首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Central Queensland lies on the passive margin of eastern Australia and owes its landscape to processes that began following rifting and opening of the Tasman Sea. The modern landscape is the result of long-term processes of landform development, and the landforms themselves are the evidence of these processes. Hence, interpreting their significance provides an understanding of long-term landscape evolution. Along the eastern Australian coast, numerous rivers drain into the sea but among these, there are two that stand out: the neighbouring Fitzroy and Burdekin Rivers in central Queensland. These two streams have by far the largest catchments of any rivers along the eastern seaboard of Australia. The Burdekin and Fitzroy catchments contain widespread remnants of Cenozoic deposits, which accumulated predominantly in fluvial and lacustrine environments established during the Palaeogene. Alluvial sediments were supplied by erosion of nearby uplands, and accumulated in depressions and basins on a prior land surface. Volcanic activity also resulted in large lava flows in central western areas. Water was the main agent of sediment transport, distributing unconsolidated deposits along the drainage networks of the time, some of which were directed inland. It is inferred that during the Palaeogene, the divide between coastward and inland draining streams was further to the east than it is at present. Several basins were located west of the former coastal divide, and were characterised by continental environments of deposition in a generally westward drainage system. With continued accumulation of sediments, individual basins overflowed and merged to form a widespread flat-lying Palaeogene landscape that concealed an earlier land surface on which bedrock was more extensive. In the Early Cenozoic, there was a change from the depositional phase that resulted in the continental sequence, to an erosional phase that developed the modern landforms. The change from deposition to erosion probably started during the Palaeogene. Erosion continued through to the present, re-exposing parts of the basal Palaeogene sequence and earlier Mesozoic land surface. The erosional phase that shaped the landforms of the modern Burdekin and Fitzroy catchments can be explained by slowly evolving drainage basins in the interior being captured by small coastal streams—the predecessors of the Burdekin and Fitzroy Rivers. The coastal streams were short and steep in comparison with those in the interior, allowing a more active erosional environment along the coast. As the coastal streams expanded, the drainage divide moved rapidly westwards. Stream capture began a phase of regional erosion, which transported large quantities of sediments to the coast. The sediments contributed to coastal and nearshore features similar to the Holocene high sea-level examples at the mouth of the Burdekin River in the north, and the Fitzroy Delta and the Keppel Coast in the south. Large volumes of sediments were also transported beyond the present coast during low sea-levels of the Cenozoic, forming similar coastal features and contributing to a major eastward bulge on the central Queensland continental shelf. The emptying of continental basins has paralleled the development of the continental shelf bulge from the coast to the Marion Plateau.  相似文献   

2.
In north Queensland, Australia, the ‘Great Divide’ forms the border between catchments draining into the Gulf of Carpentaria, including the Mitchell River, and those draining into the Coral Sea, including the Barron River. Until recently, it was commonly proposed that what is now the upper Barron River previously drained into the Mitchell River. However, little evidence was presented, and the assertion has been disputed. Our examination of borehole data, combined with accurate surveying of bedrock in the present Barron River channel, provides definitive evidence that paleochannels of the Mitchell River previously drained what is now the upper Barron River subcatchment. Lava that flowed down these channels at ca 1.79 Ma is evident in some of the boreholes and is exposed in the Barron River channel. The lava flows blocked the river channel, diverting the headwaters of the paleo-Mitchell River east into the Barron River, resulting in the western migration of the Great Divide. The consequent reduction in stream energy available to the truncated headwaters of Mitchell River has led to channel infill and aggradation of more than 40 m since the diversion of the Barron River. Subsurface paleochannels may be directing groundwater across the present drainage divide from the upper Barron River catchment into the Mitchell River catchment.  相似文献   

3.
Ballarat in western Victoria hosts substantial hard‐rock and palaeoplacer gold deposits. The most famous placers are the deep leads—channel deposits of a middle Cenozoic drainage system that were buried by voluminous basalt flows over the past few million years. The basalt has also shielded large areas of the highly prospective bedrock from exploration for more of the hard‐rock gold deposits. Although difficult to explore for, such deposits could express themselves as geochemical plumes in the major aquifer system hosted by the deep leads. Groundwater sampling may provide a vector to such deposits, but around Ballarat debate has long surrounded the distribution and flow directions of the deep leads, which are critical for this exploration methodology. The present landscape around Ballarat began to develop in the Early Cenozoic when a pre‐existing Mesozoic landscape was severely dissected during Australia‐Antarctica breakup. Several cycles of erosion left several generations of fluvial placer deposits scattered across the present landscape. New data from regional mapping, boreholes and compilation of historical records elucidates the positions and flow directions of the deep leads. The distribution and flow directions of the deep leads beneath the basalt are different to, and cannot be inferred from, the present drainage upon the basalt. The deep‐lead drainage divide runs beneath the city of Ballarat with divergence of up to 30 km between the deep lead and the present drainage divides. The divide was shifted northward to its present position by the process of drainage diversion because the basalt eruptions built new topography to greater heights than along the pre‐existing deep‐lead divide.  相似文献   

4.
李建华 《城市地质》1996,8(1):19-24
根据卫星图像研究滇西滇中地区的断裂活动性,并结合水系分析,揭示东西赂主流水系与南北向、南东向非水流水系的分水岭以及金沙江、珠江水系的分水岭是重要的构造活动带。该区10次7级以上地震,有8次发生在这些分水岭附近的活动断裂上。  相似文献   

5.
Joseph Bonaparte Gulf is a large embayment on the northwestern continental margin of Australia. It is approximately 300 km east‐west and 120 km north‐south with a broad continental shelf to seaward. Maximum width from the southernmost shore of Joseph Bonaparte Gulf to the edge of the continental shelf is 560 km. Several large rivers enter the gulf along its shores. The climate is monsoonal, sub‐humid, and cyclone‐prone during the December‐March wet season. A bedrock high (Sahul Rise) rims the shelf margin. The sediments within the gulf are carbonates to seaward, grading into clastics inshore. A seaward‐thinning wedge of highstand muds dominates the sediments of the inner shelf of Joseph Bonaparte Gulf. Mud banks up to 15m thick have developed inshore. Coarse‐grained sand ridges up to 15 m high are found off the mouth of the Ord River. These overlie an Upper Pleistocene transgressive lag of mixed carbonate and gravelly siliciclastic sand. Four drowned strandlines are present on the inner shelf at depths of 20, 25, 28 and 30 m below datum. These are interpreted as having formed during stillstands in the Late Pleistocene transgression. Older strandlines at great depths are inferred as having formed during the fall in sea‐level following the last highstand. For the most part the Upper Pleistocene‐Holocene marine sediments overlie an erosion surface cut into older Pleistocene sediments. Incised valleys cut into this erosion surface are up to 5 km wide and have a relief of at least 20 m. The largest valley is that cut by the Ord River. Upper Pleistocene sediments deposited in the incised valleys include interpreted lowstand fluvial gravels, early transgressive channel sands and floodplain silts, and late transgressive estuarine sands and gravels. Older Pleistocene sediments are inferred to have been deposited before and during the 120 ka highstand (isotope stage 5). They consist of sandy calcarenites deposited in high‐energy tide‐dominated shelf environments. Still older shelf and valley‐fill sediments underlie these. The contrast between the Holocene muddy clastic sediments and the sandy carbonates deposited by the 120 ka highstand suggests that either the climate was more arid in the past, with less fluvial transport, or that mud was more effectively trapped in estuaries, allowing development of carbonate depositional environments inshore.  相似文献   

6.
Numerical modelling of depositional sequences in half-graben rift basins   总被引:1,自引:0,他引:1  
ABSTRACT A three‐dimensional numerical model of sediment transport and deposition in coarse‐grained deltas is used to investigate the controls on depositional sequence variability in marine half‐graben extensional basins subject to eustatic sea‐level change. Using rates of sea‐level change, sediment supply and fault slip reported from active rift basins, the evolution of deltas located in three contrasting structural settings is documented: (1) footwall‐sourced deltas in high‐subsidence locations near the centre of a fault segment; (2) deltas fed by large drainage catchments at fault tips; and (3) deltas sourced from drainage catchments on the hangingwall dip slope. Differences in the three‐dimensional form and internal stratigraphy of the deltas result from variations in tilting of the hangingwall and the impact of border fault slip rates on accommodation development. Because subsidence rates near the centre of fault segments are greater than all but the fastest eustatic falls, footwall‐sourced deltas lack sequence boundaries and are characterized by stacked highstand systems tracts. High subsidence and steep bathymetry adjacent to the fault result in limited progradation. In contrast, the lower subsidence rate settings of the fault‐tip and hangingwall dip‐slope deltas mean that they are subject to relative sea‐level fall and associated fluvial incision and forced regression. Low gradients and tectonic tilting of the hangingwall influence the geometry of these deltas, with fault‐tip deltas preferentially prograding axially along the fault, creating elongate delta lobes. In contrast, broad, sheet‐like delta lobes characterize the hangingwall dip‐slope deltas. The model results suggest that different systems tracts may be coeval over length scales of several kilometres and that key stratal surfaces defining and subdividing depositional sequences may only be of local extent. Furthermore, the results highlight pitfalls in sequence‐stratigraphic interpretation and problems in interpreting controlling processes from the preserved stratigraphic product.  相似文献   

7.
A study of the Narrabeen Group in the southern part of the Sydney Basin has provided a more complete understanding of the conditions of deposition in the area during the Lower Triassic. The sedimentology of the sequence indicates that several different types of fluvial deposits are represented, with an upward succession from piedmont conditions with braided streams to a swampy deltaic plain. This sequence is interpreted as the onshore portion of a slow marine transgression, probably brought about by declining erosive activity in the hinterland.

The palaeocurrent pattern shows that drainage was principally to the south‐southwest, parallel to the basin axis, and the lateral transition from quartzose to lithic sediments across the basin can be interpreted as a blending of sediment from western and northern source areas. In addition several influxes of material from a source east of the present coastline are indicated, with reworked volcanic debris being introduced into the south coast district. This southeasterly source area did not greatly impede the drainage of the basin during lower Narrabeen deposition, but was responsible for a major diversion of stream patterns as the topmost beds were laid down. This diversion was completed by a northeasterly drainage pattern during deposition of the overlying Hawkesbury Sandstone.  相似文献   

8.
The connection between the removal of native vegetation, rising water tables and increasing stream salinity has been established for many catchments across Australia. However, the West Moorabool River in south west Victoria is an example of a catchment where there has been little discernable effect on groundwater levels following land clearing. Over the past 150 years, a significant portion of the catchment has been cleared of dense forest for agricultural development. Historic standing water-level records from 1870–1871 and 1881 are compared with contemporary measurements (1970s to 2007) recorded in the government bore databases. The data show that the earliest recorded groundwater levels are well within the seasonal range of values observed today. By integrating geology and hydrogeology with historical observations of groundwater levels, climate data and land use, the contemporary field observations of stream salinity are linked to the changed water use and shift in rainfall. In contrast to the normally accepted axiom, reafforestation as a management strategy to mitigate the rising salinity in the West Moorabool River catchment would seem inappropriate.  相似文献   

9.
The Yangtze, the longest river in Asia, was hypothesized to be assembled through a series of Cenozoic capture events, such as the reversal of Middle Yangtze River and the capture of Upper Yangtze River, but the history remains largely unknown. Here, we present new geomorphic observations in the structural context of the eastern Sichuan Basin, namely the Eastern Sichuan fold belt, and identify an important drainage divide along the “midline” of this arc-shape fold belt. Based on longitudinal profile analysis, we find that the river capture events more likely occurred in the syncline valleys of low-relief landscape. Our results yield a new perspective on Middle Yangtze River reversal, and we propose that the “midline” drainage divide, rather than the Three Gorges, was the starting site of Middle Yangtze River reversal. In this manner, the reversal could have been accomplished by a sequence of river reversal over range-parallel segments in syncline valleys with less impact on the pre-existing drainage system in eastern Sichuan Basin.  相似文献   

10.
The nature of the valley forms, and associated superficial deposits and soils of the South‐West Drainage Division of Western Australia are described. All the major rivers tap interior palaeo‐drainage lines associated with chains of salt lakes; thereafter, downstream, there is a succession of valley forms which are progressively more sharply incised and of steeper gradient. It is shown that this succession is repeated in all major rivers. The main palaeo‐drainage systems are named for the first time, and their catchments delineated. The changes in valley form which occur downstream of the palaeo‐drainage lines are interpreted as stages in rejuvenation of drainage of the epeiro‐genically uplifted Old Plateau of Western Australia. The relationship between the valley forms and patterns of distribution of soils, deeply weathered profiles and superficial deposits is described, and its agricultural, geochemical and hydrological significance briefly discussed.  相似文献   

11.
Before reaching the Black Sea, the Danube River passes through a string of Para‐Tethyan (Vienna, Pannonian and western and eastern Dacian) basins. The key question is, when and how did the Danube River become a continental‐scale river with a drainage similar to present? New data presented here show that the Late Miocene deepwater strata in the Black Sea have a significant sediment source and depositional style change at about 4 Ma. However, the presence of active Miocene basins within the Danube catchment raises questions about the timing of Danube River inception and whether the upstream palaeogeography would have allowed or disallowed delivery of large sediment volumes to the deepwater Black Sea. Stratigraphic analyses in the Pannonian and Dacian basins reveal a phase of coeval sedimentary fill of the basins along the Danube at about 4 Ma. This multi‐basin observation points to a concurrent basin‐fill model rather than the basin fill‐and‐spill or Messinian‐type lowstand models previously proposed for Danube inception.  相似文献   

12.
This article focuses on local paleohydrological changes experienced by the Las Pitas and Miriguaca Rivers in the south‐central Andes of Argentina and their impacts on hunter‐gatherers as they transitioned to food‐producing communities 7000–3000 cal. yr B.P. Paleoenvironmental reconstruction based on geomorphology, alluvial sedimentology, and diatom evidence indicates a dry phase of reduced streamflow between ca. 6700 and 4800 cal. yr B.P. for the Las Pitas River, and 6600 and 3000 cal. yr B.P. for the Miriguaca River. A phase of more humid environmental conditions commenced after ca. 4900 cal. yr B.P. along the Las Pitas River, and after 3000 cal. yr B.P. along the Miriguaca River. Differences in the chronology and magnitude of hydrological changes along both rivers are related to topographic and hydrological characteristics of their respective watersheds. Higher catchment elevation and enhanced orographic precipitation favored greater sensitivity for the Las Pitas River to short humid events during the middle‐to‐late Holocene. The archaeological evidence suggests that the paleohydrological changes within these catchments played a significant role in human occupational dynamics such that the Las Pitas River offered better environmental conditions for human occupation relative to the Miriguaca River as foragers increasingly relied on plant and animal domestication.  相似文献   

13.
Accumulation of continental, deltaic and shallow‐marine sediments in the Po River coastal plain preserves a record of the Late Quaternary sea‐level changes and shoreline migrations. The palaeoenvironmental evolution of this area and the changes in composition and provenance of sediments have been investigated through integrated sedimentological, micropalaeontological (mainly foraminifers) and geochemical analyses of core S1, from the southern part of the Po River delta, within a chronological framework supported by radiocarbon dating and correlations with adjacent core sequences. Eleven lithofacies, grouped into five facies associations, and four palaeontological assemblages provide the basis to define the palaeoenvironmental reconstruction of this succession consisting, from the base to the top, of: (i) continental sediments accumulated during the Late Pleistocene; (ii) back‐barrier sediments marking the onset of Holocene sea‐level rise; (iii) transgressive sands deposited during the rapid landward migration of a barrier‐lagoon system; (iv) shallow‐marine and prodelta sediments with faunal associations indicating a gradual approach to the Po River mouth; and (v) sub‐recent delta front sands that form a considerable portion of the present coastal plain. Bulk chemical composition of sediments shows remarkable relationships with palaeoenvironments and locally improves facies characterizations. For example, they reveal carbonate leaching that emphasizes the occurrence of palaeosols in continental deposits or record enrichments in loss on ignition, S and Br, diagnostic of organic‐rich layers in back‐shore sediments. Selected geochemical elements (e.g. Mg and Ni) are particularly effective for the recognition of sediment provenances from the three main source areas observed in the subsurface deposits of the Po River coastal plain (e.g. Apenninic rivers, North Adriatic rivers and Po River). An Apenninic provenance is observed in continental and back‐barrier sediments. A North Adriatic provenance characterizes the transgressive sands and the shallow‐marine deposits; a significant Po River provenance is recorded in sediments related to the onset of the prodelta environment, confirmed by foraminiferal assemblages indicating remarkable increase in fluvial influxes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
An understanding of how drainage patterns respond to tectonics can provide an insight into past deformational events within mountain belts and where sediment flux is supplied to depositional basins. The transverse rivers draining the Spanish Pyrenees show sudden diversions to axial courses and the capture of lateral systems producing large trunk rivers that break through the thrust front at structurally controlled points. The drainage reorganization from the initial regularly spaced pattern in the Late Eocene caused by the growth of thrust‐controlled topography influenced the location of outlets into the Ebro basin. The headward capture and merger of rivers as a result of structural diversion formed two large terminal fan systems during the Oligo‐Miocene along the Pyrenean thrust front. The early structural topographic controls on drainage evolution will have long‐term effects on sedimentation and stratigraphic architecture of foreland basins. This will only be maintained as long as there is tectonic uplift and the river systems strive to re‐attain a regular drainage spacing across the orogenic belt as partly achieved in the Pyrenees.  相似文献   

15.
Examination of two lines of repeated leveling in North Carolina and Georgia reveals
1. (1) apparent uplift at the Blue Ridge-Piedmont physiographic boundary (the AtlanticGulf drainage divide) relative to the Atlantic Coastal Plain on the east and the Valley and Ridge province to the west; and
2. (2) large tilts over short baselines superimposed upon the regional pattern in the vicinity of the nearby Blue Ridge—Piedmont geologic boundary (the Brevard fault zone). In the North Carolina profile a very pronounced correlation between topography and movement suggests possible systematic leveling error, but the observed movements appear to be larger than those normally attributed to leveling error. Thus, either refraction or rod errors are larger than expected, or the movement is real and strongly correlates with topography along this portion of the leveling line.
Anomalously high stream-gradients over both resistant and nonresistant lithologies are found around the drainage divide in North Carolina, and may be associated with the relative uplift inferred from releveling. The drainage divide in Georgia, also characterized by relative uplift on the movement profile, approximately separates two different types of stream patterns. In both cases evidence presented here suggests that stream morphology may be responding to contemporary deformation as implied by the observed elevation changes. The relative uplift in North Carolina also correlates with a positive Bouguer gravity anomaly of 30–40 mGal in the midst of the regional Blue Ridge gravity low, although the significance of the correlation is unclear.The close spatial correspondence between the zone of maximum uplift and the drainage divide suggests that the vertical movements and geomorphic anomalies may result from the same mechanism, although the nature of such is unclear. One possible mechanism could be displacement at depth along the nearby Brevard zone. However, on the basis of dislocation modeling it appears that the geodetic observations cannot be adequately explained by surface deformation associated with any simple models of slip on the Brevard zone.  相似文献   

16.
The Gulf of Bothnia hosted a variety of palaeo‐glaciodynamic environments throughout the growth and decay of the last Fennoscandian Ice Sheet, from the main ice‐sheet divide to a major corridor of marine‐ and lacustrine‐based deglaciation. Ice streaming through the Bothnian and Baltic basins has been widely assumed, and the damming and drainage of the huge proglacial Baltic Ice Lake has been implicated in major regional and hemispheric climate changes. However, the dynamics of palaeo‐ice flow and retreat in this large marine sector have until now been inferred only indirectly, from terrestrial, peripheral evidence. Recent acquisition of high‐resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo‐ice sheet behaviour. Here we report on a rich glacial landform record: in particular, a palaeo‐ice stream pathway, abundant traces of high subglacial meltwater volumes, and widespread basal crevasse squeeze ridges. The Bothnian Sea ice stream is a narrow flow corridor that was directed southward through the basin to a terminal zone in the south‐central Bothnian Sea. It was activated after initial margin retreat across the Åland sill and into the Bothnian basin, and the exclusive association of the ice‐stream pathway with crevasse squeeze ridges leads us to interpret a short‐lived stream event, under high extension, followed by rapid crevasse‐triggered break‐up. We link this event with a c. 150‐year ice‐rafted debris signal in peripheral varved records, at c. 10.67 cal. ka BP. Furthermore, the extensive glacifluvial system throughout the Bothnian Sea calls for considerable input of surface meltwater. We interpret strongly atmospherically driven retreat of this marine‐based ice‐sheet sector.  相似文献   

17.
试论南中国海盆地新生代板块构造及盆地动力学   总被引:2,自引:0,他引:2       下载免费PDF全文
南海地处欧亚、印度—澳大利亚和菲律宾海板块的交互带,是西太平洋地区面积最大的边缘海之一,其成因机制和演化过程对探讨特提斯构造域和太平洋构造域相互作用及油气勘探等问题具有重要意义,虽备受关注但仍存争议.综合目前该区及外围已有的大地构造等方面的资料,本文从探讨南海外围的构造格架及中-新生代演化过程入手,分析了南海及外围板块...  相似文献   

18.
The recharge mechanism of a very large spring area in the town of Zieleniec in the Orlickie Mountains (part of the Sudety mountain chain) in southwestern Poland, was investigated and characterized. The spring area is located on a steep mountain slope at a high elevation, next to the continental water divide. It is estimated that at least 90% of the spring discharge comes from outside its topographic drainage basin. The study area has been strongly affected by tectonic episodes of different ages. Thus, there is a high density of fractures in the crystalline massif, which determines the water content of the area and the occurrence of large springs. The low variability in discharge of the Zieleniec spring area indicates the presence of a strong and stable component source of recharge. It has also been shown that gravitational drainage of solid-rock blocks and small fissures is also an important recharge component. The stable recharge component is associated with deep-water circulation from the B?lá River drainage basin in the Czech Republic, flowing beneath the continental divide. Water flows in conformity with a high hydraulic head gradient through deep, open, NW?CSE-oriented fissures.  相似文献   

19.
Ascertaining the location of palaeo‐ice streams is crucial in order to produce accurate reconstructions of palaeo‐ice sheets and examine interactions with the ocean–climate system. This paper reports evidence for a major ice stream in Amundsen Gulf, Canadian Arctic Archipelago. Mapping from satellite imagery (Landsat ETM+) and digital elevation models, including bathymetric data, is used to reconstruct flow‐patterns on southwestern Victoria Island and the adjacent mainland (Nunavut and Northwest Territories). Several flow‐sets indicative of ice streaming are found feeding into the marine trough and cross‐cutting relationships between these flow‐sets (and utilising previously published radiocarbon dates) reveal several phases of ice stream activity centred in Amundsen Gulf and Dolphin and Union Strait. A large erosional footprint on the continental shelf indicates that the ice stream (ca. 1000 km long and ca. 150 km wide) filled Amundsen Gulf, probably at the Last Glacial Maximum. Subsequent to this, the ice stream reorganised as the margin retreated back along the marine trough, eventually splitting into two separate low‐gradient lobes in Prince Albert Sound and Dolphin and Union Strait. The location of this major ice stream holds important implications for ice sheet–ocean interactions and specifically, the development of Arctic Ocean ice shelves and the delivery of icebergs into the western Arctic Ocean during the late Pleistocene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
利用残存的地貌标志恢复原始地貌形态是地貌研究的难点之一。青藏高原东北缘循化-贵德地区晚新生代构造活动强烈,晚新生代黄河在本区发育,其后期演化记录了青藏高原隆升扩展的详细信息,同时黄河侵蚀下切过程本身也是值得深入研究的重要科学问题。由于黄河水系的发育,晚更新世以后循化-贵德盆地地区实现由盆地加积向退积的调整,盆地地区逐渐开始遭受黄河水系的侵蚀下切,并逐渐形成现今青藏高原东北缘的地貌形态。野外地质调查发现更新统的变形程度较弱,由于区域构造隆升与河流强烈下切的共同作用,现今保存的更新统已经成为盆地内部的分水岭,如龙羊峡地区。本研究正是选取循化-贵德盆地及其邻区更新统地层为古地貌重建的标志,基于数字高程模型(DEM)空间分析技术,构建了青藏高原东北缘循化-贵德盆地地区更新世古地貌形态,并进行了初步分析,主要认识有: 1)秦岭北缘断裂带构成其南西向北东方向地形快速降低的边界带; 2)在北西南东方向上,西秦岭、黄河、拉脊山、湟水河以及祁连山等总体上构成了向形-背形相间的地貌格局。同时以古地形为基础,定量计算了盆地区更新世以来的侵蚀分布图像,定量结果表明: 1)剥蚀量的分布形态与高原东北缘盆山地貌系统之间有一定相关耦合性,盆地地区的剥蚀量比较大,而相邻山脉地区的剥蚀量都比较小; 2)剥蚀量比较大的盆地地区剥蚀量与盆地内部河流形态之间也具有明显的关联特征,盆地内部剥蚀量最大的区域往往是盆地内部独立河流的中游地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号