首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Soil-sediment records and radiometric dating allow the development of environmental histories of three South Platte River alluvial terraces in the vicinity of Kersey, Colorado. These advocate a correlation with Holocene glacial records for the Colorado Front Range (Benedict, 1981, 1985). The archaeological potential of the Kersey fill, the Kuner strath, and the Hardin fill depends upon their age and sediment context. The oldest and most extensive terrace is the Kersey fill. The position of cultural components on the Kersey terrace implies an association of older Paleoindian sites (11,500–10,000 B.P.) with channel banks and bars on the terrace, younger Paleoindian sites (<10,000 B.P.) with terrace margins near the river, and Archaic and younger sites with eolian deposits on the terrace. An association of Clovis components with both Kersey alluvium and adjacent eolian dune fields indicates that eolian deposition began prior to 11,000 B.P. and that sediment availability influenced early Holocene eolian deposition. Examination of 150 cores and 75 backhoe test units along an 8-km study corridor demonstrates that Paleoindian sites are not as abundant on the Kersey terrace as previous researchers have proposed. Although the incision of the Kuner strath began earlier than 9600 B.P., we propose that its greatest potential is to yield cultural components that postdate ca. 7250 B.P. In turn, the Hardin fill may yield cultural components dating to the Kuner abandonment (ca. 6380 B.P.). However, Hardin sediment and soil records recommend that this fill terrace's highest potential is to yield in situ cultural components dating from ca. 1900 to 120 B.P. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The Dent site provided the first association of fluted points with mammoth bones in the New World. However, the stratigraphic integrity of the site has remained in doubt since the original excavations in 1932 and 1933. Core sampling at the Dent Clovis site indicates that the site, on Kersey terrace gravel, extends under railroad tracks adjacent to the original area of excavation. Four hundred meters south the Kuner strath terrace has been exposed by a roadcut at the Bernhardt site. An Archaic hearth dated 4030 ± 60 B.P. is near the top of a 1-m-thick eolian sand overlying 1 m of fine-grained alluvium dated 5740 ± 60 B.P., which in turn overlies sand and gravel of the Kuner strath terrace with an AMS radiocarbon age of 10,105 ± 90 B.P. The South Platte River appears to have been quasistable at the Kuner level during the Younger Dryas when Paleoindians from Clovis to Cody hunted megafauna on the Kersey terrace. © 1998 John Wiley & Sons, Inc.  相似文献   

3.
The Big Eddy site (23CE426) in the Sac River valley of southwest Missouri is a rare recorded example of distinctly stratified Early through Late Paleoindian cultural deposits. Early point types recovered from the site include Gainey, Sedgwick, Dalton (fluted and unfluted), San Patrice, Wilson, and Packard. The Paleoindian record at Big Eddy represents only a fraction of the site's prehistoric cultural record; stratified cultural deposits in alluvium above the Paleoindian components span the entire known prehistoric sequence, and terminal Pleistocene alluvium may contain pre‐Early Paleoindian cultural deposits. This study focused on the paleogeomorphic setting, stratigraphy, depositional environments, pedology, geochronology, and history of landscape evolution of the late Pleistocene and early Holocene alluvium at the site. The Paleoindian sequence is associated with a complex buried soil 2.85 m below the modern surface (T1a) of the first terrace of the Sac River valley in the site vicinity. This soil formed at the top of the early submember of the Rodgers Shelter Member (underlying the T1c paleogeomorphic surface) and contains at least 70 cm of stratified Paleoindian cultural deposits, all in floodplain and upper point‐bar facies. A suite of 36 radiocarbon ages indicates that the alluvium hosting the Paleoindian sequence aggraded between ca. 13,250 and 11,870 cal yr B.P. (11,380 and 10,180 14C yr B.P.). Underlying deposits accumulated between ca. 15,300 and 13,250 cal yr B.P. (12,950 and 11,380 14C yr B.P.). By ca. 11,250 cal yr B.P. (9,840 14C yr B.P.) the T1c paleogeomorphic surface was buried by the earliest increment of a thick sequence of overbank sheetflood facies, ultimately resulting in deep burial and preservation of the Paleoindian record. The landform‐sediment assemblage that hosts the Paleoindian and possibly earlier cultural deposits at Big Eddy is both widespread and well preserved in the lower Sac River valley. Moreover, the terminal Pleistocene and early Holocene depositional environments were favorable for the preservation of the archaeological record. © 2007 Wiley Periodicals, Inc.  相似文献   

4.
This paper deals with new discovery of cosmic spherules and microdiamonds from Middle Pleistocene Selenge river basin on the Teel aggradation terrace. The Teel aggradation terrace is located at the left edge of the Selenge River, at the pedestal of mountain Namnan uul (Dorjnamjaa et al., 2008). The Teel ter-race is those whose cusp and bench entirely composed of alluvial deposits. This indicates that the Selenge River has a long history of development, and had time to develop a flood plain and to deposit alluvium, through which it cut subsequently and left behind a Teel terrace. Alluvium studies may be of great practi-cal interest because in some areas, river terraces are veritable treasure-troves of economic minerals. With river terraces are associated most placer deposits of such important economic minerals as gold, platinum, diamond, etc. Numerous engineering projects, such as bridges(Kherlen, Tuul, Selenge, Orkhon, Baidrag, Zavkhan, etc.), dams (Ulaan Boom), hydropower plants(Durgun Nuur, Ulaan Boom) are built on alluvial deposits. Hence we need to know all the essential fea-tures of the geostructure of river terraces. Our investi-gation of the Selenge river terraces in 2006-2008 gave a possibility to discover the placer diamonds within the Teel aggradation terrace for the first time in Mongolia.  相似文献   

5.
Middle Park, a high‐altitude basin in the Southern Rocky Mountains of north‐central Colorado, contains at least 59 known Paleoindian localities. At Barger Gulch Locality B, an extensive Folsom assemblage (˜10,500 14C yr B.P.) occurs within a buried soil. Radiocarbon ages of charcoal and soil organic matter, as well as stratigraphic positions of artifacts, indicate the soil is a composite of a truncated, latest‐Pleistocene soil and a younger mollic epipedon formed between ˜6000 and 5200 14C yr B.P. and partially welded onto the older soil following erosion and truncation. Radiocarbon ages from an alluvial terrace adjacent to the excavation area indicate that erosion followed by aggradation occurred between ˜10,200 and 9700 14C yr B.P., and that the erosion is likely related to truncation of the latest‐Pleistocene soil. Erosion along the main axis of Barger Gulch occurring between ˜10,000 and 9700 14C yr B.P. was followed by rapid aggradation between ˜9700 and 9550 14C yr B.P., which, along with the erosion at Locality B, coincides with the abrupt onset of monsoonal precipitation following cooling in the region ˜11,000–10,000 14C yr B.P. during the Younger Dryas oscillation. Buried soils dated between ˜9500 and 8000 14C yr B.P. indicate relative landscape stability and soil formation throughout Middle Park. Morphological characteristics displayed by early Holocene soils suggest pedogenesis under parkland vegetation in areas currently characterized by sagebrush steppe. The expansion of forest cover into lower elevations during the early Holocene may have resulted in lower productivity in regards to mammalian fauna, and may partly explain the abundance of early Paleoindian sites (˜11,000–10,000 14C yr B.P., 76%) relative to late Paleoindian sites (˜10,000–8000 14C yr B.P., 24%) documented in Middle Park. © 2005 Wiley Periodicals, Inc.  相似文献   

6.
Extensive terrace and flood plain deposits occur along the Lower Macleay River. A sequence of terraces from oldest to youngest was named: Madron, Corangula, Mungay, Mooneba, Belgrave and Macleay deposits (contemporary). Basal sediments in the Mooneba terrace were dated by radiocarbon analysis at 3,280 ± 55 years; basal sediments of the Mungay terrace were dated at 6,425 ± 105 years. The Madron and Corangula terraces are considered very much older than the Mungay. The flood plain consists of two early cycles of aggradation buried under 23m of estuarine sediment, which in turn is overlain by up to 6m of alluvium. The estuarine sediments were dated at 8,530 ± 200 years at elevation —4m relative to mean sea level. The base of the overlying Smithtown alluvium was dated at 3,295 ± 95 years. A general chronology is presented for the Lower Macleay valley, and a sequence of terrace soils is discussed.  相似文献   

7.
A complex late Quaternary alluvial history was documented along Henson Creek, a low order tributary on the Fort Hood Military Reservation in central Texas. Three Quaternary alluvial landforms were recognized: terrace 2 (T2), terrace 1 (T1), and the modern floodplain (T0). The late Pleistocene T2 terrace may contain an array of sites spanning the entire known cultural record, while T1 may have sites spanning the last 5000 years only. Five fluvial units, three colluvial facies, two alluvial fan facies, and two buried paleosols were also recognized. Fluvial deposition was occurring approximately 15,000 yr B.P., 10,000-8000 yr B.P., 7000–4800 yr B.P., 1650-600 yr B.P., and during the last 400 years. Colluvial deposition was ongoing mainly in the early and middle Holocene, while alluvial fan aggradation was proceeding primarily in the middle Holocene. Because of erosional unconformities, there is minimal potential for recovering buried sites dating to intervals between depositional eposides for most of the drainage basin. Preservation potentials for buried sites are greatest in fine-grained fluvial deposits dating to the late Pleistocene, early Holocene, and parts of the late Holocene, and in fine-grained colluvial deposits dating to the early and middle Holocene. This investigation demonstrates that within the study area, and perhaps throughout much of central Texas, a greater continuum of sediments and preservation potentials exists in late Quaternary alluvial deposits of rivers than in low-order tributaries.  相似文献   

8.
Geoarchaeological investigations in an area surrounding the confluence of the upper Colorado and Concho Rivers, Edwards Plateau of West Texas, have produced a detailed landscape evolution model which provides a framework for discussion of the influences of geomorphic processes on the development, preservation, and visibility of the archaeological record. Field mapping within the study area has differentiated six allostrati-graphic units of fluvial origin in both valleys, as well as extensive eolian sand sheets along the Colorado River. Early to middle Pleistocene terrace remnants cap many upland areas, whereas two distinct late Pleistocene terrace surfaces are widespread within the study area at somewhat lower elevations. Fluvial activity during the time period of human occupation is represented by an extensive Holocene terrace and underlying valley fill, which is up to 11 m in thickness. Valley fill sediments can be subdivided into allostratigraphic units of early to middle Holocene (ca. 10,000–5000 yr B.P.) and late Holocene age (ca. 4600–1000 yr B.P.), which are separated by a buried soil profile. The modern incised channels and very narrow floodplains represent the last millennium. Eolian sand sheets of early to middle Holocene age overlie limestone- and shale-dominated uplands, Pleistocene terraces, and in some cases the Holocene valley fill along the Colorado River. Pleistocene terraces have been stable features in the landscape and available for settlement through the time period of human occupation. Archaeological materials of all ages occur at the surface, and the record preserved in individual sites range from that associated with discrete periods of activity to longer-term palimpsests that represent repeated use over millennia. Sites within early to middle Holocene and late Holocene fills represent short-term utilization of constructional floodplains during the Paleoindian through early Archaic and middle to late Archaic time periods respectively. By contrast, those that occur along the buried soil profile developed in the early to middle Holocene fill record middle to late Archaic cultural activity on stable terrace surfaces, and represent relatively discrete periods of activity to longer-term palimpsests that represent repeated use over the 3000–4000 years of subaerial exposure. Late Prehistoric sites occur as palimpsests on soils developed in late Holocene alluvium or stratified within modern floodplain facies. Paleoindian through Late Prehistoric sites occur stratified within eolian sand sheets or along the unconformity with subjacent fluvial deposits. The landscape evolution model from the upper Colorado and Concho Rivers is similar to that developed for other major valley axes of the Edwards Plateau. This model may be regionally applicable, and can be used to interpret the geomorphic setting and natural formation processes for already known sites, as well as provide an organizational framework for systematic surface and subsurface survey for new archaeological records. 0 1992 John Wiley & Sons, Inc.  相似文献   

9.
The late Quaternary stratigraphy and geochronology of San Mateo and Las Flores Creeks indicates that both streams, which drain into the Pacific Ocean along the southern California coast, had a synchronous landscape history. Both San Mateo and Las Flores Creeks cut deep valleys during the late Pleistocene in response to the worldwide drop in sea level. A long period of aggradation followed as sea level rose to its present position during the late Pleistocene and Holocene. Around 500 years ago, the channels of both streams downcut into their respective floodplains creating a prominent terrace (T-2). This was followed by renewed deposition and later channel incision which created a second terrace (T-1). These channel changes are probably the result of a complex response of the fluvial system to major flooding during the late Holocene. The geologic history of these drainages provides a framework that can be used to assess the buried archaeological record along the coast and evaluate regional prehistoric settlement patterns. Based on this study, the post-4000 B.P. valley floor archaeological record along the southern California coast will be more complete and accessible, resulting in a better understanding of the spatial distribution of sites. On the other hand, the pre-4000 B.P. valley floor record lies deeply buried and inaccessible to researchers, which results in a distortion of settlement patterns before 4000 B.P. Finally, examination of post-4000 B.P. sites in the alluvium of San Mateo and Las Flores creeks yielded a pattern of large sites that were occupied extensively for multiple seasons and had considerable evidence of marine exploitation. These findings are contrary to models of cultural development along this portion of the southern California coast. © 1999 John Wiley & Sons, Inc.  相似文献   

10.
刘运明 《古地理学报》2018,20(3):477-488
对黄河晋陕峡谷河曲、黑峪口、延水关和壶口等4个地区进行了详细的野外考察。河曲地区共发现3级河流阶地,更高的则为唐县期宽谷;唐县期宽谷的海拔高度约1000m(拔河高度150m),而3级河流阶地的拔河高度分别约为110m、80m和12m。黑峪口地区也存在唐县期宽谷,宽谷之下发育5级河流阶地,唐县期宽谷西高东低,海拔高度位于970m和940m之间,5级河流阶地的拔河高度分别约为130m,80m、50m、12m和4m。延水关地区共发现6级河流阶地,全部为第四纪期间形成,6级河流阶地的拔河高度分别为180m、130m、95m、50m、20m和4m。壶口地区共存在8级阶地,也全部为第四纪期间的阶地,阶地的拔河高度分别约为260m、210m、180m、120m、80m、60m、35m和15m。对壶口最高阶地进行了地层学研究,发现这一阶地上覆厚度约110m的黄土地层,黄土层的最底部为L13,古地磁研究结果和古土壤断代都指示了这一阶地的形成时间在距今1.1Ma左右。综合晋陕峡谷地区现有的研究结果认为,3.3Ma之前,鄂尔多斯地块内部构造极为稳定,发育了唐县期夷平面,古黄河在此夷平面上主要以侧蚀拓宽为主,下蚀极其微弱;3.3-1.1Ma,鄂尔多斯地块的构造稳定可能被打破,黄河小幅度下切;而1.1Ma以来,受鄂尔多斯地块快速抬升的影响,黄河发生剧烈下切,1.1 Ma阶地和晋陕峡谷的主体在这一时期形成。  相似文献   

11.
Sedimentological, faunal, and archaeological investigations at the Sunshine Locality, Long Valley, Nevada reveal a history of human adaptation and environmental change at the last glacial–interglacial transition in North America's north-central Great Basin. The locality contains a suite of lacustrine, alluvial, and eolian deposits associated with fluvially reworked faunal remains and Paleoindian artifacts. Radiocarbon-dated stratigraphy indicates a history of receding pluvial lake levels followed by alluvial downcutting and subsequent valley filling with marsh-like conditions at the end of the Pleistocene. A period of alluvial deposition and shallow water tables (9,800 to 11,000 14C yr B.P.) correlates to the Younger Dryas. Subsequent drier conditions and reduced surface runoff mark the early Holocene; sand dunes replace wetlands by 8,000 14C yr B.P. The stratigraphy at Sunshine is similar to sites located 400 km south and supports regional climatic synchroneity in the central and southern Great Basin during the terminal Pleistocene/early Holocene. Given regional climate change and recurrent geomorphic settings comparable to Sunshine, we believe that there is a high potential for buried Paleoindian features in primary association with extinct fauna elsewhere in the region yet to be discovered due to limited stratigraphic exposure and consequent low visibility.  相似文献   

12.
The sequence of Quaternary deposits beneath the floor of San Francisco Bay includes four to seven noncontemporaneous estuarine units intercalated with alluvium and dune sand. Units L (0–10,000 B.P.), M (>40,000 B.P., probably ca. 80,000–140,000 B.P.), and N (older than unit M) are distinctly superposed. The dominant molluscan fossil in each of these three units is Ostrea lurida Carpenter, the native oyster along much of the pacific Coast of North America. Despite a lamellar structure that suggests vulnerability to contamination, O. lurida shells generally yield amino acid enantiomeric ratios that are analytically reproducible and stratigraphically consistent. The kinetics of racemization in O. lurida conceivably resembles that of Protothaca and Saxidomus, other bivalves whose kinetics of racemization are relatively well understood. Assuming such a resemblance, enantiomeric ratios in O. lurida imply that (1) unit M is the same approximate age as estuarine terrace deposits bordering San Pablo Bay and Carquinez Strait, providing that the terrace deposits have been at diagenetic temperatures 1°-2°C warmer than unit M; and (2) the age of unit N is about four times greater than that of unit M, providing that both units have been at the same approximate diagenetic temperature.  相似文献   

13.
Gao, C. & Boreham, S. 2010: Ipswichian (Eemian) floodplain deposits and terrace stratigraphy in the lower Great Ouse and Cam valleys, southern England, UK. Boreas, 10.1111/j.1502‐3885.2010.00191.x. ISSN 0300‐9483. Thick argillaceous deposits named the Mannings Farm Beds recently uncovered in the third terrace at Mannings Farm near Willingham, Cambridgeshire contain a pollen sequence covering the transitions from Ipswichian/Eemian substages I to II and II to III, when oak and hornbeam expanded, respectively. This is the longest record hitherto obtained in Britain, providing important insight into the major forest successions in this temperate stage. The frequent occurrence of Ipswichian deposits in the third terrace suggests the development of an extensive floodplain on the valley bottom, similar to the case for the present‐day lower Great Ouse and Cam. The Mannings Farm Beds testify to a complete interglacial sequence emplaced between cold‐climate gravels that was directly associated with the terrace development. The third terrace developed during the Ipswichian and the preceding and succeeding cold stages. Major river downcutting, which shaped the third terrace, occurred during the Early Devensian/Weichselian. Previously reported interglacial fossils from this terrace that are inconsistent with an Ipswichian affinity are probably reworked material derived from pre‐Ipswichian interglacial deposits, or their significance as biostratigraphical indicators needs to be confirmed. The second and first terraces developed from the late Early Devensian onwards. Ipswichian deposits filling flood‐scoured deep channels in bedrock are preserved locally below these low terraces.  相似文献   

14.
本文通过黄河晋陕峡谷河段21个地点的阶地横剖面观察和阶地对比研究,确定出6级宽谷阶地序列,同时,依据17个放射性测年数据对阶地定年。6级宽谷阶地序列揭示了鄂尔多斯高原第四纪区域造陆隆起和局部构造变形,区域造陆隆起的发生时间比之青藏高原隆起要滞后0.113~0.25Ma,而且,平均区域造陆隆起量比之青藏高原的内部和边缘的隆起量小得多。晋陕峡谷河段发生过3期加积作用幕,指示着造陆隆起景观中的气候变化时间线。渭河盆地北缘的韩城断裂悬崖带记录着构造基准面下降,影响的河流长度仅为21~127km。  相似文献   

15.
晚更新世晚期呼包盆地环境演化与地貌响应   总被引:15,自引:4,他引:11  
对大青山山前台地沉积地层剖面的沉积学、年代学研究结果表明,晚更新世晚期呼包盆地环境发生过两次重大转变。约47-28kaB.P.的呼包盆地湖泊水位一直维持着较高的水平,湖相沉积沿河伸入大青山内;约28kaB.P.以后,湖泊逐渐退缩,山区及山前地带沉积特征转为以河流加积为主,并一直维持到约22kaB.P.;此后山区河流由加积转变为下切,最大下切深度达100m。断裂两侧的地貌分析表明,在约22kaB.P.之前大青山山前断裂的构造活动不明显;约28kaB.P.的湖泊-河流转换事件是与区域性的气候变化有关。约22kaB.P.的环境突变事件主要由大青山山前断裂的构造活动引起,其垂向活动速率约为4-6mm/a;晚更新世晚期以来大青山山前断裂的稳定时期对应呼包盆地的湖相环境时期,而断裂的强烈活动时期对应气候的冷干时期。  相似文献   

16.
The stratigraphy and sedimentology of the Q3 middle terrace alluvial sequence in the lower Tagus river valley, Portugal, were studied near the village of Alpiarça, approximately 40 km upstream from the estuarine area. Two main stratigraphic units were recognized, separated by an important uncomformity. The Lower Gravels unit (LG) consists of intercalations of medium to coarse gravel deposits, mainly quartzitic, with coarse sandy matrix, organized in tabular bodies. The overlying Upper Sands unit (US) consists of tabular sandy channel deposits and overbank fines, the latter containing well-developed paleosols and backswamp deposits, showing a general aggrading trend, apparently with varying rates; available data indicate that deposition of the US took place under temperate climatic conditions. Within US deposits are several paleolithic archaeological sites, the lower ones in the alluvial stratigraphy being Middle Acheulian, whereas those embedded in overlying deposits are, from bottom to top, Upper Acheulian and Micoquian. Some of these sites have been recently excavated. The quartzite artifacts were apparently abandoned by early humans on the flood plain surface during deposition of the US unit and were subjected to limited reworking during their incorporation in the alluvium. TL/OSL dating of sandy-silty sediments, though imprecise, support archaeological evidence pointing to an age of 150,000 to 70,000 yr B.P. for the US unit.  相似文献   

17.
A simulation model of alluvial stratigraphy   总被引:8,自引:0,他引:8  
The quantitative model presented simulates the development of a two-dimensional alluvial sedimentary succession beneath a floodplain traversed by a single major river. Several inter-related effects which influence the distribution of channel-belt sand and gravel bodies within overbank fines are accounted for. These are (a) laterally variable aggradation, (b) compaction of fine sediment, (c) tectonic movement at floodplain margins, and (d) channel avulsion. Selected experiments with the model show how the interconnectedness and areal density of channel-belt deposits decrease with increasing floodplain width/channel-belt size, mean avulsion period, and channel-belt aggradation rate. Separation of stream patterns based on interconnectedness and channel deposit density is difficult. Tectonic movements do not have a significant influence upon the successions unless a preferred direction of tilting is maintained (half-graben). Then channel-belt deposits showing offlap tendencies tend to cluster adjacent to the active floodplain margin, leaving dominantly fine-grained alluvium to accumulate on the inactive side. Individual channel-belt deposits thicken during aggradation, although a self-regulating limit to such thickening is likely to operate. ‘Multistorey’features resulting from aggradation may be difficult to tell apart from those arising through superposition of distinct channel-belt deposits of avulsive origin.  相似文献   

18.
The Great Plains contain many of the best‐known Paleoindian sites in North America, and a number of these localities were key to determining the chronology of Paleoindian occupations in the years before, during, and since the development of radiocarbon and other chronometric dating methods. Initial attempts at dating were based on correlation with extinct fauna, the “geologic‐climatic” dating method, and stratigraphic relationships of artifacts within sites. By the time radiocarbon dating was developed (1950), the basic Paleoindian sequence (oldest to youngest) was: Clovis‐Folsom‐unfluted lanceolates (such as Plainview, Eden, and Scottsbluff). Initial applications of radiocarbon dating in the 1950s did little to further resolve age relationships. In the 1960s, however, largely through the efforts of C. V. Haynes, a numerical geochronology of Paleoindian occupations on the Great Plains began to emerge On the Southern Great Plains the radiocarbon‐dated artifact chronology is: Clovis (11,600–11,000 yr B.P.); Folsom and Midland (10,900–10,100 yr B.P.); Plainview, Milnesand, and Lubbock (10,200–9800 yr B.P.); Firstview (9400–8200 yr B.P.); St. Mary's Hall, Golondrina, and Texas Angostura (9200–8000 yr B.P.). The chronology for the Northern Great Plains is: Clovis (11,200–10,900 yr B.P.); Goshen (ca. 11,000 yr B.P.); Folsom (10,900–10,200 yr B.P.); Agate Basin (10,500–10,000 yr B.P.); Hell Gap (10,500–9500 yr B.P.); Alberta, Alberta‐Cody (10,200–9400 yr B.P.); Cody (Eden‐Scottsbluff) (9400–8800 yr B.P.); Angostura, Jimmy Allen, Frederick, and other parallel‐oblique types (9400–7800 yr B.P.). Fifty years after the development of radiocarbon dating, the basic typological sequence has not changed significantly except for the realization that there probably was significant temporal overlap of some point types, and that the old unilinear sequence does not account for all the known typological variation. The chronology has been continually refined with the determination of hundreds of radiocarbon ages in recent decades. © 2000 John Wiley & Sons, Inc.  相似文献   

19.
Two alluvial terraces and the present flood plain were studied at two locations along the Susquehanna and Unadilla Rivers in south-central New York state. They have formed since deglaciation and incision of the stream channels into the valley train deposits. The higher terrace has noncumulative soil profiles with well-developed color B horizons predominantly of silt loam and very fine sandy loam. The terrace is weathered to a degree similar to nearby glacial outwash terraces that have caps of similarly textured sediments. Incision that produced the terrace occurred before 9705 ± 130 yr B.P. The lower terrace is characterized by relatively thick, vertical-accretion deposits of silt loam that contain sequences of thin, buried A, color B, and C horizons. They were formed between about 3240 ± 110 (14C data of soil humin) and 235 ± 80 yr B.P. Deposits above the 235 ± 80 yr B.P. stratum are unweathered. The soil stratigraphy and 14C dates of soil humin from buried A horizons are surprisingly well correlated between sites. Most sediments of the present flood plain have been deposited since 1120 ± 80 yr B.P. Incipient A horizons and oxidation of inherited organic matter in the subsoil are the only evidence of pedogenesis in the flood-plain deposits that are older than 275 ± 80 yr B.P. The most recent flood-plain fill deposited since then is unaltered. These youngest sediments of the flood plain along with the youngest veneer of vertical-accretion deposits on the lowest terrace are associated with an increased rate of deposition largely attributable to clearing of the forests by settlers, beginning in the late 1700s. Comparison of the alluvial stratigraphy with the radiocarbon-dated pollen stratigraphy of southwestern New York (Miller 1973) reveals some apparent time correlations between alluvial events and vegetation changes. This gives reason to speculate that climatic change or forest catastrophes such as disease or drought are causes of some of the alluvial events.  相似文献   

20.
Although Paleoindian sites in Indiana, USA, are commonly located on late Wisconsin (Last Glacial Maximum) outwash terraces, drainage basin development since deglaciation often obscures the visibility of such sites on flood plains by either burying them under alluvium or destroying them through erosion. Significant clusters of Paleoindian and Early Archaic sites, however, have been identified proximal to the modern White River channel in central Indiana on what is mapped as “floodplain.” These site cluster locations are patterned. They typically occur within bedrock‐controlled river reaches but are rare along unconfined meandering reaches. Subsurface reconnaissance and chronology indicate that despite the fact that they often flood, portions of the so‐called flood plains within bedrock‐confined reaches are actually terraces constructed of late Wisconsin outwash with minimal overbank sedimentation. Terrace preservation in these settings is a result of bedrock structure that protects older sediments from lateral erosion and differentially preserves archaeological sites near the modern channel in bedrock‐controlled reaches. Comparisons of archaeological sites within bedrock‐controlled segments of the White River to those in unconfined meandering segments suggests that significant numbers of Paleoindian and Early Archaic sites may be missing from river settings across the midcontinent. These findings demonstrate that bedrock channel controls are important to recognize when assessing prehistoric settlement distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号