首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A maximal spectrum of gravitational radiation from sources outside our galaxy is calculated. The sources are galaxies, quasars and events that occur in the early history of the universe. The major contribution is from galaxies whose effect extends over the frequency region 10–810+4Hz, peaking at 10–110 Hz, with a spectral flux of 10 erg cm–2, s–1. The main processes of gravitational radiation in the galaxies are stellar collapse into a black hole and dying binary systems. In the region 10–4104 Hz the background spectrum is well above the detection levels of currently proposed detectors. FromMinimal considerations of this spectrum it is determined that the density of gravitational radiation is 10–39g cm–3. This background spectrum is sensitive to galactic evolution and especially sensitive to the upper mass limits and mass distribution of stars in galactic models. Therefore, the spectrum could provide information about galactic evolution complementary to that obtained by electromagnetic investigations.  相似文献   

2.
The detailed evolution of low-mass main-sequence stars (M < 1M ) with a compact companion is studied. For angular momentum loss associated with magnetic braking it is found that about 10–11–10–12 M yr–1 in stellar wind loss would be required. This wind is 102–103 times stronger than the solar wind, so we believe here magnetic stellar wind is insufficient. It is well known that there is mass outflow in low-mass close binary systems. We believe here that these outflows are centrifugal driven winds from the outer parts of the accretion disks. The winds extract angular momentum from these systems and therefore drive secular evolution. Disk winds are preferred to winds from the secondary, because of the lower disk surface gravity.  相似文献   

3.
We discuss the formation and evolution of interacting low-mass close binaries with a He-1CO- or ONe-dwarf neutron star or a black hole as a compact component. Mass exchange leads to cataclysmic events in such systems. The rate of semidetached low-mass close binary formation is 5×10–3 yr–1 if the accreting component is a He degenerate dwarf, 5×10–3 yr–1 if it is a CO-dwarf and 3×10–8 yr–1 if it is a neutron star. Systems with compact accretors arise as the result of the common envelope phase of close binary evolution or due to collisions of single neutron stars or dwarfs with low-mass single stars in dense stellar clusters. Evolution of LMCB to the contact phase in semi-detached stages is determined mainly by the angular momentum losses by a magnetic stellar wind and radiation of gravitational waves. Numerical computations of evolution with momentum loss explain observed mass exchange rates in such systems, the absence of cataclysmic variables with orbital periods 2h–3h, the low number and the evolutionary status of systems with orbital periods shorter than 80m. In conclusion we list unsolved problems related to magnetic stellar wind, the distribution of young close binaries over main initial parameters, stability of mass exchange.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

4.
A detailed investigation of the evolution of low-mass binaries is performed for the case when the secondary fills its Roche lobe at the stage of core hydrogen exhaustion. The obtained results are compared with observational data for ultra-short periodic X-ray systems MXB 1820-30 and MXB 1916-05. In the frame of the proposed evolutionary scenario it is possible to obtain for MXB 1820-30 its periodP=11.4 min twice (see Figure 2). In the first case the parameters of the system are:M 2 0.13–0.15M ,X0.05–0.13, |P/P| (3.6–6.2) } 10–7 yr–1, M2 (4.1–9.6) } 10–9 M yr–1, for the second:M 2 0.08–0.09M ,X= 0, |P/P| (1.3–1.5) } 10–7 yr–1, M2 (1.4–1.8) } 10–8 M yr–1. It is suggested that MXB 1916-05 is the progenitor of the system MXB 1820-30 (M 2 = 0.1M,X 0.221,M 2 1.8 × 10–10 M yr–1).  相似文献   

5.
Dense molecular clouds within the Taurus and NGC 2264 regions have undergone gravitational collapse and fragmentation to form groups of low mass (1M ) T-Tauri stars which are still embedded within the clouds and which are kinematically associated with them. Molecular column densities on the order of 1014 cm–2 are inferred from the emission lines of OH and NH3. Emission line widths are 2 km s–1 and the antenna beamwidths include linear extents of order 0.1 pc. The OH emission appears to be in a condition of local thermodynamic equilibrium, and it cannot arise from circumstellar sheils similar to those surrounding the masing infrared stars. The OH and NH3 emission occurs in clouds of 1 pc in extent with optical depths of 0.1 to 1.0 and excitation temperatures of the order of 10 K. The molecular clouds have radii of 0.5 pc, molecular hydrogen densities of 4000 cm–3, masses of 100 solar masses, and kinetic temperatures of 20 K. The observed data are not inconsistent with the molecular clouds being in a state of hydrostatic equilibrium.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

6.
We present the tenth list of blue stellar objects of the second part of the First Byurakan Spectral Sky Survey (FBS). The list contains 100 objects in the region+73°+80° and3 h 30 m 18 h 30 m encompassing an area of 355 square degrees. The objects have stellar V magnitude within the limits 12.0–18.5 and B-V colors between–0.77 and+0.37. Of these 100 objects, 80 were discovered for the first time. We give the equatorial coordinates, stellar V magnitude, color index CI, and preliminary classification of the objects on the basis of low-disperion prismatic spectra. For 29 objects we give approximate types, among which 4 are candidates for quasars, 2 for Seyfert galaxies, 1 for superassociation galaxy IC 381, 18 for white dwarfs, and 4 for cataclysmic variables.Translated fromAstrofizika, Vol. 38, No. 2, 1995.  相似文献   

7.
In this paper we adopt the method of relativistic fluid dynamics to examine the number density distribution of stars around a massive black hole in the core of stellar clusters. We obtain extensive results,n(r) r –a, 3/2a9/2, which include, respectively, then(r) r –7/4 power law obtained by Bahcall and Wolf and then(r) r –9/4 power law by Peebles. Sincen(r) is not an observable quantity for star clusters, we also consider general relativity effects, i.e., the consequence of the bending of light, in calculating the projected density of stars in such a system. As an example we employ a massive black hole 103 M inlaid in the center of a globular cluster and calculate various projected densities of stars. The results show that cusp construction occurs in all cases unless the central black hole massM=0, and the polytropic index does not affect at all the position of the capture radiusr a. The obvious differences in the surface density is only embodied in the interior of the capture radius. At the outer regions of the core, the surface density of stars declines rapidly with ar –5 power law in all cases. These results can be applied to cases of unequal-mass and non-steady state.  相似文献   

8.
A semi-continuous hierarchy, (i.e., one in which there are galaxies outside clusters, clusters outside superclusters etc.), is examined using an expression of the field equations of general relativity in a form due to Podurets, Misner and Sharp. It is shown (a) that for a sufficiently populous hierarchy, the thinning factor( i+1/ i [r i /r i+1] is approximately equal to the exponentN in a continuous density law (=aR –N) provided (r i /r i+1)3-1; (b) that a hierarchical Universe will not look decidedly asymmetric to an observer like a human being because such salient observers live close to the densest elements of the hierarchy (viz stars), the probability of the Universe looking spherically symmetric (dipole anisotropy0.1 to such an observer being of order unity; (c) the existence of a semi-continuous or continuous hierarchy (Peebles) requires that 2 if galaxies, not presently bound to clusters were once members of such systems; (d) there are now in existence no less than ten arguments for believing 2, though recent number counts by Sandageet al. seem to be in contradiction to such a value; (e) Hubble's law, withH independent of distance, can be proved approximately in a relativistic hierarchy provided (i)N=2, (ii)2GM(R)/c 2 R1; (iii)Rc (iv)M0 in a system of massM, sizeR (f) Hubble's law holds also in a hierarchy with density jumps; (g)H100 km s–1 Mpc–1; (h) objects forming the stellar level of the hierarchy (in a cosmology of the Wilson type) must once have had 2GM/c 2 R1; (i) there is a finite pressurep=2Ga in all astrophysical systems (a=R N ,N2); (j) for the Galaxy, theory predictsp G7×10–12 dyn cm–2, observation givesp G5×10–12 dyn cm–2; (k) if the mass-defect (or excess binding energy) hypothesis is taken as a postulate, all non-collapsed astrophysical systems must be non-static, and any non-static, p0 systems must in any case be losing mass; (1) the predicted mass-loss rate from the Sun is 1012 g s–1, compared to 1011 g s–1 in the observed solar wind; (m) the mass-loss rates known by observation imply timescales of 5×109 years for the Sun and 1010 years for other astrophysical systems; (n) degenerate superdense objects composed of fermions must haveN-2 if they were ever at their Schwarzschild radii and comprised a finite numberN B of baryons; (o)N B1057N for degenerate fermion and boson systems; (p)285-4; (q) the metric coefficients for superdense bodies give equations of motion that imply equal maximum luminosities for all evolving superdense bodies (L max1059 erg s–1); (r) larger bodies have longer time-scales of energy radiation atL max (10–5 s for stars,1 h for QSO's) (s) expansion velocities are c soon after the initial loss of equilibrium in a superdense object; (t) if the density parametera(t) in aR –N isa=a (non-atomic constants of physicsc, G, A), andA, thenN=2; (u) N2 is necessary to giveMM at the stellar level of the hierarchy;(v) systems larger than, and including, galaxies must have formed by clumping of smaller systems and not (as advocated by Wertz and others) in a multiple big bang.  相似文献   

9.
Structures of Newtonian super-massive stars are calculated with the opacity for Comptor effectK 0/(1 + T), whereK 0=0.21(1 +X and =2.2×10–9K–1. The track of the Main-Sequence is turned right in the upper part of the HR diagram. Mass loss will occur in a Main-Sequence stage for a star with mass larger than a critical mass. The cause of mass loss and the expansion of the radius is continuum radiation pressure. The critical mass for mass loss is 1.02×106 M for a Population I star, and 1.23×105 M for Population III star. Mass loss rates expected in these stars are 3.3×10–3 and 4.0×10–3 M yr–1, respectively.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

10.
An exceptionally fast wind (8500 km/s) was suggested to occur in the central star of the planetary nebula K1-16, belonging to the class of the PG 1159 H-deficient pre-white dwarfs. To ascertain the reality of such a fast wind this star has been observed with the HST telescope using the GHRS in the zone of theCiv 155.0 nm doublet. The HST data and tests made using synthetic stellar spectra support the existence of a stellar wind with a terminal velocity of 3800 km/s and a mass loss rate lower thanM<2 · 10–11 M per year. Possibly it is no longer the fastest stellar wind so far observed but it is still among the fastest.  相似文献   

11.
Résumé Après avoir écrit le système d'équations de la magnétohydrodynamique régissant le transport du champ magnétique avecla matière nébulaire, nous montrons, sous des hypothèses simples, que sa résolution conduit naturellement à la présence d'un champ magnétique 10–3–10–4 G au sein du gaz nébulaire, le champ au voisinage de l'étoile centrale étant supposé de l'ordre de Gauss. La conditionH 2/8nkT étant vérifiée dans la nébuleuse, le champ peut alors faire appraître des structures typiquement magnétiques telles que dans NGC 650-1, NGC 7293, etc ....
On the existence of the magnetic field in planetary nebulae
The resolution of a set of magnetohydrodynamic equations governing the ejected matter, under some simple assumptions, lead to the existence of a magnetic field about 10–3–10–4 G within the shell of planetary nebulae. The stellar magnetic field, at the time of ejection, is supposed equal to 1 G. The conditionH 2/8nkT is then satisfied in most of planetary nebulae showing magnetic features such as NGC 650-1, NG 7293, etc ....
  相似文献   

12.
The lifetime of massive X-ray binaries is (2–5)×105 yr, this time close to the nuclear one. The lifetime of nonmassive X-ray binaries close to thermal one, (0.5–1)×107 yr. Massive systems may be conserved at supernova explosion, the probability of the conservation of nonmassive system is (1–3)×10–3.  相似文献   

13.
Brosius  J.W.  Thomas  R.J.  Davila  J.M.  Thompson  W.T. 《Solar physics》2000,193(1-2):117-129
We used slit spectra from the 18 November 1997 flight of Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS-97) to measure relative wavelength shifts of coronal emission lines as a function of position across NOAA active region 8108. The shifts are measured relative to reference wavelengths derived from spectra of the region's nearby quiet surroundings (not necessarily at rest) because laboratory rest wavelengths for the coronal EUV lines have not been measured to sufficient accuracy for this work. An additional benefit to this approach is that any systematic uncertainties in the wavelength measurements are eliminated from the relative shifts by subtraction. We find statistically significant wavelength shifts between the spatially resolved active region slit spectra and the reference spectrum. For He ii 303.78 Å the maximum measured relative red shift corresponds to a Doppler velocity +13 km s–1, and the maximum relative blue shift corresponds to a Doppler velocity –3 km s–1. For Si x 347.40 Å, Si xi 303.32 Å, Fe xiv 334.17 Å, and Fe xvi 335.40 Å the corresponding maximum relative Doppler velocities are +19 and –14, +23 and –7, +10 and –10, and +13 and –5 km s–1, respectively. The active region appears to be divided into two different flow areas; hot coronal lines are predominantly red-shifted in the northern half and either blue-shifted or nearly un-shifted in the southern half. This may be evidence that material flows up from the southern part of the region, and down into the northern part. Qualitatively similar relative wavelength shifts and flow patterns are obtained with SOHO/CDS spectra.  相似文献   

14.
The characteristics of gravitational bursts from active galactic nuclei, and globular clusters are obtained for three astrophysical situations:(i) scattering of stars by massive black holes residued at the centers of galaxies and globular clusters; (ii) the close encounters of stars in the nuclear regions of these objects; (iii) scattering of stars by black holes of stellar mass containing in the stellar population of galactic nuclei and clusters. The most effective source of gravitational bursts appears to be a scattering of stars by the massive central black holes which produces the bursts with dimensionless amplitudeh10–19–10–21 and frequencies from 10–1 to 10–5 Hz. The characteristics obtained correspond to the possiblities of a future gravitational-wave experiment with use of laser Doppler tracking of interplanetary spacecrafts.  相似文献   

15.
Charged dust grains of radiia3×10–63×10–5 cm may acquire relativistic energy (>1018 eV) in the intergalactic medium. In order to attain relativistic energy, dust grains have to move in and out (scattering) of the magnetic field of the medium. A relativistic grain of radiusa10–5 cm with Lorentz factor 103 approaching the Earth will break up either due to electrostatic charge or due to sputtering about 150100 km, and may scatter solar photons via a fluorescence process. Dust grains may also melt into droplets in the solar vicinity and may contribute towards observed gamma-ray bursts.  相似文献   

16.
The consequences of a cosmological term varying asS –2 in a spatially isotropic universe with scale factorS and conserved matter tensor are investigated. One finds a perpetually expanding universe with positive and gravitational constantG that increases with time. The hard equation of state 3P>U (U mass-energy density,P scalar pressure) applied to the early universe leads to the expansion lawSt (t cosmic time) which solves the horizon problem with no need of inflation. Also the flatness problem is resolved without inflation. The model does not affect the well known predictions on the cosmic light elements abundance which come from standard big bang cosmology.In the present, matter dominated universe one findsdG/dt=2H/U (H is the Hubble parameter) which is consistent with observations provided <10–57 cm–2. Asymptotically (S) the term equalsGU/2, in agreement with other studies.  相似文献   

17.
High resolution surveys of the galactic centre suggest the existence of an extended nonthermal source (Bulge) with an intensity much larger than the total background radiation in that direction. In this paper, we have first evaluated the physical conditions existing in this restricted region of space from an analysis of the radio spectrum and shown that if the distribution of matter, magnetic fieldB(r) and cosmic ray densityk(r) in the plane of the Galaxy is of gaussian type then at the centreB (0)=25–30 G andk(0)=25–35 times that in the near interstellar space. It is also found that most of the absorption in the Sagittarius A spectrum at low frequencies takes place in the Bulge and one requires a small additional absorption to take place in the line of sight corresponding to n e 210 cm–6 pc at a temperature typically of clouds 100 K. The gamma ray spectra from the Bulge arising from interactions of cosmic rays with matter and radiation are then calculated in detail. A comparison made with the estimated background gamma ray spectra from the disk reveals that a detector with angular resolution 6° having a threshold of a few times 10–6 photons cm–2 s–1 can detect this source; this bulge is not found to be a good X-ray source for detection. From a comparison of these calculations with the observed flux above 100 MeV, the following inferences have been deduced: (i) the lower limit to the magnetic field strength at the centre is 12 G, (ii) the observed gamma ray flux towards the Anti-centre can be well explained as due to interactions of cosmic rays with matter alone and a similar explanation towards the center reveals that cloud complexes could be more in the inner parts of the Galaxy than in the outer parts, and (iii) the observed flux values are found to be inconsistent with the existence of submillimeter radiation in the galactic scale.  相似文献   

18.
The stars in the Main Sequence are seen as a hierarchy of objects with different massesM and effective dynamical radiiR eff=R/ given by the stellar radii and the coefficients for the inner structure of the stars.As seen in a previous work (Paper I), during the lifetime in the Main SequenceR eff(t) remains a near invariant when compared to the variation in the time ofR(t) and (t).With such an effectiveR eff one obtains the amounts of actionA c(M), the effective densities eff(M)=(M)3(M), the densities of action and of energy (or mean presures in the stellar interior)a c(M),e c(M), and the potential energiesE p(M).The amounts of action areA cM k withk1.87 for the M stars,k5/3 for the KGF stars, andk1.83 for the A and earlier stars, representing very simples conditions for the other dynamical parameters. For instancek5/3 means a near invariant effective density eff for the KGF stars, while for such stars the mean densities and coefficients present the strongest variations with masses (M)M –1.81, (M)M0.6.The cases for the M stars (e c(M)M –1) and for the A and earlier stars (betweena c(M)=constant and eff(M)M –1) and also discussed. These conditions for the earlier stars also represent reasonable mean values for the whole stellar hierarchy in the range of masses 0.2M M25M .With all this, one can build dynamical HR diagrams withA c(M), Ep(M), eff M p , etc., whose characteristics are analogous to these in the photometrical HR diagram. A comparison is made betweenA c(M) from the models here and the HR diagram with the best known stars of luminosity classes IV, V, and white dwarfs.The comparison of the potential energiesE p(M)M –p according to the stellar models used here and the observed frequency function (MM –q (number of stars in a given interval of masses) from different authors suggests the possibility that the productE p(M)(M) is a constant, but this must be confirmed with further studies of the function (M) and its fine structure.There are analogies between the formulation used here for the stellar hierarchy and other physical processes, for instance, in modified forms of the Kolmogorov law of turbulence and in the formulation used for the hierarchy of molecular clouds in gravitational equilibrium. Besides, the function of actionA c(M) for the stars has analogous properties to the relations of angular momenta and massesJ(M) for different types of objects. The cosmological implications of all this are discussed.  相似文献   

19.
Doyle  J.G.  Keenan  F.P.  Ryans  R.S.I.  Aggarwal  K.M.  Fludra  A. 《Solar physics》1999,188(1):73-80
Using new close-coupling excitation rates for the C-like ion Siix, density-diagnostic ratios based on Siix lines have been re-evaluated and applied to a sequence of CDS observations taken above a polar coronal hole. The derived electron densities are in excellent agreement with previous values of Neestimated from the N-like ion Siviii for another coronal hole. The confirmed trend is for a fall-off of one order of magnitude within the first 0.3 Rabove the limb. These densities are well fitted with an analytic formula for the density profile out to at least 8 R, by which stage the electron density has fallen to 4×103 cm–3, from 1.5×108 cm–3at 1.0 R.  相似文献   

20.
The velocity gradients of the contrastreaming electron beams observed in the Earth's magnetosphere can excite three types of ordinary mode instabilities, namely (i) B-resonance electron instability, (ii) ion cyclotron instability, and (iii) unmagnetized ion instability. The B-resonance electron instability occurs at small values of the shear parameter 10–4<S<10–3, whereS = [(1/e){dU o(x)}/(dx)] (U 0(x) and e being the streaming velocity of the electron beams and the electron cyclotron frequency, respectively). Near the equatorial plane of the bouncing electron beams region, this instability can generate electromagnetic waves having frequenciesf(0.045–0.2) Hz and wavelentghs (0.5–10)km, and the wave magnetic field is polarised in a radial direction. This instability can also occur in the plasma sheet region during the earthwards and tailwards plasma flows events and can generate waves, with wave magnetic field polarised along north-south direction, in the frequency rangef(0.007–0.02) Hz with (10–100)km nearR=–35R E . For 10–3<S<10–2, the ion cyclotron instability is excited and it can generate waves up to 5th harmonic or so of ion cyclotron frequency. ForS>10–2, the unmagnetized ion instability is excited which can generate electromagnetic waves having frequences from 5 to 50 Hz and typical wavelengths (0.5–6)km. The growth rates of all the three velocity shear driven instabilities are reduced in the presence of cold background plasma. The turbulence generated by these instabilities may give rise to enhanced effective electron-electron and electron-ion collisions and broaden the bouncing electron beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号