首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The upper thermosphere and F-region ionosphere system at 43°N is modelled for equinox and moderate solar conditions via a series of iterative calculations employing a thermospheric wind model and a one-dimensional ionospheric model which are mutually coupled. Several feedback loops within the system involving F2-layer peak height, F2-layer peak density, zonal wind, meridional wind, and Coriolis force are investigated to better understand the interactive aspect of ionosphere-thermosphere coupling. The interplay of primary importance involves the night-time ascent/descent of the F-layer due to equatorward/poleward neutral winds, the resulting changes in ion drag presented to the meridional and zonal wind fields, and the Coriolis force modification of the ion drag coupling. Wind shear and plasma profile shape are not significantly coupled. For magnetically undisturbed conditions, self-consistent treatment of these effects modifies a non-interactive “control” calculation by 20–35 m s−1 in the wind field. During geomagnetically disturbed periods interactive processes play a more crucial role in determining thermospheric and ionospheric storm responses. Our calculations reveal wind enhancements of up to 100 m s−1 associated with the lifting and negative-phase depletion of the F-region for prolonged magnetic disturbance conditions, the former mechanism accounting for a major portion of the effect.  相似文献   

2.
The monthly median virtual height (hF) of the F-region was studied for a period of 6 years (1980–1985) from sunspot maximum to minimum, using data from 11 ionosonde stations in the Japanese-Australian longitudinal sector, in an invariant latitude range: 37°N to 54°S. The night-time maximum in the median height progressively decreases equatorwards, particularly in the local winter and spring, while a reverse weak tendency is observed in summer. The median height reaches peak in both hemispheres from 1 to 2 years after sunspot maximum then decreases towards sunspot minimum. A second diurnal maximum in hF, preceded by a well-defined minimum, was consistently observed over the solar cycle close to the sunrise time at the F-region, mainly at low invariant latitudes (9–20°). The second maximum has a distinct seasonal variation, being most pronounced in winter and diminishing in summer. It is envisaged that the second peak in hF is associated with the wave disturbance generated by the supersonic motion of the sunrise terminator. Possible effects of the background height variations on the propagation of the magnetic storm-induced travelling ionospheric disturbances are discussed.  相似文献   

3.
In the first few tens of minutes after the onset of widespread Joule heating, the motion of the ionospheric atmosphere can be approximated by the one-dimensional motion of a gas in a gravity field—a problem that is easily solved because the motion takes place at constant pressure. The solution provides an estimate of time for which the model is applicable to the physical situation. Seasonal variations of the early effects are examined by using ion profiles appropriate to each season. The results show that the atmosphere above 100 km is strongly modified within a few tens of minutes after the onset of widespread heating: the density can double, the temperature can increase several hundred degrees, and the molecular nitrogen concentration can quadruple. Vertical winds exceeding 100 m/sec at 400km altitude are possible for a brief period after the onset of electric fields of 100 mV/m—rare but observed events. In the first few tens of minutes after the onset of a given electric field, the greatest power is deposited in the thermosphere around summer solstice, while the greatest winds occur at 200 km altitude in the summer and at 400km in the winter. These differing seasonal effects show primarily that a given level of change occurs sooner for one season than another, not that long term seasonal differences exist. Once a magnetic storm is in progress, the quiet-day ion profiles change to the non-seasonal storm profile ; for this ion distribution, F-region effects are minimum regardless of season. Joule heating effects in the upper thermosphere are therefore concluded to be self-limiting.  相似文献   

4.
Using a set of transformed Eulerian equations the zonal-averaged circulation of the middle atmosphere (10–110 km) is calculated on a global scale for solstice conditions. The emphasis lies on an improved modelling of the zonal momentum balance of the mesophere and lower thermosphere. For this purpose an internal gravity wave mean flow interaction model suggested by T. Matsuno has been incorporated in a slightly modified version. With this model the observed reversal of the zonal wind with height in the summer upper mesosphere and lower thermosphere can be reproduced. The coefficient of eddy momentum diffusion and the Rayleigh friction coefficient used in this model have been made temperature dependent by describing them as a function of the local static stability parameter.  相似文献   

5.
Midlatitude F-region neutral winds and temperatures determined from Fabry-Perot interferometer measurements of the doppler shifts and widths of nightglow 630.0 nm line profiles are presented for the priority regular world day 14 August 1980. They exhibit, in many respects, the observed behavior for other summer, geomagnetically quiet nights at solar maximum. The neutral temperature decreases from 1500°K after sunset (21 h LT) to a minimum of ˜ 1200°K before dawn (05 h LT), except to the north of the observatory. The zonal winds are eastward at sunset at 50 m/sec, decrease to zero at 02 h LT and are westward just before dawn. The meridional winds are zero just after sunset and reach a maximum equatorward value of 50–70 m/sec at local midnight but do not decrease as predicted; instead, they remain at roughly these values towards dawn. The NCAR thermospheric general circulation model (TGCM) is used to predict the global upper atmospheric temperature and circulation patterns for this world day. The model predictions agree with the measured neutral temperatures and exhibit qualitative similarities to the measured neutral winds. It is concluded that inclusion in the model of ion drift at midlatitudes should improve the agreement with observations.  相似文献   

6.
On 14 July 1974 the Atmosphere Explorer-C satellite flew through an aurora at F-region altitudes just after local midnight. The effects of the particle influx are clearly evident in the ion densities, the 6300 Å airglow, and the electron and ion temperatures. This event provided an opportunity to study the agreement between the observed ion densities and those calculated from photochemical theory using in situ measurements of such atmospheric parameters as the neutral densities and the differential electron energy spectra obtained along the satellite track. Good agreement is obtained for the ions O2+, NO+ and N2+ using photochemical theory and measured rate constants and electron impact cross sections. Atomic nitrogen densities are calculated from the observed [NO+]/[O2+] ratio. In the region of most intense electron fluxes (20 erg cm−2 sec−1) at 280 km, the N density is found to be between 2 and 7 × 107 cm−3. The resulting N densities are found to account for approx. 60% of the production of N+ through electron impact on N and the resonant charge exchange of O+(2P) with N(4S). This reaction also provides a significant source of O(1S) in the aurora at F-region altitudes. In the region of intense fast electron influx, the reaction with atomic nitrogen is found to be the main loss of O+(2P).  相似文献   

7.
The rates of heat input into the mesosphere and lower thermosphere are calculated and compared with the heat losses. The worldwide average eddy diffusion coefficient required to maintain continuity in the heat budget is calculated and found to vary from about 107 cm2/sec at 120 km down to about 105 cm2/sec at 60 km. From the global asymmetry in heating at the solstice, it is concluded that a systematic pattern of vertical velocities prevails ranging from less than 1 cm/sec in the mesosphere up to 10 cm/sec near 120 km, upward over the summer polar region and downward over the winter polar region. This can be balanced by a wind system towards the winter polar region with velocities near 1 m/sec at 60 km increasing to 30 m/sec at 120 km. Such a wind system provides an explanation for the helium bulge in the upper thermosphere over the winter polar region.  相似文献   

8.
This paper presents observations of OH maser lines of W 33A for the transitions 2Π3/2, J = 3/2, F = 1 → 1 and F = 2 → 2. Two models, a thin tube and a sphere, were used for modelling the masing region and a molecular hydrogen density of about 107 cm−3 was obtained. To give a maser photon emission of the order of 1046 s−1, both models require a pump rate of 1 OH cm−3s−1, while the sphere model requires a higher pump efficiency.  相似文献   

9.
10.
High resolution E-region measurements carried out on 16 November 1983 using the EISCAT incoherent scatter radar are presented. The experiment was monostatic with a vertical radar beam, and it was based on a Barker-coded four-pulse code on one frequency channel and Barker-coded single pulses on three channels. The basic integration time was 15 s and the spatial resolution 450 m. The results reveal a short-lived but intense thin sporadic E-layer at 18:00–18:06 U.T. at an altitude of about 106 km. Both before and during the event, downward ion velocities of the order of 100 m s−1 are observed above this height. A convergent null in the vertical ion speed is occasionally seen at the layer altitude. The layer occurrence is associated with auroral arcs drifting across the radar beam. Simultaneous observations of the STARE radar show an ionospheric electric field of 25–30 mV m−1. The field always has a westward component, which is in accordance with the observed downward plasma flow. Most of the time when the layer is intense, the field points into the NW-sector. Theoretically, this field direction should create convergent vertical plasma motion. Therefore it is suggested that the observed Es-layer is created by the action of the auroral electric field rather than by the wind shear mechanism.  相似文献   

11.
We use a 1-D chemical diffusive model, in conjunction with the measured neutral atmospheric structure, to analyze the Voyager RSS electron density, ne, profiles for the ionospheres of Jupiter and Saturn. As with previous studies we find serious difficulties in explaining the ne measurements. The model calculates ionospheres for both Jupiter and Saturn with ne peaks of 10 times the measured peaks at altitudes which are 900–1000 km lower than the altitude of peaks in the RSS electron densities. Based on our knowledge of neutral atmospheric structure, ionization sources, and known recombination mechanisms it seems that, vibrational excitation of H2 must play some role in the conversion of slowly radiatively recombining H+ ions to the relatively more rapidly recombining H2+ and H3+ ions. In addition, vertical ion flow induced by horizontal neutral winds or electric fields probably also play some role in maintaining the plasma peaks observed both for Jupiter and Saturn to be at high altitudes. For the ionosphere of Saturn, the electron densities are affected by a putative influx of H2O molecules, ΦH2O, from the rings. To reproduce the RSS V2 exit ne results model requires an influx of ΦH2O 2 × 107 molecules cm−2 s−1 without invoking H2f vibrational excitation. To maintain the model ne peak at the measured altitude vertical plasma drift maintained by meridional winds or vertical electric fields is required. The amounts of H2O are consistent with earlier estimates of Connerney and Waite (1984) and do not violate any observational constraints.  相似文献   

12.
TitanWRF general circulation model simulations performed without sub-grid-scale horizontal diffusion of momentum produce roughly the observed amount of superrotation in Titan’s stratosphere. We compare these results to Cassini-Huygens measurements of Titan’s winds and temperatures, and predict temperature and winds at future seasons. We use angular momentum and transformed Eulerian mean diagnostics to show that equatorial superrotation is generated during episodic angular momentum ‘transfer events’ during model spin-up, and maintained by similar (yet shorter) events once the model has reached steady state. We then use wave and barotropic instability analysis to suggest that these transfer events are produced by barotropic waves, generated at low latitudes then propagating poleward through a critical layer, thus accelerating low latitudes while decelerating the mid-to-high latitude jet in the late fall through early spring hemisphere. Finally, we identify the dominant waves responsible for the transfers of angular momentum close to northern winter solstice during spin-up and at steady state. Problems with our simulations include peak latitudinal temperature gradients and zonal winds occurring ∼60 km lower than observed by Cassini CIRS, and no reduction in zonal wind speed around 80 km, as was observed by Huygens. While the latter may have been due to transient effects (e.g. gravity waves), the former suggests that our low (∼420 km) model top is adversely affecting the circulation near the jet peak, and/or that we require active haze transport in order to correctly model heating rates and thus the circulation. Future work will include running the model with a higher top, and including advection of a haze particle size distribution.  相似文献   

13.
Venera 9, 10 measurements of the nightside ionospheric profile and the night airglow were used for investigating ionosphere formation processes. The upper ionospheric layer may be formed by HeI 584 Å radiation; the lower layer by meteorite ionization. Upper limits on the electron energy flux, <4 × 108eV cm−2 s−1, the helium ion flux <107 cm−2 s−1, the nitric oxide mixing ratio, <1.5 × 10−4 and the atomic sulphur mixing ratio, <10−6, are deduced for ionospheric altitudes.  相似文献   

14.
During the period October to December 1981, the Dynamics Explorer-2 (DE-2) spacecraft successively observed the South polar and the North polar regions, and recorded the temperature, composition and dynamical structure of the upper thermosphere. In October 1981, perigee was about 310 km altitude, in the vicinity of the South Pole, with the satellite orbit in the 09.00–21.00 L.T. plane. During late November and December, the perigee had precessed to the region of the North Pole, with the spacecraft sampling the upper thermosphere in the 06.00 18.00 L.T. plane. DE-2 observed the meridional wind with a Fabry-Perot interferometer (FPI), the zonal wind with the wind and temperature spectrometer (WATS), the neutral temperature with the FPI, and the neutral atmosphere composition and density with the neutral atmosphere composition spectrometer (NACS). A comparison between the South (summer) Pole and the North (winter) Pole data shows considerable seasonal differences in all neutral atmosphere parameters. The region of the summer pole, under similar geomagnetic and solar activity conditions, and at a level of about 300 km, is about 300 K warmer than that of the winter pole, and the density of atomic oxygen is strongly depleted (and nitrogen enhanced) around the summer pole (compared with the winter pole). Only part of the differences in temperature and composition structure can be related to the seasonal variation of solar insolation, however, and both polar regions display structural variations (with latitude and Universal Time) which are unmistakeable characteristics of strong magnetospheric forcing. The magnitude of the neutral atmosphere perturbations in winds, temperature, density and composition within both summer and winter polar regions all increase with increasing levels of geomagnetic activity.The UCL 3-dimensional time dependent global model has been used to simulate the diurnal, seasonal and geomagnetic response of the neutral thermosphere, attempting to follow the major features of the solar and geomagnetic inputs to the thermosphere which were present during the late 1981 period.In the UCL model, geomagnetic forcing is characterized by semi-empirical models of the polar electric field which show a dependence on the Y component of the Interplanetary Magnetic Field, due to Heppner and Maynard (1983), It is possible to obtain an overall agreement, in both summer and winter hemispheres, with the thermospheric wind structure at high latitudes, and to explain the geomagnetic control of the combined thermal and compositional structure both qualitatively and quantitatively. To obtain such agreement, however, it is essential to enhance the polar ionosphere as a consequence of magnetospheric particle precipitation, reflecting both widespread auroral (kilovolt) electrons, and “soft” cusp and polar cap sources. Geomagnetic forcing of the high latitude thermosphere cannot be explained purely by a polar convective electric field, and the thermal as well as ionising properties of these polar and auroral electron sources are crucial components of the total geomagnetic input.  相似文献   

15.
16.
A previous comparison of experimental measurements of thermospheric winds with simulations using a global self-consistent three-dimensional time-dependent model confirmed a necessity for a high latitude source of energy and momentum acting in addition to solar u.v. and e.u.v. heating. During quiet geomagnetic conditions, the convective electric field over the polar cap and auroral oval seemed able to provide adequate momentum input to explain the thermospheric wind distribution observed in these locations. However, it seems unable to provide adequate heating, by the Joule mechanism, to complete the energy budget of the thermosphere and, more importantly, unable to provide the high latitude input required to explain mean meridional winds at mid-latitudes. In this paper we examine the effects of low energy particle precipitation on thermospheric dynamics and energy budget. Modest fluxes over the polar cap and auroral oval, of the order of 0.4 erg cm −2/s, are consistent with satellite observations of the particles themselves and with photometer observations of the OI and OII airglow emissions. Such particle fluxes, originating in the dayside magnetosheath cusp region and in the nightside central plasma sheet, heat the thermosphere and modify mean meridional winds at mid-latitudes without enhancing the OI 557.7 line, or the ionization of the lower thermosphere (and thus enhancing the auroral electrojets), neither of which would be consistent with observations during quiet geomagnetic conditions.  相似文献   

17.
We investigate the effects of inverse Compton scattering by electrons and positrons in the unshocked winds of rotationally-powered binary pulsars. This process can scatter low energy target photons to produce gamma rays with energies from MeV to TeV. The binary radio pulsars PSR B1259−63 and PSR J0045−73 are both in close eccentric orbits around bright main sequence stars which provide a huge density of low energy target photons. The inverse Compton scattering process transfers momentum from the pulsar wind to the scattered photons, and therefore provides a drag which tends to decelerate the pulsar wind. We present detailed calculations of the dynamics of a pulsar wind which is undergoing inverse Compton scattering, showing that the deceleration of the wind of PSR B1259−63 due to ‘inverse Compton drag' is small, but that this process may confine the wind of PSR J0045−73 before it attains pressure balance with the outflow of its companion star. We calculate the spectra and light curves of the resulting inverse Compton emission from PSR B1259−63 and show that if the size of the pulsar wind nebula is comparable to the binary separation, then the γ-ray emission from the unshocked wind may be detectable by atmospheric Cherenkov detectors or by the new generation of satellite-borne γ-ray detectors such as INTEGRAL and GLAST. This mechanism may therefore provide a direct probe of the freely-expanding regions of pulsar winds, previously thought to be invisible.  相似文献   

18.
Auroral E region neutral winds determined from incoherent scatter radar observations at Chatanika, AK, during geomagnetic disturbances (15 May 1974) are compared with detailed theoretical calculations of neutral velocities for these conditions. The theoretical velocities are obtained by numerically solving the ion and neutral momentum equations in the ion drag approximation, including coriolis and viscous forces, using observed electric fields and electron densities. Large vertical gradients are found in the calculated velocities for altitudes below about 130 km. As a consequence of this structure and fluctuations in the electron density profiles, the data analysis procedure of Brekke et al. (1973) for obtaining neutral winds from radar data is found to underestimate the wind speed by up to 40%, but it determines the direction and temporal structure reasonably well. Comparison of observed neutral velocities with calculated values shows that ion drag alone cannot account for the observations. An equation is derived to estimate the pressure gradients required to resolve the discrepancy between calculated and observed neutral winds. Accelerations due to these pressure gradients are of the same order as those due to ion drag, but at least an order of magnitude larger than those due to solar heating. Directions of the horizontal pressure gradients are consistent with expected locations of auroral heating. During geomagnetic disturbances, ion drag and auroral heating both appear to play important roles in the generation and modification of neutral winds.  相似文献   

19.
Fabry-Perot interferometer measurements of Doppler shifts and widths of the 630.0 nm nightglow line have been used to determine the neutral winds and temperatures in the equatorial thermosphere over Natal, Brazil during August–September 1982. During this period, in the early night (2130 U.T.) the average value of the horizontal wind vector was 95 m s?1 at 100° azimuth, and the temperature varied from a low of 950 K during geomagnetically quiet conditions to a high of ~ 1400 K during a storm (6 September). The meridional winds were small, ?, 50 m s?1, and the eastward zonal winds reached a maximum value 1–3 h after sunset, in qualitative agreement with TGCM predictions. On 26 August, an observed persistent convergence in the horizontal meridional flow was accompanied by a downward vertical velocity and an increase in the thermospheric temperature measured overhead. Oscillations with periods of 40–45 min in both the zonal and vertical wind velocities were observed during the geomagnetic storm of 6 September, suggesting gravity wave modulation of the equatorial thermospheric flow.  相似文献   

20.
A modelling study of the effects of neutral air winds on the electron content of the mid-latitude ionosphere and protonosphere in winter has been made. The theoretical models are based on solutions of time dependent momentum and continuity equations for oxygen and hydrogen ions. The computations are compared with results from slant path observations of the ATS-6 radio beacon made at Lancaster (U.K.) and Boulder, Colorado (U.S.A.).It is found that the magnitude of the poleward neutral air wind velocity has a strong effect on the general magnitude of the electron content, but that the daily pattern of electron content variation is relatively insensitive to changes in the magnitude and phase of the wind pattern. These results are in contrast with the behaviour reported previously (Sethia et al., 1983) for summer conditions. However, the night-time electron content is increased by advancing the phase of the neutral air wind and decreased by retarding it. It appears that day-to-day variations in the electron content pattern in winter cannot be explained as effects of changing neutral air winds, which again contrasts with the findings for summer. As in summer, the wind has a major effect on the filling of the protonosphere, but in opposite sense.It is argued that the effect of the neutral air wind on the ionospheric and the protonospheric electron contents depends on the duration of the poleward wind in relation to daylight and on whether or not the wind reverses direction whilst the ionosphere is sunlit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号