首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The Bekten Fault is 20-km long N55°E trending and oblique-slip fault in the dextral strike-slip fault zone. The fault is extending sub-parallel between Yenice-Gönen and Sar?köy faults, which forms the southern branch of North Anatolian Fault Zone in Southern Marmara Region. Tectonomorphological structures indicative of the recent fault displacements such as elongated ridges and offset creeks observed along the fault. In this study, we investigated palaeoseismic activities of the Bekten Fault by trenching surveys, which were carried out over a topographic saddle. The trench exposed the fault and the trench stratigraphy revealed repeated earthquake surface rupture events which resulted in displacements of late Pleistocene and Holocene deposits. According to radiocarbon ages obtained from samples taken from the event horizons in the stratigraphy, it was determined that at least three earthquakes resulting in surface rupture generated from the Bekten Fault within last ~1300 years. Based on the palaeoseismological data, the Bekten Fault displays non-characteristic earthquake behaviour and has not produced any earthquake associated with surface rupture for about the last 400 years. Additionally, the data will provide information for the role of small fault segments play except for the major structures in strike-slip fault systems.  相似文献   

2.
The central Wassuk Range is ideally located to investigate the interplay of Basin and Range extension and Walker Lane dextral deformation along the western Nevada margin of the Basin and Range province. To elucidate the Cenozoic evolution of the range, the author conducted geologic mapping, structural data collection and analysis, geochemical analysis of igneous lithologies, and geochronology. This research delineates a three-stage deformational history for the range. A pulse of ENE–WSW-directed extension at high strain rates (~8.7 mm/yr) was initiated immediately after the eruption of ~15 Ma andesite flows; strain was accommodated by high-angle, closely spaced (1–2 km), east-dipping normal faults which rotated and remained active to low angles as extension continued. A post-12 Ma period of extension at low strain rates produced a second generation of normal faults and two prominent dextral strike–slip faults which strike NW, subparallel to the dextral faults of the Walker Lane at this latitude. A new pulse of ongoing extension began at ~4 Ma and has been accomodated primarily by the east-dipping range-bounding normal fault system. The increase in the rate of fault displacement has resulted in impressive topographic relief on the east flank of the range, and kinematic indicators support a shift in extension direction from ENE–WSW during the highest rates of Miocene extension to WNW–ESE today. The total extension accommodated across the central Wassuk Range since the middle Miocene is >200%, with only a brief period of dextral fault activity during the late Miocene. Data presented here suggest a local geologic evolution intimately connected to regional tectonics, from intra-arc extension in the middle Miocene, to late Miocene dextral deformation associated with the northward growth of the San Andreas Fault, to a Pliocene pulse of extension and magmatism likely influenced by both the northward passage of the Mendocino triple junction and possible delamination of the southern Sierra Nevada crustal root.  相似文献   

3.
The Havran-Bal?kesir Fault Zone (HBFZ) is one of the major active structures of the Southern Marmara Region, which has been shaped by the southern branch of North Anatolian fault since the Pliocene. HBFZ is a 10–12 km wide, 120 km long, right-lateral strike-slip fault zone that consists of two ENE-striking main faults, namely, the Havran-Balya and Bal?kesir faults. The 90-km-long Havran-Balya fault exhibits right-stepping en echelon geometry and is made up of (1) Havran, (2) Osmanlar, (3) Turplu and (4) Ovac?k fault segments. On the eastern part, the 70-km-long Bal?kesir fault is divided into two fault segments; (1) Gökçeyaz? and (2) Kepsut. We estimated the long-term slip rate between 3.59 and 3.78 mm/yr using river offset. The Kepsut, Gökçeyaz? and Ovac?k fault segments are capable of generating an earthquake with a moment magnitude of up to 7.2. Detailed palaeoseismological studies show that the HBFZ is responsible for some surface faulting earthquakes with an average recurrence interval of 1000–2000 years during the late Holocene. Considering the fact that there was no evidence of a surface-ruptured earthquake for 2000 years, it can be stated that there is a seismic gap on the Gökçeyaz? fault segment.  相似文献   

4.
Tectonic elements controlling the evolution of the Gulf of Saros have been studied based upon the high-resolution shallow seismic data integrated with the geological field observations. Evolution of the Gulf of Saros started in the Middle to Late Miocene due to the NW–SE compression caused by the counterclockwise movement of the Thrace and Biga peninsulas along the Thrace Fault Zone. Hence, the North Anatolian Fault Zone is not an active structural element responsible for the starting of the evolution of the Gulf of Saros. The compression caused by the rotational movement was compensated by tectonic escape along the pre-existing Ganos Fault System. Two most significant controllers of this deformation are the sinistral Ganos Fault and the dextral northern Saros Fault Zone both extending along the Gulf of Saros. The most important evidences of this movement are the left- and right-oriented shear deformations, which are correlated with structural elements, observed on the land and on the high-resolution shallow seismic records at the sea. Another important line of evidence supporting the evolution of this deformation is that the transgression started in the early-Late Miocene and turned, as a result of regional uplift, into a regression on the Gelibolu Peninsula during the Turolian and in the north of the Saros Trough during the Early Pliocene. The deformation on the Gelibolu Peninsula continued effectively until the Pleistocene. Taking into account the fact that this deformation affected the Late Pleistocene units of the Marmara Formation, the graben formation of the Gulf of Saros is interpreted as a Recent event. However, at least a small amount of compression on the Gelibolu Peninsula is observed. It is also evident that compression ceased at the northern shelf area of the Gulf of Saros.  相似文献   

5.
This work establishes the relative timing of pluton emplacement and regional deformation from new dating and structural data. (1) Monazite and (2) zircon dating show Tournaisian ages for the Guéret granites [Aulon granite 352 ± 5 Ma (1), 351 ± 5 Ma (2) and Villatange tonalite 353 ± 6 Ma (1)] and Viseo-Namurian ages for the north Millevaches granites [Chavanat granite 336 ± 4 Ma (1), Goutelle granite 336 ± 3 Ma (1), Royère granite 323 ± 2 Ma (1) and 328 ± 6 Ma (2), Courcelles granite 318 ± 3 Ma (1)]. The Guéret and Millevaches granites are separated by the N110 Arrènes–la Courtine Shear Zone (ACSZ), composed from West to East by the Arrènes Fault (AF), the North Millevaches Shear Zone (NMSZ) and the la Courtine Shear Zone (CSZ), respectively. Tournaisian Guéret granites experienced a non-coaxial dextral shearing (NMSZ) recorded by the Villatange granite while the Aulon granite (Guéret granite) cuts across this dextral shear zone which thus stopped shearing during Tournaisian time. Visean to Namurian Millevaches granites experienced a coaxial deformation. Therefore, low displacements along the NMSZ and the CSZ occurred at the emplacement time of Chavanat and Pontarion-Royère granites (336–323 Ma). The structural analyses of Goutelle granite emphasizes a deformation related to the dextral Creuse Fault System (CFS) oriented N150–N160. From 360 to 300 Ma, the Z strain axis is always horizontal inferring a wrench setting for these granite emplacements. During this tectonic evolution, the Argentat zone acted as a minor normal fault and is related with a local Middle Visean (340–335 Ma) syn-orogenic extension on the western border of the Millevaches massif.  相似文献   

6.
G. Musumeci 《Geodinamica Acta》2013,26(1-2):119-133
Abstract

The Monte Grighini Complex (Central-Western Sardinia) is a NW-SE trending metamorphic complex of Hereynian age made up of a medium grade Lower tectonic unit with mylonitie granitoids and a low grade Upper tectonic unit exposed in the westernmost and southernmost portions of this complex. The Lower Unit shows a prograde metamor phism from garnet to sillimanite zone and the transition from MP/MT to LP/HT metamorphism. The metamorphic climax was reached at the end of the main deformative phase 1)2 (600° C. 6 kbar). After the main tectonic and metamorphic phase. the Lower Unit was affected by a wide NW-SE trending ductile dextral wrench shear zone. Intrusive rocks emplaced within the shear zone yielded radiometric ages of 305-300 Ma. Shear deformation leads to low temperature C-S mylonites and retrograde phyllonitic rocks with subhorizontal NW-SE trending stretching lineations. Kinematic analysis of the shear zone points to a dextral sense of shear with an amount of ductile displacement of about 7 km. Later low angle N-S and E-W trending normal faults are associated with cataclastic zones separating the Lower Unit from the Upper one. These faults originated during a later evolutionary stage of the shear zone. This shows a progressive change of deformation regime from duetile wrenching to brittle normal faulting. The Monte Grighini Complex is a good example of ductile wrench tectonics. followed by uplift and extension in the Paleozoic basement of Sardinia.  相似文献   

7.
The Gnargoo structure is located on the Gascoyne Platform, Southern Carnarvon Basin, Western Australia, and is buried beneath about 500 m of Cretaceous and younger strata. The structure is interpreted as being of possible impact origin from major geophysical and morphometric signatures, characteristic of impact deformation, and its remarkable similarities with the proven Woodleigh impact structure, about 275 km to the south on the Gascoyne Platform. These similarities include: a circular Bouguer anomaly (slightly less well-defined at Gnargoo than at Woodleigh); a central structurally uplifted area comprising a buried dome with a central uplifted plug; and the lack of a significant magnetic anomaly. Gnargoo shows a weakly defined inner 10 km-diameter circular Bouguer anomaly surrounded by a broadly circular zone, ~75 km in diameter. The north?–?south Bouguer anomaly lineament of the Giralia Range (a regional topographic and structural feature) terminates abruptly against the outer circular zone which is, in turn, intersected on the eastern flank by the Wandagee Fault. A <?28 km-diameter layered sedimentary dome of Ordovician to Lower Permian strata, surrounding a cone-shaped, central uplift plug of 7?–?10 km diameter, are inferred from the seismic data. Seismic-reflection data indicate a minimum central structural uplift of 1.5 km, as compared to a model uplift of 7.3 km calculated from the outer structural diameter. An interpretation of Gnargoo in terms of a plutonic or volcanic caldera/ring origin is unlikely as these features display less regular geometry, are typically smaller and no volcanic rocks are known in the onshore Gascoyne Platform. An interpretation of Gnargoo as a salt dome is likewise unlikely because salt structures tend to have irregular geometry, and no extensive evaporite units are known in the Southern Carnarvon Basin. Morphometric estimates of the rim-to-rim diameter based on seismic data for the central dome correspond to the observed diameter deduced from gravity data, and fall within the range of morphometric parameters of known impact structures. The age of Gnargoo is constrained between the deformed Lower Permian target rocks and unconformably overlying undeformed Lower Cretaceous strata. Because of its large dimensions, if Gnargoo is an impact structure, it may have influenced an environmental catastrophe during this period.  相似文献   

8.
New geochronological data from the Los Bronces cluster of the Río Blanco-Los Bronces mega-porphyry Cu-Mo district establish a wide range of magmatism, hydrothermal alteration, and mineralization ages, both in terms of areal extent and time. The northern El Plomo and southernmost Los Piches exploration areas contain the oldest barren porphyritic intrusions with U-Pb ages of 10.8?±?0.1 Ma and 13.4?±?0.1 Ma, respectively. A hypabyssal barren intrusion adjacent northwesterly to the main pit area yields a slightly younger age of 10.2?±?0.3 Ma (San Manuel sector, U-Pb), whereas in the Los Bronces (LB) open-pit area, the present day mineral extraction zone, porphyries range from 8.49 to 6.02 Ma (U-Pb). Hydrothermal biotite and sericite ages are up to 0.5 Ma younger but consistent with the cooling of the corresponding intrusion events of each area. Two quartz-molybdenite B-type veins from the LB open pit have Re-Os molybdenite ages of 5.65?±?0.03 Ma and 5.35?±?0.03 Ma consistent with published data for the contiguous Río Blanco cluster. The San Manuel exploration area within the Los Bronces cluster, located about 1.5–2 km southeast of the open-pit extraction zone, shows both the oldest hydrothermal biotite (7.70?±?0.07 Ma; 40Ar/39Ar) and breccia cement molybdenite ages (8.36?±?0.06 Ma; Re-Os) registered in the entire Río Blanco-Los Bronces district. These are also older than those reported from the El Teniente porphyry Cu(-Mo) deposit, suggesting that mineralization in the late Miocene to early Pliocene porphyry belt of Central Chile commenced 2 Ma before the previously accepted age of 6.3 Ma.  相似文献   

9.
We use structural and seismostratigraphic interpretation of multichannel seismic reflection data to understand the structure and kinematic history of the central Gulf of California. Our analysis reveals that oblique strain in the central Gulf formed two tectono–sedimentary domains during distinct deformation stages. The eastern domain, offshore Sonora, is bounded by the East and West Pedro Nolasco faults that may constitute the southernmost segments of the Tiburón Fault System. Within this domain, the dip-slip Yaqui Fault controlled deposition of 3.9 km of sediments in the half-graben Yaqui Basin. The western domain, offshore Baja California, is bounded by the Guaymas Transform Fault, which controlled the accumulation of 1.45 km of sediments within a half-graben that formed the early Guaymas Basin. The tectono–sedimentary activity offshore Sonoran likely ranges from Late Miocene–Pliocene to Late Pliocene time, while activity in the Guaymas Basin commenced in Late Pliocene time. Extinction of the main faults offshore Sonora was nearly coeval to the initiation of the Guaymas Transform Fault. Our results suggest that oblique strain has been accommodated by strain partition since the onset of rifting in the central Gulf. The Guaymas Basin is now a nascent spreading center, but prior to this, it evolved as a half-graben controlled by the Guaymas Transform Fault; such drastic transition is not constrained, but likely occurred during the Pleistocene time and must be localized < 30 km north of the axial troughs. The faults within the central Gulf transpose the Miocene N–S oriented grabens of Basin and Range style preserved onshore in the conjugate rifted margins.  相似文献   

10.
Fissure-ridge travertines (FRTs) are of great importance for the determination and comparison of tectonic deformation in a region. The coeval development of these travertines with active fault zones supplies significant information about regional dynamics in terms of deformation pattern and evolution. In this paper, the characteristics of FRTs of the Ba?kale basin (eastern Turkey) and responsible regional tectonism are discussed for the first time. The Ba?kale basin is located between the Ba?kale Fault Zone (BFZ) characterised by Çaml?k fault and I??kl?–Zirani? fault. It is located between dextral Yüksekova Fault Zone and southern end of dextral Guilato–Siahcheshmeh–Khoy Fault system (Iran). Various morphological features indicating recent activity are exposed along the BFZ, including offsetting rivers, fissure-ridge travertine and fault scarps. The Çaml?k fissure-ridge travertine composing of three different depositions is observed along the eastern edge of the BFZ with approximately parallel orientations. The Çaml?k fissure-ridge travertine has been formed and developed on fault zone related to strike-slip or oblique movements. We explain how kinematic changes of faults can influence the fissure-ridge development.  相似文献   

11.
The calc-alkaline Ladakh batholith (NW Himalayas) was dated to constrain the timing of continental collision and subsequent deformation. Batholith growth ended when collision disrupted subduction of the Tethyan oceanic lithosphere, and thus the youngest magmatic pulse indirectly dates the collision. Both U-Pb ages on zircons from three samples of the Ladakh batholith and K-Ar from one subvolcanic dike sample were determined. Magmatic activity near Leh (the capital of Ladakh) occurred between 70 and 50 Ma, with the last major magmatic pulse crystallizing at ca. 49.8+/-0.8 Ma (2sigma). This was followed by rapid and generalized cooling to lower greenschist facies temperatures within a few million years, and minor dike intrusion took place at 46+/-1 Ma. Field observations, the lack of inherited prebatholith zircons, and other isotopic evidence suggest that the batholith is mantle derived with negligible crustal influence, that it evolved through input of fresh magma from the mantle and remelting of previously emplaced mantle magmatic rocks. The sedmimentary record indicates that collision in NW Himalaya occurred around 52-50 Ma. If this is so, the magmatic system driven by subduction of Tethys ended immediately on collision. The thermal history of one sample from within the Thanglasgo Shear Zone (TSZ) was determined by Ar-Ar method to constrain timing of batholith internal deformation. This is a wide dextral shear zone within the batholith, parallel to the dextral, N 30 degrees W-striking crustal-scale Karakoram Fault. Internal deformation of the batholith, taken up partly by this shear zone, has caused it to deviate from it regional WNW-ESE trend to parallel the Karakoram Fault. Microstructures and cooling history of a sample from the TSZ indicate that shearing took place before 22 Ma, implying that (1) the history of dextral shearing on NW-striking planes in northern Ladakh started at least 7 m.yr. before the <15 Ma Karakoram Fault, (2) shearing was responsible for deviation of the regional trend of the Ladakh batholith, and (3) dextral shearing occured within a zone apporximately 100 km wide that includes the Ladakh batholith and portions of the younger Karakoram batholith.  相似文献   

12.
郯庐断裂中段新生代右行走滑位移   总被引:2,自引:0,他引:2  
依据走滑拉分盆地中盆地沉降(或抬升)速率与边界断层走滑速率之间的数值关系,通过对夹在郯庐断裂中段两分支断层间的潍北凹陷沉积埋藏史的恢复,间接求取郯庐断裂中段新生代右行走滑位移。潍北凹陷内不同构造位置4口井的埋藏史恢复结果表明:凹陷新生代经历了古近纪早、中期的快速沉降,古近纪末-新近纪初的抬升剥蚀和中新世以来的缓慢沉降3个阶段;各阶段的平均沉降速率分别为0.142 9、-0.072 8、0.032 5 km/Ma。通过对太平洋板块与欧亚板块间俯冲速率和方向变化的分析推断,中新世中期(39.5 Ma)太平洋板块由北西向俯冲转而变成正西向俯冲所产生的西南向应力分量是导致新生代郯庐断裂开始右行走滑的主要因素,且走滑活动持续至今。根据走滑活动发生和持续的时间,结合各个时期内潍北凹陷的沉降和抬升速率,计算出郯庐断裂中段新生代右行走滑位移量为15 km左右。  相似文献   

13.
Abstract

Turkey forms one of the most actively deforming regions in the world and has a long history of devastating earthquakes. The belter understanding of its neotectonic features and active tectonics would provide insight, not only for the country but also for the entire Eastern Mediterranean region. Active tectonics of Turkey is the manifestation of collisional intracontinental convergence- and tectonic escape-related deformation since the Early Pliocene (~5 Ma). Three major structures govern the neotectonics of Turkey; they are dextral North Anatolian Fault Zone (NAFZ), sinistral East Anatolian Fault Zone (EAFZ) and the Aegean–Cyprean Arc. Also, sinistral Dead Sea Fault Zone has an important role. The Anatolian wedge between the NAFZ and EAFZ moves westward away from the eastern Anatolia, the collision zone between the Arabian and the Eurasian plates. Ongoing deformation along, and mutual interaction among them has resulted in four distinct neotectonic provinces, namely the East Anatolian contractional, the North Anatolian, the Central Anatolian ‘Ova’ and the West Anatolian extensional provinces. Each province is characterized by its unique structural elements, and forms an excellent laboratory to study active strike-slip, normal and reverse faulting and the associated basin formation. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

14.
The rocks of Turkey, Greece and Syria preserve evidence for the destruction of Tethys, the construction of much of the continental crust of the region and the formation of the Tauride orogenic belt. These events occurred between the Late Cretaceous and Miocene, but the detailed evolution of the southern Eurasian margin during this period of progressive continental accretion is largely unknown. Marmara Island is a basement high lying at a key location in the Cenozoic Turkish tectonic collage, with a Palaeogene suture zone to the south and a deep Eocene sedimentary basin to the north. North-dipping metamorphic thrust sheets make up the island and are interlayered with a major metagranitoid intrusion. We have dated the intrusion by Laser Ablation ICP-MS analysis of U and Pb isotopes on zircon separates to 47.6?±?2 Ma. We also performed major- and trace-elemental geochemical analysis of 16 samples of the intrusion that revealed that the intrusion is a calc-alkaline, metaluminous granitoid, marked by Nb depletion relative to LREE and LIL-element enrichment when compared to ocean ridge granite (ORG). We interpret the metagranitoid sill as a member of a mid-Eocene magmatic arc, forming a 30 km wide and more than 200 km long arcuate belt in NW Turkey that post-dates suturing along the ?zmir-Ankara-Erzincan Suture zone. The arc magmatism was emplaced at the early stages of mountain building, related to collision of Eurasia with the Menderes-Taurus Platform in early Eocene times. Orogenesis and magmatism loaded the crust to the north creating coeval upward-deepening marine basins partially filled by volcanoclastic sediments.  相似文献   

15.
The Leannan Fault of north-west Ireland is a sinistral strike-slip fault system which juxtaposes Dalradian metasediments of differing structural trends and metamorphic grades. It probably represents a south-west splay of the Great Glen Fault of Scotland. The recognition and tracing of the Foyle Synform across the fault zone, together with the correlation of regional Dalradian strike swings, lateral sedimentary facies variation and metamorphic grades, suggest a sinistral displacement of 34 km across the fault. Members of the Leannan Fault system displace a Lower Devonian (about 397 Ma) granite, but are overlain by Viséan (about 352 Ma) sandstones, thus constraining major late Caledonian sinistral motions to the Middle to Upper Devonian.  相似文献   

16.
The Tauern Window exposes a Paleogene nappe stack consisting of highly metamorphosed oceanic (Alpine Tethys) and continental (distal European margin) thrust sheets. In the eastern part of this window, this nappe stack (Eastern Tauern Subdome, ETD) is bounded by a Neogene system of shear (the Katschberg Shear Zone System, KSZS) that accommodated orogen-parallel stretching, orogen-normal shortening, and exhumation with respect to the structurally overlying Austroalpine units (Adriatic margin). The KSZS comprises a ≤5-km-thick belt of retrograde mylonite, the central segment of which is a southeast-dipping, low-angle extensional shear zone with a brittle overprint (Katschberg Normal Fault, KNF). At the northern and southern ends of this central segment, the KSZS loses its brittle overprint and swings around both corners of the ETD to become subvertical, dextral, and sinistral strike-slip faults. The latter represent stretching faults whose displacements decrease westward to near zero. The kinematic continuity of top-east to top-southeast ductile shearing along the central, low-angle extensional part of the KSZS with strike-slip shearing along its steep ends, combined with maximum tectonic omission of nappes of the ETD in the footwall of the KNF, indicates that north–south shortening, orogen-parallel stretching, and normal faulting were coeval. Stratigraphic and radiometric ages constrain exhumation of the folded nappe complex in the footwall of the KSZS to have begun at 23–21 Ma, leading to rapid cooling between 21 and 16 Ma. This exhumation involved a combination of tectonic unroofing by extensional shearing, upright folding, and erosional denudation. The contribution of tectonic unroofing is greatest along the central segment of the KSZS and decreases westward to the central part of the Tauern Window. The KSZS formed in response to the indentation of wedge-shaped blocks of semi-rigid Austroalpine basement located in front of the South-Alpine indenter that was part of the Adriatic microplate. Northward motion of this indenter along the sinistral Giudicarie Belt offsets the Periadriatic Fault and triggered rapid exhumation of orogenic crust within the entire Tauern Window. Exhumation involved strike-slip and normal faulting that accommodated about 100 km of orogen-parallel extension and was contemporaneous with about 30 km of orogen-perpendicular, north–south shortening of the ETD. Extension of the Pannonian Basin related to roll-back subduction in the Carpathians began at 20 Ma, but did not affect the Eastern Alps before about 17 Ma. The effect of this extension was to reduce the lateral resistance to eastward crustal flow away from the zone of greatest thickening in the Tauern Window area. Therefore, we propose that roll-back subduction temporarily enhanced rather than triggered exhumation and orogen-parallel motion in the Eastern Alps. Lateral extrusion and orogen-parallel extension in the Eastern Alps have continued from 12 to 10 Ma to the present and are driven by northward push of Adria.  相似文献   

17.
This paper presents the neotectonic study of Santa Clara and Puná Islands sited in the Gulf of Guayaquil eastern part. Both islands are located on the south-western segment of the fault zone bounding to the east the North Andean Block. Fault motion and morphostructural analysis were carried out from Pleistocene age terrain. A two step deformation characterises the South Puná tectonics. The first step involves the Zambapala Cordillera uplift that post-dates Pleistocene sediments and pre-dates a marine terrace correlated with the M.I.S. 11 or 13 (440–550 ka). The second step is the formation of a pull-apart that shows evidence of 2.9 km dextral offset since the M.I.S. 11 or 13, giving an offset mean rate of 5.3 to 6.6 mm/yr. This rate is higher than the one calculated on the Pallatanga Fault northeast of the study area, in the Western Andean Cordillera, suggesting that deformation is split in different fault segments from the Gulf of Guayaquil to the continent. The Zambapala Cordillera uplift and transpression deformation requires a compressive event that may have been induced by the subduction process during the early Pleistocene.  相似文献   

18.
《Geodinamica Acta》2001,14(1-3):3-30
Turkey forms one of the most actively deforming regions in the world and has a long history of devastating earthquakes. The better understanding of its neotectonic features and active tectonics would provide insight, not only for the country but also for the entire Eastern Mediterranean region. Active tectonics of Turkey is the manifestation of collisional intracontinental convergence- and tectonic escape-related deformation since the Early Pliocene (∼5 Ma). Three major structures govern the neotectonics of Turkey; they are dextral North Anatolian Fault Zone (NAFZ), sinistral East Anatolian Fault Zone (EAFZ) and the Aegean–Cyprean Arc. Also, sinistral Dead Sea Fault Zone has an important role. The Anatolian wedge between the NAFZ and EAFZ moves westward away from the eastern Anatolia, the collision zone between the Arabian and the Eurasian plates. Ongoing deformation along, and mutual interaction among them has resulted in four distinct neotectonic provinces, namely the East Anatolian contractional, the North Anatolian, the Central Anatolian ‘Ova’ and the West Anatolian extensional provinces. Each province is characterized by its unique structural elements, and forms an excellent laboratory to study active strike-slip, normal and reverse faulting and the associated basin formation.  相似文献   

19.
Abstract

To the east of the Sea of Marmara, the North Anatolian fault (NAF) branches into two strands, namely the northern and the southern strands. The Adapazan pull-apart basin is located in the overlapping zone of the Dokurcun and the ?zmit-Adapazan segments of the northern strand. The combined temporal ranges of the arvicolids from the Karapürçek formation (the first unit of the basin fill), deposited in the primary morphology of the Adapazan pull-apart basin, cover the latest Villanyian (latest Pliocene) and the Biharian (Early Pleistocene) time interval. The De?irmendere fauna collected from the lowermost sediments of this formation suggests that the Adapazan pull-apart basin started to form in the latest Pliocene. This, in turn, suggests that the dextral movement along the northern strand of the NAF commenced during the latest Pliocene. A new species, Tibericola sakaryaensis is also described. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

20.
A map-view palinspastic restoration of tectonic units in the Alps, Carpathians and Dinarides reveals the plate tectonic configuration before the onset of Miocene to recent deformations. Estimates of shortening and extension from the entire orogenic system allow for a semi-quantitative restoration of translations and rotations of tectonic units during the last 20 Ma. Our restoration yielded the following results: (1) The Balaton Fault and its eastern extension along the northern margin of the Mid-Hungarian Fault Zone align with the Periadriatic Fault, a geometry that allows for the eastward lateral extrusion of the Alpine-Carpathian-Pannonian (ALCAPA) Mega-Unit. The Mid-Hungarian Fault Zone accommodated simultaneous strike-perpendicular shortening and strike-slip movements, concomitant with strike-parallel extension. (2) The Mid-Hungarian Fault Zone is also the locus of a former plate boundary transforming opposed subduction polarities between Alps (including Western Carpathians) and Dinarides. (3) The ALCAPA Mega-Unit was affected by 290 km extension and fits into an area W of present-day Budapest in its restored position, while the Tisza-Dacia Mega-Unit was affected by up to 180 km extension during its emplacement into the Carpathian embayment. (4) The external Dinarides experienced Neogene shortening of over 200 km in the south, contemporaneous with dextral wrench movements in the internal Dinarides and the easterly adjacent Carpatho-Balkan orogen. (5) N–S convergence between the European and Adriatic plates amounts to some 200 km at a longitude of 14° E, in line with post-20 Ma subduction of Adriatic lithosphere underneath the Eastern Alps, corroborating the discussion of results based on high-resolution teleseismic tomography.The displacement of the Adriatic Plate indenter led to a change in subduction polarity along a transect through the easternmost Alps and to substantial Neogene shortening in the eastern Southern Alps and external Dinarides. While we confirm that slab-pull and rollback of oceanic lithosphere subducted beneath the Carpathians triggered back-arc extension in the Pannonian Basin and much of the concomitant folding and thrusting in the Carpathians, we propose that the rotational displacement of this indenter provided a second important driving force for the severe Neogene modifications of the Alpine-Carpathian-Dinaridic orogenic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号