首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the aid of the spectra taken in the years 1959–1968, a physical analysis of the atmosphere of P Cygni has been carried out and the motions of the atmosphere have been studied. The variations of radial velocities, the velocity progressions of Balmer and Hei lines, the high rate of mass loss (2×10–5 M yr–1), the features of the observed line profiles, especially that of H-K lines of Caii andD 1-D 2 lines of Nai confirm the conclusion of Van Blerkom (1978), concerning the assumption of an accelerating atmosphere for P Cygni. The electron density variation with the radius seems to ben e r –5/2, with an average value of 7×1011cm–3 at the lower boundary of the atmosphere.In order to explain the two absorption components of observed lines, an atmospheric model based on the assumption of three envelopes, two of which accelerate gradually with two different velocity laws (up to 11.2r c ), and the third of which accelerates rapidly with a standard velocity law (beyond 11.2r c ) has been developed. From this model and the observed profiles, the geometrical thicknesses of the line-forming regions of H, H, H, and H are derived.The observations were obtained at Haute Provence Observatory (CNRS).  相似文献   

2.
This work is divided into 13 sections and 2 appendices, and aims to elucidate the accretion mechanism, which operates via image-theory forces, whenever two interstellar dust grains come close together. Section 1 is an introduction. Section 2 proposes that the distribution of interstellar grains be taken asn(r) r –4 to avoid distortion of the 3K microwave background by radiation from spinning grains. Section 3 examines each of three types of image force accretion processes, finding them to be dominant compared to radiation or gravitational forces by at least a factor of 1019. Section 4 states that only grains made of conducting material (e.g., graphite, ice, iron) are involved in image theory. Section 5 presents reasons for believing that two grains should coalesce on impact. Section 6 examines the motion of charged interstellar grains in Hi and Hii regions. Section 7 demonstrates, by way of four examples involving dust grains ofr=10–7 cm up tor=10–4 cm, that the image effects on conducting grains are not trivial, and that the dynamics involved is not to be compared at all with elementary Coulomb interaction of two changes. Section 8 concludes that accretion with not take place in Hi clouds if thermal (equipartition) velocities prevail among the dust particles. section 9 examines grain interactions in Hii regions: here, following an argument due to Spitzer, consideration is given to the case of a population of dust grains all streaming in the direction of the local magnetic field B at velocities of order 0.1 km s–1. It is shown that accretion takes place effectively, leading to the formation of interstellar grit, meaning grains of mass 10–8 to 10–7 gm, radius 0.1 mm; and leaving also a population ofr10–6 cm grains, which are observed in polarization and extinction measurements. The existence of the latter is now a deduction and not an ad hoc postulate, as previously, and implies a distribution of the general formn(r) r mean –3 , in approximate agreement with that of Section 2. Section 10 considers the accretion mechanism as a cascade process. Section 11 shows that the existence of grains in space ofr 10–6 cm rules out an origin in supernova or galactic explosions, and supports a passive origin, perhaps in red giants or Mira variables. Section 12 discusses the implications of the results found for polarization observations and cosmogony, the latter being given a new foundation in which planets of different composition form automatically from a solar nebula. Section 13 is a conclusion.  相似文献   

3.
Properties of solar-flare EUV flashes measured via a type of ionospheric event, called a sudden frequency deviation (SFD), are presented. SFD's are sensitive to bursts of radiation in the 1–1030 Å wavelength range. He ii 303.8 Å, O v 629.7 Å, HL 972.5 Å and C iii 977.0 Å have essentially the same impulsive time dependence as the 1–1030 Å flash responsible for SFD's. Soft X-rays (2–20 Å) and certain EUV lines have a much slower time dependence than the 1–1030 Å flash. Most SFD's have some fine structure, but marked quasi-periodicity in EUV flashes is quite rare. EUV flashes are closely associated with hard X-ray bursts, white-light emission, microwave radio bursts and small bright impulsive kernels in the H flare. The intensity of EUV flashes depends on the central meridian distance of the H flare location; the intensity decreases at the limb. The total energy radiated in the 10–1030 Å flash for the largest events observed is about 1031 ergs.  相似文献   

4.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

5.
Results of high-dispersion spectroscopy (10 Å mm–1) of the symbiotic star AX Per carried out in the years from 1979 to 1987 are reported. The emission line [FeVII] 6086 consists of a narrow and a broad component; the radial velocity of the narrow one varies according to the photometric period 681.6 days. This variation (K=30.6±1.5 km s–1) seems to be due to the orbital motion of the hot star. The radial velocity of absorption lines varies with an inverse phase dependence and a much smaller amplitude (K=5.6±2 km s–1), which may reflect the orbital motion of the red giant. The variation of the radial velocity of the emission lines of FeII, ect. (K=6.7±1.5 km s–1) might be due to the rotation of the red giant. The profile of H emission line suddenly changed around the phase of the photometric minimum, which could be explained as a result of an eclipse of the emitting region by the red giant. On the other hand, some problems remain open in the behaviour of the radial velocities of H and HeI 5876.The observed results support a binary model of AX Per consisting of a rather massive (3M ) M-type giant and a Main-Sequence star (0.6M ). AX Per seems to be in an early stage of the Case C mass transfer, and the estimated very high mass accretion rate (10–4 M yr–1) is consistent with the theoretical models. The narrow component of the emission line of [FeVII] 6086 might be emitted in radiatively driven polar jets on the hot star of which luminosity is close to the Eddington limit.A new identification as ZrII at 6106.47 Å is proposed for the emission line at 6106 Å.  相似文献   

6.
Eclipsing binary TX UMa was observed with the D.A.O. high-dispersion spectrographs in 1969–1970, with emphasis on the detailed coverage of the primary minimum. One spectrum was taken exclusively within totality, thus exhibiting an uncontaminated spectrum of the secondary component. This leads to spectral reclassification of the secondary (F6 IV). The narrowing of the line profile of the H-line in totality is interpreted in terms of synchronous rotation of the secondary (v sini80 km s–1) while the primary rotates faster (v sini130 km s–1) than synchronously (v sini50 km s–1). Although the secondary does not fill in its Roche lobe fully, the system exhibits pronounced indications of rather strong physical interaction. This is now supported also by the profound changes of the line profiles of the H-line with phase.  相似文献   

7.
A principally new, quantitative system of the classification of the spectra of planetary nebulae is proposed. Spectral class of excitation class of the nebulap is determined according to the relative intensities of emission lines (N 1+N 2) [OIII]/4686 HeII and (N 1+N 2) [OIII]/H (Table I, Figure 1). The excitation classes are obtained for 142 planetary nebulae of all classes—low (p=1–3), middle (p=4–8), and high (p=9–12+) (Tables II, III, and IV). An empirical relationship between excitation classp and mean radius of nebulae is discovered (Figure 2). This relationship as well as excitation classp, as an independend parameter, admit an evolutionary interpretation. It is shown that after reaching the highest class of excitationp=12+ the nebulae decrease their class of excitation with the further increases of sizes. The diagram of this relationship has two nearly-symmetric branches — rising and descending with the apogee onp=12+ (Figure 2).  相似文献   

8.
Observations of the ionized hydrogen region NGC 1499 have been carried out with the radio telescope UTR-2 at frequencies 12.6, 14.7, 16.7, 20 and 25 MHz. The half-power resolution of the instrument to zenith is 28×34 at 25 MHz. The average volume density of the non-thermal radio emission between the Sun and the nebula (1.75×10–40 W m–3 Hz–1 ster–1 at 25 MHz), the electron temperature of the HII nebula (T e =4400 K), the measure of emission (ME=1500 cm–6 pc) and other parameters have been obtained. Maps of brightness distribution over the source are presented for each observation frequency. The results are compared with previously obtained data.  相似文献   

9.
Macrospicules have been observed in H and He i D3, on the disk and above the limb. In 1975, a rate of 1400 (A day)–1 is inferred, and the ratio of equatorial to polar rates 2. D3 intensities are a few × 10–3 of the disk center, and do not decrease in coronal holes. The ratio of H to D3 intensities is 10. The integral number of macrospicules with D3 intensity I 0 is proportional to I 0 –1.  相似文献   

10.
The brightness distribution of diffuse soft X-rays in the pulse height range 0.15–0.3 keV (L-band) and 0.5–0.8 keV (M-band) are obtained over a quarter of the sky centered at the galactic anticenter with 1.5 m polypropylene window proportional counters on board a sounding rocket. In theL-band three enhanced regions are noticed on the map. They coincide with the northern and southern Hi holes and the inner part of the galactic radio Loop II.In the northern Hi hole theN H dependence of theL-band flux and the hardness ratioM/L can be fitted with a local hot plasma model with the absorption by a low velocity neutral hydrogen gas (|V|<25 km s–1) along the line of sight. The X-ray feature of Loop II is similar to that of Loop I. In the lowN H region (<3×1020 H atoms cm–2) theM/L value is lower than 0.3, whereas it varies in the range 0.1–0.4 at low latitudes (|b|<300). This fact seems to be interpreted in terms of a model that a number of hot plasma clouds contribute to X-ray emission.  相似文献   

11.
The Monoceros ring, a circular optical nebulosity 3°.5 in diameter and centred at R.A.=6h37m, Dec.=6°30 (l ii =205°.5,b ii =0°.2) is in good structural agreement with radio observations. A neutral hydrogen shell is also accurately projected on the ring. These observations are consistent with the Monoceros ring being a supernova remnant 90–100 pc in diameter expanding at about 45 km s–1 and having an age of the order of a million years. Bright Hii regions containing early-type stars (e.g., galactic cluster NGC 2244 in the Rosette nebula) and extremely young stars of the OB association Mon OB2 lie at the edges of the ring. The positional and temporal coincidence of the Mon OB2 association with a supernova remnant suggests that probably the star formation in this region is induced or speeded up by the passage of a supernova shock wave through the clumpy interstellar medium.  相似文献   

12.
A very low upper limit of 0.15 mÅ for the interstellar 6707 Å Lii line has been recently derived towards the SN1987a by Baade and Magain (1988). This value corresponds toN(Li)<1.4×1011 cm–2 and gives [Li/H]<5.4×10–11 assumingN(Hi)=2.6×1021 cm–2 for the hydrogen column density in the LMC towards SN1987a. This value is lower than the Li abundance found in the Population II stars and lower than the minimum abundance allowed in the framework of the standard Big-Bang theory. We indirectly estimate the Li depletion usingKi observations and show that a depletion of 1.2 dex is plausible. Therefore, an interstellar abundance [Li/H] as high as 0.8×10–9 cannot be excluded. Any improvement in the above-mentioned upper limit will place important constraints on current theories for lithium nucleosynthesis.High-resolution IUE spectra of the SN1987a have been analysed in search for IS 1362 ÅBii resonance lines. A minimum detectable equivalent width of 22 mÅ has been found, that impliesN(B)<1.2×10–12 cm–2 and [B/H]<4.7×10–10 cm–2, i.e., comparable to the solar value of [B/H]=4×10–10. This limit is the most stringent derived so far for an external galaxy, and suggests that the rate of spallation processes in the LMC has not been higher than in our own Galaxy.  相似文献   

13.
We report some results of a rocket experiment flown on 29 April, 1971. A survey of the solar corona was carried out with a pair of collimated Bragg spectrometers to study the resonance, intersystem and forbidden line emission from the helium-like ions O vii (22 Å) and Ne ix (13 Å). In the direction of dispersion the collimator provided a field of view of 1.7. Also, the continuum radiation near 3 Å was monitored by a collimated proportional counter within a view angle of 4.2. The observed X-ray emission came from the general corona, seven plage regions, and one dynamic feature- the late stage of a small flare. From the intensity of the O vii and Ne ix resonance lines the electron temperature and emission measure of the individual emitting regions are derived on the basis of two models, one (a) in which the region is assumed to be isothermal and another (b) in which the emission measure decreases exponentially with increasing temperature. The latter model, which is the most adequate of the two, yields for the electron temperature of the time-varying feature 2–3 × 106 K, for the other active regions 1.5–2.5 × 106 K, and for the general corona 1.3–1.7 × 106 K. The Ne ix emitting regions are about 1.5 times as hot as the O vii regions. The emission measure ranges from 0.4–2.3 × 1048 cm–3 for all active regions and is about 2 × 1049 cm–3 for one hemisphere of the general corona above 106 K. From an analysis of the ratio, R, of the forbidden and intersystem lines of O vii we conclude that none of the regions producing these lines at the time of the rocket flight had electron densities exceeding about 3 × 109 cm–3. Our data demonstrate a dependence of R upon temperature in agreement with the theory of Blumenthal et al. (1971). The wavelengths for the intersystem, the 1s 22s 2 S e–1s2p2s 2 P 0 satellite, and the forbidden transition show in the case of Ne ix improved agreement with predictions. The observed strength of the satellite lines for both O vii and Ne ix agrees with the predictions of Gabriel's (1972) theory, which attributes their formation to dielectronic recombination.We are saddened to report the death of A. J. Meyerott on 13 November, 1971.  相似文献   

14.
Slitless flash spectrograms in heights below 8000 km above the solar limb were obtained by the University of Kyoto Expedition at Atar, Mauritania. The integrated intensities of Fexiv 5303, Fex 6374, Fexi 7892, and the continuum are measured as a function of height above the solar limb at eleven points (P.A. = 284–300°) around the third contact point. It is found that a significant amount of the emission in Fex 6374 originates in chromospheric levels well below 8000 km. This implies that the interspicular region of the chromosphere is occupied by coronal material. The average values of the electron temperature and the electron density in the interspicular region are derived from the Fex 6374 and the Fexi 7892 intensities on the assumption of spherical symmetry: T e = 0.9–1.1 × 106 K and N e = 9–10 × 108 cm–3. The intensity variations of the coronal lines and the continuum with position angle are also studied. Strong correlations between Fexiv 5303 and the continuum and between Fex 6374 and Fexi 7892 are found. From the Fex 6374 intensities it is inferred that there is a density fluctuation in the innermost corona by at least a factor of two.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 271.  相似文献   

15.
Results are given of the detailed analysis of fourteen Fe xxv-xxiii lines ( = 1.850–1.870 Å) in the spectra of a solar flare on 16 Nov. 1970. The spectra were obtained with a resolution of about 4 × 10–4 Å, which revealed lines not previously observed and allowed the measurement of line profiles. The measured values of the wavelengths and emission fluxes are presented and compared with theoretical calculations. The analysis of the contour of the Fe xxv line ( = 1.850 Å) leads to the conclusion that there is unidirectional macroscopic gas motion in the flare region with the velocity (projection on the line of sight) ± 90 km s–1.Measurements of the 8.42 Å Mg xii and 9.16 Å Mg xi lines in the absence of solar flares indicate prolonged existence of active regions on the solar disk with T e = 4–6 × 106K and emission measure ME 1048 cm–3. The profile of the Mg xii line indicates a macroscopic ion motion with a velocity up to 100 km s–1.  相似文献   

16.
A flare surge at the limb was observed in CIII 977 Å by the Harvard OSO 6 spectroheliometer. The kinematic behavior of the surge is the same in CIII and in H. The amount of CIII emission is consistent with a model in which the CIII ions occupy sheaths with thickness 100 km surrounding the cooler H-emitting threads. The mass of the material containing CIII ions is about 10–2 times that emitting H.Now at California Institute of Technology, Pasadena, California.  相似文献   

17.
O vi ( = 1032 Å) profiles have been measured in and above a filament at the limb, previously analyzed in H i, Mg ii, Ca ii resonance lines (Vial et al., 1979). They are compared to profiles measured at the quiet Sun center and at the quiet Sun limb.Absolute intensities are found to be about 1.55 times larger than above the quiet limb at the same height (3); at the top of the prominence (15 above the limb) one finds a maximum blue shift and a minimum line width. The inferred non-thermal velocity (29 km s–1) is about the same as in cooler lines while the approaching line-of-sight velocity (8 km s–1) is lower than in Ca ii lines.The O vi profile recorded 30 above the limb outside the filament is wider (FWHM = 0.33 Å). It can be interpreted as a coronal emission of O vi ions with a temperature of about 106 K, and a non-thermal velocity (NTV) of 49 km s–1. This NTV is twice the NTV of quiet Sun center O vi profiles. Lower NTV require higher temperatures and densities (as suggested by K-coronameter measurements). Computed emission measures for this high temperature regime agree with determinations from disk intensities of euv lines.  相似文献   

18.
The four diffuse interstellar absorption bands at 4430, 4760, 4890, and 6180 and the two diffuse lines at 5780 and 5797 are interpreted as belonging to pre-ionization transitions in H and O, respectively. In both cases the identifications are supported by extrapolations of wave numbers of resonance lines along isoelectronic sequences.In the H case the hypothesis as to the origin of the bands is supported by quantum-mechanical results byHerzenberg andMandl (1963) as to the positions of resonances in collisions between neutral hydrogen atoms and free electrons. The relatively large intensities of the forbidden transitions indicate that the extent of the ion in its excited states may be very large as compared to ordinary atomic dimensions. In the O case the relative doublet separation, as extrapolated along the isoelectronic sequence, is used for the identification of the doublet.  相似文献   

19.
A one-zone model for the late time SN II energized by the radioactive decay56Ni–56Co–56Fe is presented. The model succeeds in reproducing for the late time evolution of H and [Oi] 6300 emission lines in SN1970g for the reasonable set of parameters: mass of ejecta 4M , boundary velocityv 0=4000 km s–1 and amount of56NiM Ni=0.02M . However, a one-zone model does not account for the late time continuum. In the case of SN1980k the radioactive model fits H and [Oi] 6300 emissions att250 day satisfactory but fails at very late time, e.g.,t=670 day when the predicted value of the ratioL(H)/L(6300) is two orders of magnitude smaller than the observed one. We suggest that the strong H emission in SN1980k on the 670th day is due to the interaction of the supernova envelope with the pre-SN wind. The radioactive model for the late time SN II predicts strong Mgii 2800 line and detectable Hei 10830 line in emission and absorption.  相似文献   

20.
The spatial and temporal evolution of the high temperature plasma in the flare of 1973 June 15 has been studied using the flare images photographed by the NRL XUV spectroheliograph on Skylab.The overall event involves the successive activations of a number of different loops and arches bridging the magnetic neutral line. The spatial shifts and brightenings observed in the Fe xxiii–xxiv lines are interpreted as the activation of new structures. These continued for four or five minutes after the end of the microwave burst phase, implying additional energy-release unrelated to the nonthermal phase of the flare. A shear component observed in the coronal magnetic field may be a factor in the storage and release of the flare energy.The observed Fe xxiii–xxiv intensities define a post-burst heating phase during which the temperature remained approximately constant at 13 × 106 K while the Fe xxiv intensity and 0–3 Å flux rose to peak values. This phase coincided with the activation of the densest structure (N e = 2 × 1011 cm–3). Heating of higher loops continued into the decay phase, even as the overall temperature and flux declined with the fading of the lower Fe xxiv arches.The observed morphology of individual flaring arches is consistent with the idea of energy release at altitude in the arch (coincident with a bright, energetic core in the Fe xxiv image) and energy flow downward into the ribbons. The Doppler velocity of the Fe xxi 1354 Å line is less than 5 km s–1, indicating that the hot plasma region is stationary.The relation of this flare to the larger class of flares associated with filament eruptions and emerging magnetic flux is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号