首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been indicated that the spectrum of electrostatic waves in the ionospheric plasma depends on the geophysical conditions and solar wind parameters. The wave field measurements in the frequency band 0.1–10 MHz in the topside ionosphere were used to analyze the electrostatic instabilities of the plasma electron content (the APEX satellite experiment). A change of the sign of one magnetic field component at the geomagnetic equator can result in the formation of the large-scale irregular plasma structure with a decay of the natural electrostatic oscillations and vortices in unstable plasma. The plasma particle polarization drift from the region of decay of electrostatic oscillations and vortices can cause large plasma density and temperature gradients across the geomagnetic field. New vortices can originate at these gradients. This mechanism of plasma vortex formation and decay can be important for mass and energy convection in the topside ionosphere.  相似文献   

2.
A vortex structure renders additional stability to plasma irregularities stretched along magnetic field lines. Plasma irregularities extended over several tens of kilometers are registered with rocket and satellite equipment in the topside ionosphere. The registered scale of irregularities depends on the spatial and time resolution of the equipment used. Irregular structures were registered in the ionosphere during experiments with barium clouds and jets, when a plasma irregularity separated into strata extended over several meters and several kilometers across the geomagnetic field. It has been indicated that plasma vortices can be generated in an unstable plasma in a situation when its quasi-neutrality is disturbed. Local geomagnetic field disturbances will be caused by the appearance of a proper vortex magnetic field. Plasma vortices can interact in an inhomogeneous plasma with an unstable electron component. Such interactions are related to the transformation of the phase volume of free electrostatic oscillations in the frequency-wave vector space.  相似文献   

3.
The results of the Cosmos-900 satellite observ ations of plasma density inhomogeneities in the geomagnetic equator region and the longitudinal distributions of the equatorial spread-F, according to the Intercosmos-19 satellite data are presented. It is show n that the dependence of radiosignal propagation in the ionosphere on geophysical parameters is related to development of the electrostatic instability of the inhomo-geneous ionospheric plasma. The longitudinal dependence of the spread-F, can reflect the influence of the energetic sources, located outside the ionospheric layer that scatters a radio pulse, on the ionosphere. The manifestation of the longitudinal effect in the equatorial spread-F, in the Atlantic region can be explained by the influence of the cone instability on the plasma electrodynamics in the South Atlantic geomagnetic anomaly.  相似文献   

4.
The measurements of the broadband wave radiation in the topside ionosphere in the region of the geomagnetic equator (the APEX satellite experiment) are presented. The region of unstable plasma with increased density was observed in the nightside topside ionosphere. This region could be formed by heating of the ionosphere from below. An asymmetric distribution of the frequency band width and electrostatic radiation intensity relative to the geomagnetic equator was registered. It has been indicated that a substantial effect of the geomagnetic equator on plasma diffusion from the heating region could be related to the generation, propagation, and damping of electrostatic oscillations and large-scale (as compared to the Larmor ion radius) plasma vortices. The anisotropy in the temperature of the plasma electron component can increase in the regions where the transverse electric field of disturbances damps. The intensity of the electromagnetic radiation, caused by the external sources, apparently, of an artificial origin at frequencies higher than the local plasma frequency, decreases to the radiation detection threshold level in the region of increased plasma density.  相似文献   

5.
The measurements of the broadband wave radiation in the region of the geomagnetic equator in the topside ionosphere are presented (the APEX satellite experiment). It has been indicated that the electromagnetic radiation, observed in a plasma density pit, could be related to the formation of a large-scale plasma cavern in the vicinity of the geomagnetic equatorial surface. A large-scale plasma density pit could be formed in the region of heating during damping of plasma vortical structures and electrostatic oscillations, propagating across geomagnetic field lines and crossing the geomagnetic equatorial surface. Brightness of the electromagnetic radiation, observed at frequencies higher than the plasma eigenfrequencies and local plasma and/or upper hybrid frequencies, decreases with increasing eigenfrequencies.  相似文献   

6.
The density and temperature of the plasma electron component and wave emission intensity in the topside ionosphere were measured by the INTERCOSMOS-19 satellite. In the subauroral ionosphere, a decrease in the plasma density correlates with an increase in the plasma electron component temperature. In this case, the additional increase in the electron component temperature was measured in regions with increased plasma density gradients during the substorm recovery phase. In a linear approximation, the electromagnetic wave growth increments are small on electron fluxes precipitating in the auroral zone. It has been indicated that Bernstein electromagnetic waves propagating in the subauroral topside ionosphere can intensify in regions with increased plasma density gradients on electron fluxes orthogonal to the geomagnetic field, which are formed when plasma is heated by decaying electrostatic oscillations of the plasma electron component. This can be one of the most important factors responsible for the intensification of auroral kilometric radiation.  相似文献   

7.
Electric fields in the near-Earth space was studied in the experiments with artificial plasma clouds and jets in the ionosphere and magnetosphere. The development of a nonmonotonous plasma density stratification of an artificial plasma formation, with the scale of strata across the geomagnetic field reaching several meters and tens of meters, was observed. It has been indicated that the electrodynamics of plasma clouds and jets, decomposing into strata, depends on the excitation and decay of fast oscillations of the electronic plasma component against a background of slow oscillations of the ionic component at frequencies of magnetized plasma electrostatic oscillations (electrostatic Bernstein modes of the plasma electronic and ionic components and ion acoustic oscillations).  相似文献   

8.
The absorption of telemetry radiosignals at frequencies of 250 and 75 MHz, transmitted from rockets, was observed in the ARAKS and Zarnitza 2 rocket experiments, respectively, with electron pulses in the ionosphere. The signals were registered with ground receivers. Four cases of complete signal absorption on the propagation path were observed in the ARAKS experiment. The radio absorption at frequencies substantially higher than the plasma and upper hybrid frequencies can be related to wave scattering by plasma inhomogeneities. It has been indicated that plasma inhomogeneities were generated when electrostatic oscillations damped in the region with decreased plasma density at a decrease in the natural oscillation phase volume in the frequency-wave vector space with decreasing plasma density. The observed radio absorption could be related to reflectionless wave scattering in an inhomogeneous plasma structure.  相似文献   

9.
The intensity of the wave emission in the 0.1–10 MHz band measured in the ionosphere (the APEX satellite experiment) has been presented. A jump of the plasma density and an increase in the emission intensity at a plasma frequency have been registered at altitudes of ~1300 km in the topside auroral ionosphere. The emission intensity in the whistler-mode band nonmonotonically increased along the satellite trajectory near the plasma jump wall. It has been indicated that waveguides could be formed near the wall during damping of electrostatic oscillations generated by precipitating electron fluxes. A spatially nonmonotonous separation of waveguides from the plasma inhomogeneity stretched along geomagnetic field lines is possible in this case.  相似文献   

10.
Additional strongly remote (up to 2000 km) radio-signal reflection traces on Intercosmos-19 ionograms obtained in the equatorial ionosphere have been considered. These traces, as a rule, begin at frequencies slightly lower than the main trace cutoff frequencies, which indicates that an irregularity with a decreased plasma density exists here. The waveguide stretched along the magnetic-field line is such an inhomogeneity in the equatorial ionosphere. The ray tracing confirm that radio waves propagate in a waveguide and make it possible to determine the typical waveguide parameters: ?δN e ≥ 10%, with a diameter of 15–20 km. Since the waveguide walls are smooth, an additional trace is always recorded distinctly even in the case in which main traces were completely eroded by strong diffusivity. Only one additional trace (of the radio signal X mode) is usually observed one more multiple trace is rarely recorded. Waveguides can be observed at all altitudes of the equatorial ionosphere at geomagnetic latitudes of ±40°. The formation of waveguides is usually related to the formation of different-scale irregularities in the nighttime equatorial ionosphere, which result in the appearance of other additional traces and spread F.  相似文献   

11.
The profiles of the plasma density in the topside ionosphere, according to the data of sounding on board the Intercosmos-19 satellite, are presented. It is shown that the large-scale fluctuations of the plasma density can be related to the propagation and attenuation of the atmospheric waves (e.g., acoustic gravity waves) in the dynamo region of the ionosphere. In the topside ionosphere, suprathermal particle fluxes can be formed and the plasma density can be modulated at an attenuation of small-scale electrostatic fluctuations of the plasma electron component in plasma pits. Plasma vortices can be formed when polarization fluxes of charged particles escape from regions of heating. The vortex field imparts stability to the inhomogeneous plasma structure, necessary for experimental detection of this structure.  相似文献   

12.
It is shown that ionosphere heating by DC electric field leads to instability of acoustic-gravity waves and to the formation of solitary internal gravity vortex structures. These dipole type vortices with characteristic transverse size of the order of several kilometers are propagated in the lower ionosphere with subsonic velocity. The threshold values of the electric field needed to suppress the wave damping caused by the interaction of induced current with the geomagnetic field and to provide the vortex generation are found. The considered physical mechanism is applicable to the generation of internal gravity vortices and related ionospheric disturbances when the ionosphere is influenced by the electric field of seismic origin exceeding the threshold value.  相似文献   

13.
Plasma vortices in the ionosphere and atmosphere   总被引:1,自引:0,他引:1  
Vortices observed in ionized clouds of thunderstorm fronts have the nature of plasma vortices. In this work, the need to account for the electrostatic instability of plasma in the origination, intensification, and decay of plasma vortices in the atmosphere is shown. Moisture condensation results in mass-energy transfer under the inhomogeneous spatial distribution of aerosols. If a phase volume of natural oscillations is transformed in the frequency-wave vector space in inhomogeneous plasma, the damping of plasma oscillations promotes an increase in the pressure gradients normal to the geomagnetic field. Excitation of the gradient instabilities is probable in atmospheric plasma formations.  相似文献   

14.
The influence of stochastic irregularities of the ionosphere on its effective conductivity has been estimated. The study was carried out for large scale inhomogeneities and quasistationary electromagnetic fields. It is found, that Pedersen conductivity sharply increases in a strong geomagnetic field even for small stochastic ionospheric irregularities of the electron density. This peculiarity has to be taken into account during analysis of ionospheric and magnetospheric measurements.  相似文献   

15.
参量衰减不稳定性(Parametric Decay Instability,PDI)在大功率高频(High frequency,HF)电波与电离层等离子体相互作用的过程中扮演着十分重要的角色,本文采用广义Zakharov方法对常规的等离子体流体力学方程组进行相应处理后,并在近似实际的电离层背景和电波传播模型下,构建了高频电波加热电离层激发PDI的数值计算模型.模拟结果发现:在毫秒量级的时间尺度上,大功率高频电波在寻常波(Ordinary wave,O波)反射点高度附近激发出了朗缪尔波(Langmuir wave)和离子声波(Ion-Acoustic wave)两种等离子体静电波模,模拟中产生的朗缪尔波和离子声波相应波数为5~11rad·m~(-1),结果与利用色散关系求出的理论值4~7 rad·m~(-1)近似一致,密度扰动幅值从10~6m~(-3)量级指数级增长到了10~(10)m~(-3)量级,直至能显著影响与"低频"密度背景相关的等离子体频率后,出现了等离子体"空穴"结构以及朗缪尔波被"俘获"现象,在扰动空间内的小尺度静电场幅值最高能达到100 V·m~(-1)量级,最终造成一种强烈的局地化"空穴"湍流现象.本文的研究有助于深入理解PDI的物理机制,对研究大功率高频电波与电离层等离子体之间复杂的非线性相互作用也有着非常重要的意义.  相似文献   

16.
A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V × Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.  相似文献   

17.
Based on ion distribution function found from the dynamic equation, the density distribution of He+ ions originating from the polar ionosphere and up-flowing along the magnetic field line is studied during quiet and weakly disturbed geomagnetic conditions. The results show the following. (1) The ionospheric up-flowing He+ ions mainly reside in the inner magnetosphere and their density has a negative radial gradient. (2) The ionospheric up-flowing He+ ion distributions along the magnetic field line are mainly controlled by gravity and the geomagnetic field configuration. Larger the gravity, larger is the ion density. Smaller the intensity of magnetic field, smaller is the ion density. (3) If the geomagnetic activity index Kp is high, more up-flowing He+ ions will enter the magnetosphere and the region where the up-flowing ions are dominant will grow. This is consistent with observations of ionospheric up-flowing ions. Some features of the geopause can be understood based on our theoretical results.  相似文献   

18.
A mathematical modeling method and the global numerical model of the Earth’s upper atmosphere were used to study nighttime enhanced electron density regions (EEDRs) in the ionospheric F2 layer and their possible manifestations at altitudes of the Earth’s plasmasphere. It has been established that EEDRs are formed owing to latitudinally nonuniform longitudinal (along the magnetic field) plasma flows from the plasmasphere into the nighttime ionosphere and the wind transport of ions along geomagnetic field lines. The specific features of the effect of ionospheric-plasmaspheric plasma transport processes, related to their three-dimensional character, on EEDRs have been revealed.  相似文献   

19.
Variations in the geomagnetic and electric fields and variations of the total electron content (TEC) of the ionosphere recorded in the Baikal Rift Zone (BRZ) during the expeditions in 2009 and 2010 are analyzed. Synchronous bursts in the geomagnetic field on the ground and in the ionosphere, which are caused by propagation of electromagnetic disturbances (spherics) generated by the remote lightning discharges, are revealed. The analysis of the occurrence frequency of the electromagnetic disturbances at an altitude of ∼700 km shows that there is a preferred region of predominant propagation of these disturbances from the Earth-ionosphere waveguide to the upper ionosphere. When the ionospheric penetration point moves through this preferred region, the frequency spectrum of TEC variations changes, and the northern boundary of the region of spectral alteration is located at ∼54°N. The bursts in TEC that map on the zones of the main faults in the Tunka valley are identified. The results probably suggest a relation between the electromagnetic phenomena in the ionosphere and the structures in the lithosphere.  相似文献   

20.
The spatial distributions of electric fields and currents in the Earth’s atmosphere are calculated. Electric potential distributions typical of substorms and quiet geomagnetic conditions are specified in the ionosphere. The Earth is treated as a perfect conductor. The atmosphere is considered as a spherical layer with a given height dependence of electrical conductivity. With the chosen conductivity model and an ionospheric potential of 300 kV with respect to the Earth, the electric field near the ground is vertical and reaches 110 Vm−1. With the 60-kV potential difference in the polar cap of the ionosphere, the electric field disturbances with a vertical component of up to 13 V m−1 can occur in the atmosphere. These disturbances are maximal near the ground. If the horizontal scales of field nonuniformity are over 100 km, the vertical component of the electric field near the ground can be calculated with the one-dimensional model. The field and current distributions in the upper atmosphere can be obtained only from the three-dimensional model. The numerical method for solving electrical conductivity problems makes it possible to take into account conductivity inhomogeneities and the ground relief.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号