl? concentration to discriminate between bypass water recharged distal to the stream and that contained high NO3? but low Cl? concentrations and riparian‐influenced water recharged proximal to the stream that contained low NO3? and high Cl? concentrations. The travel time required for bypass water to transit the 30‐cm‐thick, microbially active denitrifying zone in the streambed determined the extent of NO3? removal, and hydraulic conductivity determined travel time through the streambed sediments. At all travel times greater than 2 days, NO3? removal was virtually complete. Comparison of the timescales for reaction and transport through the streambed sediments in this system confirmed that the predominant control on nitrate flux was travel time rather than denitrification rate coefficients. We conclude that extensive denitrification can occur in groundwater that bypasses the riparian zone, but a residence time in biologically active streambed sediments sufficient to remove a large fraction of the NO3? is only achieved in relatively low‐conductivity porous media. Instead of viewing them as separate, the streambed and riparian zone should be considered an integrated NO3? removal unit. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The rise in stream stage during high flow events (floods) can induce losing stream conditions, even along stream reaches that are gaining during baseflow conditions. The aquifer response to flood events can affect the geochemical composition of both near‐stream groundwater and post‐event streamflow, but the amount and persistence of recharged floodwater may differ as a function of local hydrogeologic forcings. As a result, this study focuses on how vertical flood recharge varies under different hydrogeologic forcings and the significance that recharge processes can have on groundwater and streamflow composition after floods. River and shallow groundwater samples were collected along three reaches of the Upper San Pedro River (Arizona, USA) before, during and after the 2009 and 2010 summer monsoon seasons. Tracer data from these samples indicate that subsurface floodwater propagation and residence times are strongly controlled by the direction and magnitude of the dominant stream–aquifer gradient. A reach that is typically strongly gaining shows minimal floodwater retention shortly after large events, whereas the moderately gaining and losing reaches can retain recharged floodwater from smaller events for longer periods. The moderately gaining reach likely returned flood recharge to the river as flow declined. These results indicate that reach‐scale differences in hydrogeologic forcing can control (i) the amount of local flood recharge during events and (ii) the duration of its subsurface retention and possible return to the stream during low‐flow periods. Our observations also suggest that the presence of floodwater in year‐round baseflow is not due to long‐term storage beneath the streambed along predominantly gaining reaches, so three alternative mechanisms are suggested: (i) repeated flooding that drives lateral redistribution of previously recharged floodwater, (ii) vertical recharge on the floodplain during overbank flow events and (iii) temporal variability in the stream–aquifer gradient due to seasonally varying water demands of riparian vegetation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Steven M. Wondzell 《水文研究》2011,25(22):3525-3532
Many hyporheic papers state that the hyporheic zone is a critical component of stream ecosystems, and many of these papers focus on the biogeochemical effects of the hyporheic zone on stream solute loads. However, efforts to show such relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly variable in place and time (or among streams) that a consistent relationship should not be expected? Or, is the hyporheic zone less important in stream ecosystems than is commonly expected? These questions were examined using data from existing groundwater modelling studies of hyporheic exchange flow at five sites in a fifth‐order, mountainous stream network. The size of exchange flows, relative to stream discharge (QHEF:Q), was large only in very small streams at low discharge (area ≈ 100 ha; Q < 10 l/s). At higher flows (flow exceedance probability > 0·7) and in all larger streams, QHEF:Q was small. These data show that biogeochemical processes in the hyporheic zone of small streams can substantially influence the stream's solute load, but these processes become hydrologically constrained at high discharge or in larger streams and rivers. The hyporheic zone may influence stream ecosystems in many ways, however, not just through biogeochemical processes that alter stream solute loads. For example, the hyporheic zone represents a unique habitat for some organisms, with patterns and amounts of upwelling and downwelling water determining the underlying physiochemical environment of the hyporheic zone. Similarly, hyporheic exchange creates distinct patches of downwelling and upwelling. Upwelling environments are of special interest, because upwelling water has the potential to be thermally or chemically distinct from stream water. Consequently, micro‐environmental patches created by hyporheic exchange flows are likely to be important to biological and ecosystem processes, even if their impact on stream solute loads is small. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

9.
Flood routing models are critical to flood forecasting and confluence calculations. In the streams that dry up and disconnect from groundwater, the streambed infiltration is intensive and has a significant effect on flood wave movement. Streambed infiltration should be considered in flood routing. A flood routing model incorporating intensive streambed infiltration is proposed. In the model a streambed infiltration simulation method based on soil infiltration theory is developed. In this method the Horton equation is used to calculate infiltration capacity. A trial-and-error method is developed to calculate infiltration rate and determine whether the flood wave can travel downstream. A formula is derived to calculate infiltration flow per unit length. The Muskingum-Cunge method with streambed infiltration flow as lateral outflow is used for flood routing. The proposed model is applied to the stream from the downstream of the Yuecheng Reservoir to the Caixiaozhuang Hydrometric Station in the Zhangwei River of the Haihe River Basin. Simulation results show that the accuracy of the model is high, and the infiltration simulation method can represent infiltration processes well. The proposed model is simple and practical for flood simulation and forecasting, and can be used in river confluence calculations in a rainfall-runoff model for arid and semiarid regions.  相似文献   

10.
Fanelli RM  Lautz LK 《Ground water》2008,46(5):671-687
Hyporheic exchange, enhanced by complex stream channel morphology, can influence biogeochemical processing in the streambed. These processes chemically alter water passing temporarily through the streambed, which eventually returns to the stream channel and can potentially affect surface water quality. To assess the degree of biogeochemical cycling induced by complex streambed morphology, we instrumented two 20-m reaches of Red Canyon Creek, Wyoming, each containing a small log dam, with in-stream minipiezometers and temperature data loggers. We simultaneously observed pore water geochemistry and streambed temperature dynamics in several bedforms located upstream or downstream of the dams. We modeled seepage flux into the streambed using heat transport modeling.
Upstream of the dams, low-permeability sediments have settled out in low-velocity pools, and enhanced anaerobic biogeochemical cycling occurred in the streambed. Rapid flux into the streambed occurred in glides immediately above the dams, where streambed temperature dynamics and geochemistry were nearly identical to the stream. In riffle sequences downstream of the dams, the streambed was oxygen rich, showed evidence of nitrification, and temperature dynamics indicated high connectivity between the streambed and the stream. Further downstream, streambed pore water geochemistry indicated ground water discharge occurring at the pool-riffle transition. Assessing streambed biogeochemical cycling may be facilitated by coupling streambed temperature measurements with pore water geochemistry and can aid in understanding how hyporheic exchange contributes to overall stream biogeochemistry.  相似文献   

11.
Stream–aquifer interaction plays a vital role in the water cycle, and a proper study of this interaction is needed for understanding groundwater recharge, contaminants migration, and for managing surface water and groundwater resources. A model‐based investigation of a field experiment in a riparian zone of the Schwarzbach river, a tributary of the Rhine River in Germany, was conducted to understand stream–aquifer interaction under alternative gaining and losing streamflow conditions. An equivalent streambed permeability, estimated by inverting aquifer responses to flood waves, shows that streambed permeability increased during infiltration of stream water to aquifer and decreased during exfiltration. Aquifer permeability realizations generated by multiple‐point geostatistics exhibit a high degree of heterogeneity and anisotropy. A coupled surface water groundwater flow model was developed incorporating the time‐varying streambed permeability and heterogeneous aquifer permeability realizations. The model was able to reproduce varying pressure heads at two observation wells near the stream over a period of 55 days. A Monte Carlo analysis was also carried out to simulate groundwater flow, its age distribution, and the release of a hypothetical wastewater plume into the aquifer from the stream. Results of this uncertainty analysis suggest (a) stream–aquifer exchange flux during the infiltration periods was constrained by aquifer permeability; (b) during exfiltration, this flux was constrained by the reduced streambed permeability; (c) the effect of temporally variable streambed permeability and aquifer heterogeneity were found important to improve the accurate capture of the uncertainty; and (d) probabilistic infiltration paths in the aquifer reveal that such pathways and the associated prediction of the extent of the contaminant plume are highly dependent on aquifer heterogeneity.  相似文献   

12.
Recent studies highlighted the importance of the interface between streams and their surrounding sediment, known as the hyporheic zone, where stream waters flow through the alluvium. These pore water fluxes stem from the interaction among streambed morphology, stream hydraulics and surrounding groundwater flow. We analytically model the hyporheic hydraulics induced by a spatially uniform ambient groundwater flow made of a horizontal, underflow, and a vertical, basal, component, which mimics gaining and losing stream conditions. The proposed analytical solution allows to investigate the control of simple hydromorphological quantities on the extent, residence time and redox conditions of the hyporheic zone, and the thickness of the mixing interface between hyporheic and groundwater cells. Our analysis shows that the location of the mixing zone shallows or deepens in the sediment as a function of bedform geometry, surface hydraulic and groundwater flow. The point of stagnation, where hyporheic flow velocities vanish and where the separation surface passes through, is shallower than or coincides with the deepest point of the hyporheic zone only due to underflow. An increase of the ambient flow causes a reduction of the hyporheic zone volume similarly in both losing and gaining conditions. The hyporheic residence time is lognormally distributed under neutral, losing and gaining conditions, with the residence time moments depending on the same set of parameters describing dune morphology and stream flow.  相似文献   

13.
Contaminants that entered the streambed during previous surface water pollution events can be released to the stream, causing secondary pollution of the stream and impacting its eco-environmental condition. By means of laboratory experiments and numerical simulations, we investigated density effects on the release of solute from periodic bedforms. The results show that solute release from the upper streambed is driven by bedform-induced convection, and that density effects generally inhibit the solute release from the lower streambed. Density gradients modify the pore water flow patterns and form circulating flows in the area of lower streambed. The formation of circulating flows is affected by density gradients associated with the solute concentration and horizontal pressure gradients induced by stream slope. The circulating flows near the bottom of the streambed enhance mixing of the hyporheic zone and the ambient flow zone.  相似文献   

14.
Decline in regional water tables (RWT) can cause losing streams to disconnect from underlying aquifers. When this occurs, an inverted water table (IWT) will develop beneath the stream, and an unsaturated zone will be present between the IWT and the RWT. The IWT marks the base of the saturated zone beneath the stream. Although a few prior studies have suggested the likelihood of an IWT without a clogging layer, most of them have assumed that a low‐permeability streambed is required to reduce infiltration from surface water to groundwater, and that the IWT only occurs at the bottom of the low‐permeability layer. In this study, we use numerical simulations to show that the development of an IWT beneath an unclogged stream is theoretically possible under steady‐state conditions. For a stream width of 1 m above a homogeneous and isotropic sand aquifer with a 47 m deep RWT (measured in an observation point 20 m away from the center of the stream), an IWT will occur provided that the stream depth is less than a critical value of 4.1 m. This critical stream depth is the maximum water depth in the stream to maintain the occurrence of an IWT. The critical stream depth decreases with stream width. For a stream width of 6 m, the critical stream depth is only 1 mm. Thus while theoretically possible, an IWT is unlikely to occur at steady state without a clogging layer, unless a stream is very narrow or shallow and the RWT is very deep.  相似文献   

15.
Steady flow to a well near a stream with a leaky bed   总被引:2,自引:0,他引:2  
Bakker M  Anderson EI 《Ground water》2003,41(6):833-840
We present an explicit analytic solution for steady, two-dimensional ground water flow to a well near a leaky streambed that penetrates the aquifer partially. Leakage from the stream is approximated as occurring along the centerline of the stream. The problem domain is infinite and pumping on one side of the stream induces flow on the other side. The solution includes the effects of uniform flow in the far field and a sloping hydraulic head in the stream. We use the solution to investigate the interaction between ground water and surface water in the stream, the effects of pumping on the opposite side of the stream, and the effects of the leaky streambed on the capture zone envelope of the well. We develop a relationship between parameters such that the pumping well will not capture water from the stream, or from the opposite side of the stream. When the discharge of the well is large enough to capture water from the stream, the shape of the capture zone envelope depends on flow conditions on the side of the stream opposite the well.  相似文献   

16.
Effects of large organic material on channel form and fluvial processes   总被引:1,自引:0,他引:1  
Stream channel development in forested areas is profoundly influenced by large organic debris (logs, limbs and rootwads greater than 10 cm in diameter) in the channels. In low gradient meandering streams large organic debris enters the channel through bank erosion, mass wasting, blowdown, and collapse of trees due to ice loading. In small streams large organic debris may locally influence channel morphology and sediment transport processes because the stream may not have the competency to redistribute the debris. In larger streams flowing water may move large organic debris, concentrating it into distinct accumulations (debris jams). Organic debris may greatly affect channel form and process by: increasing or decreasing stability of stream banks; influencing development of midchannel bars and short braided reaches; and facilitating, with other favourable circumstances, development of meander cutoffs. In steep gradient mountain streams organic debris may enter the channel by all the processes mentioned for low gradient streams. In addition, considerable debris may also enter the channel by way of debris avalanches or debris torrents. In small to intermediate size mountain streams with steep valley walls and little or no floodplain or flat valley floor, the effects of large organic debris on the fluvial processes and channel form may be very significant. Debris jams may locally accelerate or retard channel bed and bank erosion and/or deposition; create sites for significant sediment storage; and produce a stepped channel profile, herein referred to as ‘organic stepping’, which provides for variable channel morphology and flow conditions. The effect of live or dead trees anchored by rootwads into the stream bank may not only greatly retard bank erosion but also influence channel width and the development of small scour holes along the channel beneath tree roots. Once trees fall into the stream, their influence on the channel form and process may be quite different than when they were defending the banks, and, depending on the size of the debris, size of the stream, and many other factors, their effects range from insignificant to very important.  相似文献   

17.
The delineation of groundwater discharge areas based on Distributed Temperature Sensing (DTS) data of the streambed can be difficult in soft‐bedded streams where sedimentation and scouring processes constantly change the position of the fibre optic cable relative to the streambed. Deposition‐induced temperature anomalies resemble the signal of groundwater discharge while scouring will cause the cable to float in the water column and measure stream water temperatures. DTS applied in a looped layout with nine fibre optic cable rows in a 70 × 5 m section of a soft‐bedded stream made it possible to detect variability in streambed temperatures between October 2011 and January 2012. Detailed monthly streambed elevation surveys were carried out to monitor the position of the fibre optic cable relative to the streambed and to quantify the effect of sedimentation processes on streambed temperatures. Based on the simultaneous interpretation of streambed temperature and elevation data, a method is proposed to delineate potential high‐groundwater discharge areas and identify deposition‐induced temperature anomalies in soft‐bedded streams. Potential high‐discharge sites were detected using as metrics the daily minimum, maximum and mean streambed temperatures as well as the daily amplitude and standard deviation of temperatures. The identified potential high‐discharge areas were mostly located near the channel banks, also showing temporal variability because of the scouring and redistribution of streambed sediments, leading to the relocation of pool‐riffle sequences. This study also shows that sediment deposits of 0.1 m thickness already resulted in an increase in daily minimum streambed temperatures and decrease in daily amplitude and standard deviation. Scouring sites showed lower daily minimum streambed temperatures and higher daily amplitude and standard deviation compared with areas without sedimentation and scouring. As a limitation of the approach, groundwater discharge occurring at depositional and scouring areas cannot be identified by the metrics applied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Management of water resources in alluvial aquifers relies mainly on understanding interactions between hydraulically connected streams and aquifers. Numerical models that simulate this interaction often are used as decision support tools for water resource management. However, the accuracy of numerical predictions relies heavily on unknown system parameters (e.g., streambed conductivity and aquifer hydraulic conductivity), which are spatially heterogeneous and difficult to measure directly. This paper employs an ensemble smoother to invert groundwater level measurements to jointly estimate spatially varying streambed and alluvial aquifer hydraulic conductivity along a 35.6‐km segment of the South Platte River in Northeastern Colorado. The accuracy of the inversion procedure is evaluated using a synthetic experiment and historical groundwater level measurements, with the latter constituting the novelty of this study in the inversion and validation of high‐resolution fields of streambed and aquifer conductivities. Results show that the estimated streambed conductivity field and aquifer conductivity field produce an acceptable agreement between observed and simulated groundwater levels and stream flow rates. The estimated parameter fields are also used to simulate the spatially varying flow exchange between the alluvial aquifer and the stream, which exhibits high spatial variability along the river reach with a maximum average monthly aquifer gain of about 2.3 m3/day and a maximum average monthly aquifer loss of 2.8 m3/day, per unit area of streambed (m2). These results demonstrate that data assimilation inversion provides a reliable and computationally affordable tool to estimate the spatial variability of streambed and aquifer conductivities at high resolution in real‐world systems.  相似文献   

19.
A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.  相似文献   

20.
Bed load transport in mountain streams is closely linked to streambed structures.Strambed structures are arrangements of boulders and cobbles deposited during extreme floods,in a stable configuration exhibiting high dissipation of flow.Field experiments were carried out in a mountain stream in Yunnan,southwestern China,studying bed load movement on three typical streambeds,i.e.,with well developed,partially developed,and no structures.An underwater observation and video-capturing system was designed to observe and measure the movement of bed load particles.The initiation mode, trajectory,velocity,and acceleration of bed load particles under the three conditions were observed and analyzed.Results showed that the bed load movement was highly associated with streambed condition.With well-developed structures,bed load particles moved intermittently through saltation and the bed load transport rate was very low.For partially-developed structures most bed load particles moved through saltation but a portion of sediment moved in sliding and rolling.In the case with no streambed structure(plane bed) contact load motion(sliding and rolling) gradually became dominant.Moreover,laminated load motion occurred and became the main component of bed load transport when the flow discharge and incoming sediment load were very high.Laminated load motion was a special form of bed load motion with an extremely high intensity.Bed load transport and streambed structure both acted to dissipate flow energy and were mutually constraining.High rates of bed load transport occurred in the streams with no or poor bed structures,and low bed load transport was associated with well developed structures.The bed load transport rate was inversely correlated to the degree of streambed development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号