首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magmatism,metamorphism and metasomatism in the Palaeoproterozoic‐Mesoproterozoic Mt Painter Inlier and overlying Neoproterozoic Adelaidean rocks in the northern Flinders Ranges (South Australia) have previously been interpreted as resulting from the ca 500 Ma Delamerian Orogeny. New Rb–Sr, Sm–Nd and U–Pb data, as well as structural analysis,indicate that the area also experienced a second thermal event in the Late Ordovician (ca 440 Ma). The Delamerian Orogeny resulted in large‐scale folding, prograde metamorphism and minor magmatic activity in the form of a small volume of pegmatites and leucogranites. The Late Ordovician event produced larger volumes of granite (the British Empire Granite in the core of the inlier) and these show Nd isotopic evidence for a mantle component. The high‐temperature stage of this magmatic‐hydrothermal event also gave rise to unusual diopside‐titanite veins and the primary uranium mineralisation in the basement, of which the remobilisation was younger than 3.5 Ma. It is possible that parts of the Mt Gee quartz‐hematite epithermal system developed during the waning stages of the Late Ordovician event. We suggest that the Ordovician hydrothermal system was also the cause of the commonly observed retrogression of Delamerian metamorphic minerals (cordierite, andalusite) and the widespread development of actinolite, scapolite, tremolite and magnetite in the cover sequences. Deformation during the Late Ordovician was brittle. The recognition of the Late Ordovician magmatic‐hydrothermal event in the Mt Painter Province might help to link the tectonic evolution of central Australia and the southeast Australian Lachlan Fold Belt.  相似文献   

2.
Apatite fission track results are reported for 26 outcrop samples from the Mt Painter Inlier, Mt Babbage Inlier and adjacent Neoproterozoic rocks of the northwestern Curnamona Craton of South Australia. Forward modelling of the data indicates that the province experienced variable regional cooling from temperatures >110°C during the Late Palaeozoic (Late Carboniferous to Early Permian). The timing of this cooling is similar to that previously reported from elsewhere in the Adelaide Fold Belt and the Curnamona Craton, suggesting that the entire region underwent extensive Late Palaeozoic cooling most likely related to the waning stages of the Alice Springs or Kanimblan Orogenies. Results from the Paralana Fault Zone indicate that the eastern margin of the Mt Painter Inlier experienced a second episode of cooling (~40–60°C) during the Paleocene to Eocene. The entire region also experienced significant cooling (less than ~40°C) during the Late Cretaceous to Palaeogene in response to unroofing and/or a decrease in geothermal gradient. Regional cooling/erosion during this time is supported by: geomorphological and geophysical evidence indicating Tertiary exhumation of at least 1 km; Eocene sedimentation initiated in basins adjacent to the Flinders and Mt Lofty Ranges sections of the Adelaide Fold Belt; and Late Cretaceous ‐ Early Tertiary cooling previously reported from apatite fission track studies in the Willyama Inliers and the southern Adelaide Fold Belt. Late Cretaceous to Palaeogene cooling is probably related to a change in stress field propagated throughout the Australian Plate, and driven by the initiation of sea‐floor spreading in the Tasman Sea in the Late Cretaceous and the Eocene global plate reorganisation.  相似文献   

3.
Major‐ and trace‐element chemistry (including rare‐earth elements), total‐rock Rb‐Sr and U‐Pb and zircon U‐Pb data are used in an attempt to distinguish between two essentially coeval, felsic volcanic suites: the predominantly submarine Woodlawn suite which is associated with massive Cu‐Pb‐Zn sulphide mineralization and the terrestrial Mt Painter suite, with minor vein‐type mineralization. The Woodlawn samples are the unmineralized equivalents of the volcanics in the immediate ore environment.

Alteration perturbs some of the major‐ and trace‐element chemistry, particularly Ca and alkalis, thereby precluding their usefulness. REE patterns exhibit a significant light to heavy rare‐earth enrichment with an average La/Yb of 12 in the Mt Painter volcanics compared with 5.6 in the Woodlawn volcanics. Both suites have a marked negative Eu anomaly, with that of the Woodlawn samples more pronounced (‐45.5) than in the Mt Painter volcanics (‐29.2). A hydrothermally‐altered sample from Woodlawn has apparently lost about 50% of its light rare‐earth elements.

Initial 87Sr/86Sr ratios at about 0.711 are the same for rocks from both suites and differences in initial lead‐isotopic ratios appear negligible.

Zircons from both suites are a mixture of clear euhedral crystals and rounded discrete crystals or rounded cores overgrown by clear zircon. The U‐Pb data substantiate the morphological features in that the zircon suites both contain older inherited Pb but the Mt Painter zircons contain a greater proportion.

Cs concentrations and Cs/Rb and Ti/Zr ratios can be used to distinguish between the Woodlawn suite and the Mt Painter suite.  相似文献   

4.
《Gondwana Research》2014,25(3-4):1067-1079
The Mt Painter Province of northern South Australia is a site of exceptional suite of Mesoproterozoic high heat producing (HHP) granites and felsic volcanics. These rocks have very high heat production values of > 5 μW m 3. The HHP granites, including the Mt Neill, Box Bore, Terrapinna, Wattleowie and Yerila granites, form part of a broadly coeval association of mafic and felsic volcanic rocks that also include the Pepegoona Volcanics, lamprophyres and mafic–intermediate dykes. U–Pb LA-ICPMS zircon dating and Hf-in-zircon isotopic data are used to constrain both the timing and source of these magmatic rocks. U–Pb zircon LA-ICPMS crystallization ages range from ~ 1596 to 1521 Ma and imply a protracted sequence of magmatic events. Initial Hf isotopic compositions of these zircons from both dykes and felsic rocks have overlapping compositional ranges, with εHf values mainly from + 4 to − 2. These Hf values are significantly higher than contemporary crustal values which are likely to have been in the range − 4 to − 20. These data imply that the magmatic suite has both mantle and crustal sources.  相似文献   

5.
New stratigraphic, geochemical and palaeomagnetic data from the Peters Creek Volcanics are used to revise the correlations of part of the Palaeoproterozoic of northern Australia. The revised geological history for these cover rocks of the Murphy Inlier is extrapolated into the 1800–1700 Ma successions of the McArthur Basin and Mt Isa regions. New stratigraphic subdivisions and relationships are contrasted with the established lithostratigraphic schemes and also with conflicting published tectono‐stratigraphic interpretations. For the first time, a plethora of stratigraphic units can be rationalised into two major superbasins, the Leichhardt and Calvert Superbasins, and into eight pseudo‐chronostratigraphic basin phases (Associations A‐H). There are few absolute age constraints, but lateral correlations of the units in these eight basin phases are proposed. Results from the overlying Isa Superbasin (<1670 Ma) suggest that these eight associations probably represent second‐order supersequences. Mixed non‐marine and marine coarse clastics, deposited between about 1790 and 1780 Ma dominate Associations A and B. In the Mt Isa region these were deposited in an initial rift then a thermal relaxation or sag phase. To the northwest, however, the succession is dominated by rift facies. Association C is a widespread flood basalt and immature clastic suite that was deposited in clearly defined, north‐trending half‐grabens in the Mt Isa region. Along the southern edge of the Murphy Inlier, however, geophysically defined half‐grabens, filled with magnetic rocks (basalt), trend orthogonal to those at Mt Isa. North of the inlier Association C is much thinner, and little can be deduced about its palaeogeography. Association D is only present in the Mt Isa region as the Myally Subgroup. Differing views on its tectonic setting and environments of deposition, as presented in recent papers, are reviewed. Association E, deposited around 1755 Ma, is a regional sag phase with mixed clastic‐carbonate, shallow‐marine lithofacies in all areas. There is a major gap in the rock record between about 1750 and 1735 Ma which is probably related to widespread basin inversion. The Mid‐Tawallah Compressional Event (McArthur River area) and the Wonga Extension Event (Eastern Succession, Mt Isa) are both about this age. The overlying Association F is a thin, laterally uniform, upward‐fining succession that commences with shallow‐marine clastics and evolves through deeper marine clastics and ends in evaporitic facies. There are broad similarities between Associations F and E so interpretation as a third regional sag is favoured. The absence of Association F at Mt Isa may indicate that basin inversion was longer lived in the southeast. The youngest associations, G and H, are complex interstratified mixtures of felsic‐mafic igneous rocks and immature clastics. U–;Pb zircon SHRIMP ages appear to cluster around 1725 Ma and 1710 Ma, but they may all be part of one thermal event. These eight associations may represent the tectono‐magmatic response of the lithosphere during and after the Strangways Orogeny (1780–1730 Ma).  相似文献   

6.
The source of metasomatic fluids in iron-oxide–copper–gold districts is contentious with models for magmatic and other fluid sources having been proposed. For this study, δ 18O and δ 13C ratios were measured from carbonate mineral separates in the Proterozoic eastern Mt Isa Block of Northwest Queensland, Australia. Isotopic analyses are supported by petrography, mineral chemistry and cathodoluminescence imagery. Marine meta-carbonate rocks (ca. 20.5‰ δ 18O and 0.5‰ δ 13C calcite) and graphitic meta-sedimentary rocks (ca. 14‰ δ 18O and −18‰ δ 13C calcite) are the main supracrustal reservoirs of carbon and oxygen in the district. The isotopic ratios for calcite from the cores of Na–(Ca) alteration systems strongly cluster around 11‰ δ 18O and −7‰ δ 13C, with shifts towards higher δ 18O values and higher and lower δ 13C values, reflecting interaction with different hostrocks. Na–(Ca)-rich assemblages are out of isotopic equilibrium with their metamorphic hostrocks, and isotopic values are consistent with fluids derived from or equilibrated with igneous rocks. However, igneous rocks in the eastern Mt Isa Block contain negligible carbon and are incapable of buffering the δ 13C signatures of CO2-rich metasomatic fluids associated with Na–(Ca) alteration. In contrast, plutons in the eastern Mt Isa Block have been documented as having exsolved saline CO2-rich fluids and represent the most probable fluid source for Na–(Ca) alteration. Intrusion-proximal, skarn-like Cu–Au orebodies that lack significant K and Fe enrichment (e.g. Mt Elliott) display isotopic ratios that cluster around values of 11‰ δ 18O and −7‰ δ 13C (calcite), indicating an isotopically similar fluid source as for Na–(Ca) alteration and that significant fluid–wallrock interaction was not required in the genesis of these deposits. In contrast, K- and Fe-rich, intrusion-distal deposits (e.g. Ernest Henry) record significant shifts in δ 18O and δ 13C towards values characteristic of the broader hostrocks to the deposits, reflecting fluid–wallrock equilibration before mineralisation. Low temperature, low salinity, low δ 18O (<10‰ calcite) and CO2-poor fluids are documented in retrograde metasomatic assemblages, but these fluids are paragenetically late and have not contributed significantly to the mass budgets of Cu–Au mineralisation.  相似文献   

7.
The Arunta Inlier is a 200 000 km2 region of mainly Precambrian metamorphosed sedimentary and igneous rock in central Australia. To the N it merges with similar rocks of lower metamorphic grade in the Tennant Creek Inlier, and to the NW it merges with schist and gneiss of The Granites‐Tanami Province. It is characterized by mafic and felsic meta‐igneous rocks, abundant silicic and aluminous metasediments and carbonate, and low‐ to medium‐pressure metamorphism. Hence, the Arunta Inlier is interpreted as a Proterozoic ensialic mobile belt floored by continental crust. The belt evolved over about 1500 Ma, and began with mafic and felsic volcanism and mafic intrusion in a latitudinal rift, followed by shale and limestone deposition, deformation, metamorphism and emergence. Flysch sedimentation and volcanism then continued in geosynclinal troughs flanking the ridge of meta‐igneous rocks, and were followed by platform deposition of thin shallow‐marine sediments, further deformation, and episodes of metamorphism and granite intrusion.  相似文献   

8.
In-situ migmatite and hybrid diatexite at Mt Stafford, central Australia   总被引:3,自引:1,他引:3  
Metasedimentary gneisses show a rapid change in grade within a 10-km-wide low- P /high- T  regional aureole at Mt Stafford, Arunta Block, central Australia. Migmatites occur in all but the lowermost of five metamorphic zones, which are characterized by: (1) muscovite–quartz schist; (2) andalusite–cordierite–K-feldspar granofels with small melt segregations; (3) spinel–sillimanite–cordierite–K-feldspar migmatite; (4) garnet–orthopyroxene–cordierite migmatite and minor diatexite; and (5) biotite–cordierite–plagioclase diatexite that shows a transition to granite. A subsolidus unit comprising interbedded sandstone and siltstone is equivalent to bedded migmatite , the main rock type in Zones 2–4. Mesoscopic textures and migmatite classification of this unit vary with grade. In Zone 2, metatexite is developed in siltstone layers that are separated by quartz-rich, unmelted metapsammite layers. Melt segregation was less efficient in Zones 3 and 4, where the dominant migmatite layering is a modified bedding. High proportions of melt were present in Zone 4, in which schlieren migmatite is transitional between bedded migmatite and metapelite-sourced diatexite. The preservation of sedimentary structures and coexistence of melt reactants and products in Zone 4 metapelite imply that melting proceeded in situ without substantial migration of melt. Zone 5 biotite–cordierite–plagioclase diatexite carries rafts of bedded migmatite with strongly resorbed edges, as well as large K-feldspar and quartz augen. This unit of comparatively Ca-rich migmatites is inferred to have been formed by the mixing of locally derived and injected granitic melt.  相似文献   

9.
The rock types and mineral compositions of the Mt. Namjagbarwa region have been studied. Petro-chemical analyses and calculations show that there are two types of metamorphic rock: ortho-and para-rocks in this region with the former being dominant. The results of trace element and REE analyses indicate that the original rocks are of multiple source with the continental tholeiites as the main source.  相似文献   

10.
We present hornblende, white mica, biotite and alkali feldspar 40Ar/39Ar data from Paleo-Mesoproterozoic rocks of the Mt. Isa Inlier, Australia, which reveal a previously unrecognised post-orogenic, non-linear cooling history of part of the Northern Australian Craton. Plateau and total fusion 40Ar/39Ar ages range between 1500 and 767 Ma and record increases in regional cooling rates of up to 4 °C/Ma during 1440–1390 and 1260–1000 Ma. Forward modelling of the alkali feldspar 40Ar/39Ar Arrhenius parameters reveals subsequent increases in cooling rates during 600–400 Ma. The cooling episodes were driven by both erosional exhumation at average rates of 0.25 km/Ma and thermal relaxation following crustal heating and magmatic events. Early Mesoproterozoic cooling is synchronous with exhumation and shearing in the Arunta Block and Gawler Craton. Late Mesoproterozoic cooling could have either been driven by increased rates of exhumation, or a result of thermal relaxation following a heat pulse that was synchronous with dyke emplacement in the Arunta, Musgrave and Mt. Isa province, as well as Grenville-aged orogenesis in the Albany–Fraser Belt. Latest Neoproterozoic–Cambrian cooling and exhumation was probably driven by the convergence of part of the East Antarctic Shield with the Musgrave Block and Western Australia (Petermann Ranges Orogeny), as well as collisional tectonics that produced the Delamerian–Ross Orogen. Major changes in the stress field and geothermal gradients of the Australian plate that are synchronous with the assembly and break-up of parts of Rodinia and Gondwana resulted in shearing and repeated brittle reactivation of the Mt. Isa Inlier, probably via the displacement of long-lived basement faults within the Northern Australian Craton.  相似文献   

11.
Provenance data from Paleoproterozoic and possible Archean sedimentary units in the central eastern Gawler Craton in southern Australia form part of a growing dataset suggesting that the Gawler Craton shares important basin formation and tectonic time lines with the adjacent Curnamona Province and the Isan Inlier in northern Australia. U–Pb dating of detrital zircons from the Eba Formation, previously mapped as the Paleoproterozoic Tarcoola Formation, yields exclusively Archean ages (ca 3300–2530 Ma), which are consistent with evolved whole-rock Nd and zircon Hf isotopic data. The absence of Paleoproterozoic detrital grains in a number of sequences (including the Eba Formation), despite the proximity of voluminous Paleoproterozoic rock units, suggests that the Eba Formation may be part of a Neoarchean or early Paleoproterozoic cover sequence derived from erosion of a multi-aged Archean source region. The ca 1715 Ma Labyrinth Formation, unconformably overlying the Eba Formation, shares similar depositional timing with other basin systems in the Gawler Craton and the adjacent Curnamona Province. Detrital zircon ages in the Labyrinth Formation range from Neoarchean to Paleoproterozoic, and are consistent with derivation from >1715 Ma components of the Gawler Craton. Zircon Hf and whole-rock Nd isotopic data also suggest a source region with a mixed crustal evolution (εNd –6 to –4.5), consistent with what is known about the Gawler Craton. Compared with the lower Willyama Supergroup in the adjacent Curnamona Province, the Labyrinth Formation has a source more obviously reconcilable with the Gawler Craton. Stratigraphically overlying the Eba and Labyrinth Formations is the 1656 Ma Tarcoola Formation. Zircon Hf and whole-rock Nd isotopic data indicate that the Tarcoola Formation was sourced from comparatively juvenile rocks (εNd –4.1 to + 0.5). The timing of Tarcoola Formation deposition is similar to the juvenile upper Willyama Supergroup, further strengthening the stratigraphic links between the Gawler and Curnamona domains. Additionally, the Tarcoola Formation is similar in age to extensive units in the Mt Isa and Georgetown regions in northern Australia, also shown to be isotopically juvenile. These juvenile sedimentary rocks contrast with the evolved underlying sequences and hint at the existence of a large-scale ca 1650 Ma juvenile basin system in eastern Proterozoic Australia.  相似文献   

12.
对浙江省内花岗质岩石样品薄片在偏光显微镜下鉴定,试图建立矿物学与微构造之间的联系,确定裂隙分布矿物学控制因素,并调查微裂隙与交代变质蚀变之间的关系.薄片显示花岗质岩石主要由斜长石、钾长石、石英和云母组成.其中长石和云母解理发育,在结构上更易于变形,而石英则表现为均质特征,其中的裂隙比其他矿物(长石、云母)中更发育.这些解理和裂隙接纳流体进入并造成交代变质.在此过程中,黑云母被白云母交代而形成石英并释放出钾,这些钾进而交代斜长石而形成钾长石.值得关注的是,一些矿物颗粒边界显现出很少的变形,如钾长石-斜长石边界和石英-石英边界呈现较低程度的颗粒间碎裂,并变得可能比以前更坚硬,这是因为重结晶作用和交代作用胶结了以前的碎裂结构.最后,变形作用影响到整个岩石,为流体通过岩石打开通道,进一步的微裂隙对大规模钾交代变质作用的发生至关重要.研究区内花岗岩的矿物学及裂隙特征表明,交代作用可以作为可靠的构造标志,用以恢复浙江花岗岩现代和古裂隙的几何特征.  相似文献   

13.
MCT Zone of Alakhnanda valley is a major ductile shear zone in Garhwal Himalaya, which is characterised by different types of mylonite rocks. On the basis of grain size and the percentage of matrix in the rock, zones comprising protomylonite, augen mylonite, mylonite and ultramylonite have been identified. The study of microstructures, grain size and crystallographic preferred orientation of quartz c-axis fabric reveals that the rocks of the MCT zone were deformed by a combination of intracrystalline creep (power law creep) and grain boundary migration (sliding super plasticity).  相似文献   

14.
Sedimentary rocks of the Palaeoproterozoic Calvert and Isa Superbasins are exposed across a large area of northern Australia. Despite the extent of the exposures there is little to indicate the nature of the basin margins as most outcrop boundaries are structurally or erosionally defined, or the margins, where preserved, are concealed beneath younger basins. The Murphy Inlier, which forms the boundary between the Mt Isa and McArthur Basins, is unique in that on its southern flanks a basin‐margin succession is well‐preserved as the Fickling Group. A detailed sequence‐stratigraphic analysis of outcrop sections and well logs, supplemented by seismic reflection profiles and SHRIMP U–Pb zircon ages, shows that all seven supersequences of the Isa Superbasin and one supersequence from the older Calvert Superbasin are represented in the Fickling Group. Through this high‐resolution sequence‐stratigraphic framework, it is possible to accurately correlate chronostratigraphically equivalent strata from the McNamara Group on the central Lawn Hill Platform to the Fickling Group on the southern Murphy Inlier. Each supersequence thins substantially from the McNamara Group (~11 km thick) to the Fickling Group (<1 km thick). The combined effects of truncation and onlap of sequences over the Murphy Inlier basement high are responsible for the thinning. Major time breaks of up to 25 million years occur between supersequences in the Fickling Group. Erosional hiatuses are often manifested at the base of supersequences as conglomerate beds composed of silicified detritus from older strata. Sequences in the Fickling Group were generally deposited in a proximal basin‐margin setting, while sequences in the McNamara Group were deposited in distal basin depocentres. The proximal depositional setting of Fickling Group sequences reduces the number of thick carbonaceous shale and siltstone intervals, which often host Zn–Pb–Ag and Cu deposits in the McNamara Group. Many host sequences from the McNamara Group are also absent in the Fickling Group due to truncation and onlap pinchout. Consequently, the economic potential of Palaeoproterozoic strata on the southern Murphy Inlier is less than equivalent strata from the central Lawn Hill Platform. Despite this, potential does exist for future discoveries of economic mineral deposits in the Mt Les Siltstone and Walford Dolomite units of the Fickling Group.  相似文献   

15.
Ion microprobe U–Th–Pb analyses of baddeleyite and zircon yield precise ages for several mafic intrusions in the Pilbara Craton of Western Australia. Baddeleyite was dated from four dolerite dykes of the north‐northeast‐trending Black Range swarm intruded into granitoid‐greenstone basement in the northern part of the craton. The mean 207Pb*/206Pb* age of 2772 ± 2 Ma, interpreted as an unambiguous age of emplacement for the dykes, is within error of previous ion microprobe U–Pb zircon ages for the Mt Roe flood basalts and confirms that the dykes acted as feeders to the volcanic rocks. The Sylvania Inlier, in the southeastern Pilbara Craton, also contains north‐northeast‐trending dykes that were correlated previously with the Black Range swarm. Based on concordant and discordant zircon analyses from samples of two dykes, the best estimate of the age of the Sylvania dykes is 2747 ± 4 Ma. The Sylvania dykes thus appear to be significantly younger than, and hence unrelated to, the Black Range swarm, but may have acted as feeders to younger volcanic units in the Fortescue Group such as the Kylena Formation.  相似文献   

16.
对天山成矿带中国境内的东天山地区和哈萨克斯坦境内的楚伊犁地区1∶100万比例尺的地球化学填图所揭示的信息进行了对比研究。造岩元素、铁族元素、稀有元素、稀土元素和分散元素在这2个地区的含量和富集程度都非常接近,说明天山地区具有相同的地质背景;贵金属元素Au在楚伊犁地区的含量和富集程度要显著高于东天山地区,楚伊犁地区的Au异常不仅与石英脉型金矿有关,还与黑色页岩微粒金矿化有关;有色金属元素在2个地区差别不大,不同的是Cu异常在东天山以独立或与其他有色金属元素伴生异常存在,而在楚伊犁主要以与贵金属元素伴生异常存在;铂族元素在2个地区含量比较接近,一类异常与基性和超基性岩有关,另一类与黑色岩系有关。尽管这2个地区都还未发现有经济价值的铂族元素矿床,但在楚伊犁地区已经发现与炭质硅质岩有关的微粒金、铂矿化。  相似文献   

17.

The Hilton deposit is a deformed and metamorphosed Proterozoic stratiform Pb‐Zn‐Ag‐Cu deposit hosted by dolomitic and carbonaceous sediments of the Urquhart Shale of the Mt Isa Group. Rocks in the Hilton area show a history of folding and faulting which spans the time range recognized elsewhere in the Western Succession of the Mt Isa Inlier, though the effects of relatively late and brittle deformation are more pronounced in the Hilton area. The Hilton area shows intense faulting relative to similar rocks to the south in the Mt Isa‐Hilton belt. Faulting in the Hilton area has generally resulted in east‐west shortening and extension in both north‐south and vertical directions. This relatively intense late strain is attributed to the geometry of the Paroo Fault Zone, a major north‐trending zone that bounds the Hilton area to the west, and the Sybella Batholith, which formed a relatively rigid indenter during late deformation in the Hilton area. The structural history of the Hilton area is broadly consistent with ongoing east‐west shortening during progressive uplift from mainly ductile to more brittle conditions. Based on these observations, thinning of the Mt Isa Group which was previously attributed to synsedimentary faulting, can now be shown to be related to heterogeneous strain during late faulting. Sulphide layers show a history of folding which is similar to that of the surrounding rocks. Pyrite which is paragenetically associated with mineralization is overprinted by a bedding‐parallel foliation which predates all other structures in the area. This suggests that stratiform sulphide mineralization in the Hilton area predates deformation. Deformation has affected the Hilton orebodies at all scales. Changes in thickness and ‘fault windows’ in the orebody interval occur on the scale of the entire deposit. Mesoscopic ore thickness changes are often clearly related to extensional and contractional structures within sulphide layers. These macroscopic and mesoscopic ore‐thickness variations are spatially associated with cross‐cutting brittle faults, suggesting that strain incompatibility between brittle host rocks and more ductile ore layers played a major role in the present geometry and thickness of sulphide ores at Hilton.  相似文献   

18.

The Einasleigh Metamorphics are the lowest exposed component of the Etheridge Group, part of the Etheridge Province, in the Georgetown region of north Queensland. Previous dating of granites has imposed a younger age limit of about 1550 Ma for the depositional age of the Etheridge Group. Based on SHRIMP U‐Pb analyses of zircon from mafic (1674.9 ±3.3 Ma and 1655.9 ±2.2 Ma) and felsic (1695.8 ± 1.5 Ma and 1684.2 ± 2.1 Ma) intrusive rocks in the Einasleigh Metamorphics, it can now be demonstrated that deposition commenced at about 1700 Ma, and continued for an estimated 100 million years. The stratabound, base‐metal deposits in the Mt Isa Inlier, Broken Hill Block and McArthur Basin formed in the early part of this time span, thereby suggesting potential for these styles of mineralisation in the Georgetown region.  相似文献   

19.
Primitive olivine-mica-K-feldspar lamprophyre dykes, dated at 1831 ± 6 Ma, intrude lower greenschist facies rocks of the Early Proterozoic Pine Creek Inlier, of northern Australia. They are spatially, temporally and probably genetically associated with a post-tectonic composite granite-syenite pluton (Mt. Bundey pluton). The dykes have unusually high contents of large-ion-lithophile (LILE) and LREE elements (e.g. Ba up to 10,000 ppm, Ce up to 550 ppm, K2O up to 7.5 wt. %) that resemble the concentrations found in the West Kimberley olivine and leucite lamproites. However, mineralogically the Mt. Bundey lamprophyres resemble shoshonitic lamprophyres and lack any minerals diagnostic of lamproites; leucite or leucite-pseudomorphs are absent. Mineral compositions are also unlike those in lamproites: micas contain higher Al2O3 than lamproitic mica; amphiboles are secondary actinolites after diopside; and oxides consist of zincian-chromian magnetite and groundmass magnetite. Heavy mineral concentrates contain mantle-derived xenocrysts of magnesiochromite, pyrope, Cr-diopside and rutile indicating a depth of sampling > 70 km. The Mt. Bundey lamprophyres are non-peralkaline to borderline peralkaline (molar (K + Na)/Al = 0.8 − 1.0) and potassic rather than ultrapotassic (molar K/Na < 2.5). They have distinctive major element compositions (≈46−49 wt. % SiO2, ≈1.5−2 wt. % MgO, ≈7 wt. % CaO), and element ratios (e.g. molar Al/Ti ≈10, K/Na ≈2) that indicate they are best classified amongst transitional lamproites, i.e. potassic rocks such as cocites, jumillites and Navajominettes, that have geochemical characteristics transitional between Groups I and III. (Foley et al., 1987). The Mt. Bundey lamprophyres have LILE enrichment patterns that resemble the W. Kimberley pamproites but have moderate negative Ta---Nb---Ti anomalies and HREE abundances that are closely similar to the jumillites of southeastern Spain and Mediterranean-type lamproites. Single-stage modelling of Rb---Sr data is consistent with enrichment of the source-region of the Mt. Bundey lamprophyres ≈ 120–170 Ma before partial melting; i.e. at 1.95–2.10 Ga. Source enrichment does not appear to be associated with subduction processes, but may instead relate to incipient rifting of the Archaean basement. Negative Ta---Nb---Ti anomalies in the Mt. Bundey dykes may, therefore, relate to stability of residual titanate minerals in an oxidized subcontinental mantle source. This view is supported by high Fe3+/ΣFe ratios of mantle-derived magnesiochromite xenocrysts which indicate oxidized mantle conditions (ƒo2 ≈ FMQ + 1 long units), and by the presence of xenocrystic Cr-bearing rutile. Although the Mt. Bundey dykes have sampled upper mantle material, the oxidized nature of the magma source-region, and of the magma itself, suggests that conditions may not be favourable for diamond survival at depth nor for diamond transport in transitional lamproite magmas of this kind.  相似文献   

20.

The Mt Wright Volcanics are located in the Wonominta Block of northwestern New South Wales. Detailed regional mapping has shown that the block is a composite tectonic unit and that the metavolcanic rocks described as the Mt Wright Volcanics may have been emplaced at different time from Late Proterozoic (northern section: Packsaddle, Nundora) to Early Cambrian (southern section: Mt Wright). Geochemical investigations, including major and trace elements, as well as analyses of relic clinopyroxene, show that the rocks have affinities with alkali basalt with light‐rare‐earth‐element‐enriched compositions. An intra‐plate extensional environment (such as rift‐ and/or plume‐related) is considered most likely for the formation of the rocks. Though metamorphosed to various degrees, the rocks apparently retain much of their primary Sr isotopic character (initial 87Sr/86Sr about 0.7032) and, apart from their age, resemble the Tertiary intraplate volcanism in eastern Australia. The Nd isotope analyses yield remarkably similar results between the two sections of the Mt Wright Volcanics, with 143Nd/144Nd between 0.51260 to 0.51271 and εNd(T) 4.7 ±0.4 (calculated to 525 Ma). A kaersutite‐bearing xenolith found in the northern section of the volcanic sequence has a Nd isotope composition more depleted than its hosts with εNd(T) of 7.7. The isotope results suggest that the Mt Wright Volcanics were derived from a depleted mantle source without significant crustal contribution. It is proposed that the Mt Wright Volcanics possibly represent the products of a rifting event that led to the breakup of the Proterozoic supercontinent during Early Cambrian in eastern Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号