首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Surface and subsurface sedimentary structures produced by salt crusts   总被引:3,自引:0,他引:3  
The growth and subsequent dissolution of salts on or within sediment may alter sedimentary structures and textures to such an extent that it is difficult to identify the depositional origin of that sediment and, as a result, the sediment may be misinterpreted. To help to overcome such problems with investigating ancient successions, results are presented from a comprehensive study of the morphology and fabrics of three large areas of modern salt flats in SE Arabia: the Sabkhat Matti inland region and the At Taf coastal region, both in the Emirate of Abu Dhabi, and the Umm as Samim region in Oman. These salt flats are affected by tidal‐marine, alluvial and aeolian depositional processes and include both clastic‐ and carbonate‐dominated surficial sediments. The efflorescent and precipitated salt crusts in these areas can be grouped into two main types: thick crusts, with high relief (>10 cm) and a polygonal or blocky morphology; or thin crusts, with low relief (<10 cm) and a polygonal or blister‐like appearance. The thin crusts may assume the surface morphology of underlying features, such as ripples or biogenic mats. A variety of small‐scale textures were observed: pustular growths, hair‐like spikes and irregular wrinkles. Evolution of these crusts over time results in a variety of distinctive sedimentary fabrics produced by salt‐growth sediment deformation, salt‐solution sediment collapse, sediment aggradation and compound mixtures of these processes. Salt‐crust processes produce features that may be confused with aeolian adhesion structures. An example from the Lower Triassic Ormskirk Sandstone Formation of the Irish Sea Basin demonstrates how this knowledge of modern environments improves the interpretation of the rock record. A distinctive wavy‐laminated facies in this formation had previously been interpreted as the product of fluvial sheetfloods modified by soft‐sediment deformation and bioturbation. Close inspection of laminations seen in core reveals many of the same sedimentary fabrics seen in SE Arabia associated with salt crusts. This facies is the product of salt growth on aeolian sediment and is not of fluvial origin.  相似文献   

2.
3.
Modern and ancient tidal straits are the least well understood of all tide‐dominated depositional systems. To provide an increased understanding of these systems, a facies‐based depositional model is assessed by comparing multibeam surveys of three present‐day tidally dominated seaways with a number of superbly exposed Neogene‐to‐Quaternary strait‐fill successions of Calabria (south Italy). The model points out the existence of four depositional zones, laterally adjacent from the narrowest strait centre to its terminations, distributed along symmetrical or asymmetrical seaways. These zones, whose signature is recorded in four facies associations in the Calabrian tidal straits, are as follows: (i) the strait‐centre zone, associated with the tidal current maxima and where sediments are scarce or absent; (ii) the dune‐bedded zone, where sediments form dune complexes due to tidal flow expansion; (iii) the strait‐end zone, where currents decelerate accumulating thinly bedded, fine‐grained deposits; and (iv) the strait‐margin zone, where sediment massflows descend tectonically active, steep margins towards the strait axis. In ancient, tectonically confined, narrow seaways, these facies generate a distinctive deepening‐upward vertical succession, where tidal currents are the dominant process in the sediment distribution.  相似文献   

4.
《Sedimentology》2018,65(6):2117-2148
The origin of the fourth member of the Eocene Shahejie Formation in the northern steep slopes of the Minfeng Sub‐sag, Dongying Sag, China, was investigated by integrating core studies and flume tank depositional simulations. A non‐channelized depositional model is proposed in this paper for nearshore subaqueous fans in steep fault‐controlled slopes of lacustrine rift basins. The deposits of nearshore subaqueous fans along the base of steep border‐fault slopes of rift basins are typically composed of deep‐water coarse‐grained sediment gravity‐flow deposits directly sourced from adjacent footwalls. Sedimentation processes of nearshore subaqueous fans respond to tectonic activities of boundary faults and to seasonal rainfall. During tectonically active stages, subaqueous debris flows triggered by episodic movements of border‐faults dominate the sedimentation. During tectonically quiescent stages, hyperpycnal flows generated by seasonal rainfall‐generated floods, normal discharges of mountain‐derived rivers and deep‐lacustrine suspension sedimentation are commonly present. The results of a series of flume tank depositional simulations show that the sediments deposited by subaqueous debris flows are wedge‐shaped and non‐channelized, whereas the sediments deposited by hyperpycnal flows generated by sporadic floods from seasonal rainfall are characterized by non‐channelized, coarse‐grained lobate depositional bodies which switch laterally because of compensation sedimentation of hyperpycanal flows. The hyperpycnal‐flow‐deposited non‐channelized lobate depositional bodies can be divided into a main body and lateral edges. The main body can be further subdivided into a proximal part, middle part and frontal part. Normal mountain‐derived river‐discharge‐deposited sediments are characterized by thin‐bedded, fine‐grained sandstones and siltstones with a limited distribution range. Normal mountain‐derived river‐discharge‐deposited sediments and deep‐lacustrine mudstones are commonly eroded in the area close to boundary faults. A nearshore subaqueous fan can be divided into three segments: inner fan, middle fan and outer fan. The inner fan is composed of debrites and the proximal part of the main body. The middle fan consists of the middle part of the main body and lateral edges, normal mountain‐derived river‐discharge‐deposited fine‐grained sediments and deep‐lacustrine mudstones. The outer fan comprises the frontal part of the main body, lateral edges, and deep‐lacustrine mudstones. Based on the non‐channelized depositional model for nearshore subaqueous fans, criteria for stratigraphic subdivision and correlation are discussed and applied.  相似文献   

5.
Upper Callovian to Tithonian (late Jurassic) sediments represent an important hydrocarbon reservoir in the Kopet‐Dagh Basin, NE Iran. These deposits consist mainly of limestone, dolostone, and calcareous mudstone with subordinate siliciclastic interbeds. Detailed field surveys, lithofacies and facies analyses at three outcrop sections were used to investigate the depositional environments and sequence stratigraphy of the Middle to Upper Jurassic interval in the central and western areas of the basin. Vertical and lateral facies changes, sedimentary fabrics and structures, and geometry of carbonate bodies resulted in recognition of various carbonate facies related to tidal flats, back‐barrier lagoon, shelf‐margin/shelf‐margin reef, slope and deep‐marine facies belts. These facies were accompanied by interbedded beach and deep marine siliciclastic petrofacies. Field surveys, facies analysis, parasequences stacking patterns, discontinuity surfaces, and geometries coupled with relative depth variation, led to the recognition of six third‐order depositional sequences. The depositional history of the study areas can be divided into two main phases. These indicate platform evolution from a rimmed‐shelf to a carbonate ramp during the late Callovian–Oxfordian and Kimmeridgian–Tithonian intervals, respectively. Significant lateral and vertical facies and thickness changes, and results obtained from regional correlation of the depositional sequences, can be attributed to the combined effect of antecedent topography and differential subsidence related to local tectonics. Moreover, sea‐level changes must be regarded as a major factor during the late Callovian–Tithonian interval. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper documents a subsurface trace fossil and ichnofabric study of the proximal parts of a structurally confined and channelized sand‐rich, lower slope and proximal basin‐floor deep‐marine system in the Middle Eocene Ainsa basin, Spanish Pyrenees. Five depositional environments are recognized based on sedimentary facies associations, depositional architecture and stratigraphic context (channel axis, channel off‐axis, channel margin, leveé‐overbank and interfan), as well as a channel abandonment phase. Each environment is characterized by distinct and recurring ichnofabrics. Ichnological measurements and observations were recorded from six cores recovered from six wells drilled at a spacing of between 400 m and 500 m at outcrop, and totalling 1213 m in length. From channel axis to levée‐overbank environments, there is a trend of increasing bioturbation intensity and ichnodiversity. Ichnofabrics in channel axis and channel off‐axis environments are characterized by low bioturbation intensity and low ichnodiversity. Thalassinoides‐dominated firmground ichnofabrics associated with erosive sediment gravity flows are common in these environments. In contrast, channel margin and levée‐overbank environments are characterized by ichnofabrics associated with high bioturbation intensity and ichnodiversity. Sediments of the interfan are characterized by the highest bioturbation intensity, associated with burrow mottling and an absence of primary sedimentary structures. This paper demonstrates that in core‐based studies, ichnofabric analysis is an important and valuable tool in discriminating between different environments in channelized deep‐marine siliciclastic systems. The results of this study should find wide applicability in reservoir characterization studies in the petroleum industry, in field‐based analogue ichnofabric studies and other core‐based studies in deep‐water siliciclastic systems worldwide such as the Integrated Ocean Drilling Program.  相似文献   

7.
Many bedrock-confined fjord valleys along the Norwegian coast contain thick accumulations of fine-grained sediments that were deposited during and after the last deglaciation. The deposits gradually emerged above sea level due to glacioisostatic uplift, and fjord marine sedimentation was gradually followed by shallow marine and fluvial processes. During emergence terraces and river-cut slopes were formed in the valleys. Subsequent leaching of salt ions from the pore water in the marine deposits by groundwater has led to the development of quick clay. The deposits are subject to river erosion and destructive landslides involving quick clay. Most slides are of prehistoric age. Others are known from modern observations as well as from historic records.Landforms such as distinct slide scars or the hummocky terrain of slide deposits may be strongly modified by secondary processes. In addition, deposits from the most liquid part of quick clay slides may have planar surfaces. Clay-slide deposits on a fluvial or deltaic terrace, therefore, are not always easily recognized from morphology, and only exposures may reveal their internal structures and allow them to be distinguished from overbank flood sediments. Detailed sedimentological work shows that slide deposits in such setting consist of distinct facies containing reworked marine sediments. We propose three facies successions of clay-slide deposits that form a continuum. The dominant components of these succession types are: slightly deformed blocks of laminated clay and silt (A), highly deformed clay and silt with gravel clasts (B) and massive to stratified clay and silt with scattered clasts (C). We suggest that in many cases a basal muddy diamicton is a characteristic, and possibly diagnostic feature. Processes and depositional models are interpreted from the different succession types. The results may be relevant for identifying clay-slide deposits elsewhere and may be useful during general mapping of fjord marine deposits and characterization of slide-prone areas as well as during identification of prehistoric slides.  相似文献   

8.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

9.
《Sedimentology》2018,65(6):2171-2201
In modern siliciclastic environments terrestrial and aquatic vegetation binds substrate, controls weathering and erosion rates, influences run‐off, sediment supply and subsequent depositional architecture. This study assesses the applicability of modern depositional models that are impacted by vascular vegetation, as analogues for ancient pre‐land plant systems. A review of pre‐Devonian published literature demonstrates a paucity of described tidal successions; this is possibly due to the application of modern analogues for interpreting the record when there is a lack of tidal indicators. This paucity suggests a need for revised models of tidal deposition that consider the different environmental conditions prior to land plant evolution. This study examines the Ordovician–Silurian Tumblagooda Sandstone, which is exposed in the gorge of the Murchison River and coastal cliffs near Kalbarri, Western Australia. The Tumblagooda Sandstone comprises stacked sand‐rich facies, with well‐preserved bedforms and trace fossils. Previous interpretations of the depositional setting have proposed from a mixed sheet‐braided fluvial and intertidal flats; to a continental setting dominated by fluvial and aeolian processes. An enigmatic element is the rarity of mud‐rich facies preserved in the succession. Outcrop logging, facies and petrographic analysis record dominantly shallow water conditions with episodes of emergence. Abundant ichnotaxa indicate that marine conditions and bi‐directional flow structures are evidence for an intertidal and subtidal depositional environment. A macrotidal estuary setting is proposed, with evidence for tidal channels and repeated fluvial incursions. Physical and biogenic sedimentary structures are indicative of tidal conditions. The lack of clay and silt resulted in the absence of flaser or lenticular‐bedding. Instead cyclic deposition of thin beds and foreset bioturbation replaced mud drape deposits. Higher energy conditions prevailed in the absence of the binding activity of plants in the terrestrial and marine realm. This is suggestive of different weathering processes and a reduction in the preservation of some sedimentary features.  相似文献   

10.
The Late Cenomanian–Mid Turonian succession in central Spain is composed of siliciclastic and carbonate rocks deposited in a variety of coastal and marine shelf environments (alluvial plain–estuarine, lagoon, shoreface, offshore‐hemipelagic and carbonate ramp). Three depositional sequences (third order) are recognized: the Atienza, Patones and El Molar sequences. The Patones sequence contains five fourth‐order parasequence sets, while a single parasequence set is recognized in the Atienza and El Molar sequences. Systems tracts can be recognized both in the sequences and parasequence sets. The lowstand systems tracts (only recognized for Atienza and Patones sequences) are related to erosion and sequence boundary formation. Transgressive systems tracts are related to marine transgression and shoreface retreat. The highstand systems tracts are related to shoreface extension and progradation, and to carbonate production and ramp progradation. Sequences are bounded by erosion or emergence surfaces, whose locations are supported by mineralogical analyses and suggest source area reactivation probably due to a fall in relative sea‐level. Transgressive surfaces are subordinate erosion and/or omission surfaces with a landward facies shift, interpreted as parasequence set boundaries. The co‐existence of siliciclastic and carbonate sediments and environments occurred as facies mixing or as distinct facies belts along the basin. Mixed facies of coastal areas are composed of detrital quartz and clays derived from the hinterland, and dolomite probably derived from bioclastic material. Siliciclastic flux to coastal areas is highly variable, the maximum flux postdates relative sea‐level falls. Carbonate production in these areas may be constant, but the final content is a function of changing inputs in terrigenous sediments and carbonate content diminishes through a dilution effect. Carbonate ramps were detached from the coastal system and separated by a fringe of offshore, fine‐grained muds and silts as distinct facies belts. The growth of carbonate ramp deposits was related to the highstand systems tracts of the fourth‐order parasequence sets. During the growth of these ramps, some sediment starvation occurred basinwards. Progradation and retrogradation of the different belts occur simultaneously, suggesting a sea‐level control on sedimentation. In the study area, the co‐existence of carbonate and siliciclastic facies belts depended on the superimposition of different orders of relative sea‐level cycles, and occurred mainly when the second‐order, third‐order and fourth‐order cycles showed highstand conditions.  相似文献   

11.
An integrated interpretation of on‐ and offshore stratigraphical records at Leirfjorden, north Norway, reveals new aspects of the area's palaeoenvironmental history. The study is based on marine sparker data and well‐exposed sections on land that were analysed for their sediment facies, mineralogy and fossil assemblages. Existing research and new radiocarbon dates provide a chronological framework for the interpretation. The late Younger Dryas Nordli substage type locality in the Leirfjorden catchment is revised and found to reflect local glacial activity, maybe a collapse of stagnant ice rather than glacier advance, while late Younger Dryas to Preboreal glacier re‐advances south of Leirfjorden and near Ranfjorden are here named the Bardal substage. The stratigraphical record includes pre‐Younger Dryas, valley‐crossing, glacial striae and old till with provenance of resistant bedrock typical of more elevated mountain areas. It differs from younger till units representing topographically controlled glacier movement. Part of the Leirfjorden fjord‐valley system is located between the main glacial and fluvial drainage paths affecting the sediment supply. As a result, highstand deposits are indistinct and fluvial sediments form only a minor part of the forced‐regressive systems tract. Instead, the valley fill overlying till and subtill sediments is dominated by the deglacial transgressive tract and a forced‐regressive systems tract with composite marine deposits and various marine erosion surfaces. A special event bed is interpreted as a possible tsunami deposit caused by seismicity and/or mass‐wasting in the fjord following glacier retreat. The study highlights the stratigraphical complexity of interconnected fjord and sound systems in a low accretion setting.  相似文献   

12.
The Maastrichtian Patti Formation, which consists of shale - claystone and sandstone members, constitutes one of the three Upper Cretaceous lithostratigraphic units of the intracratonic southeastern Bida Basin, in central Nigeria. Well exposed outcrops of this formation were investigated at various locations around the confluence of the Niger and Benue Rivers. The lithostratigraphic sections were measured and their peculiar sedimentological features such as textures, physical and biogenic sedimentary structures, facies variations and associations were documented and used to interpret the depositional environments and develop a paleogeographic model. Some selected representative samples of the sedimentary depositional facies were also subjected to grain size analysis.Three shoreline sedimentary depositional facies composed of shoreface, tidal channel, and tidal marsh to coastal swamp facies were recognized in the study area. Continental sedimentary depositional facies such as fluvial channel, swamp, and overbank were also documented. The sandstones of the shoreface and tidal channel facies are medium- to coarse-grained, moderately sorted (standard deviation ranges from 0.45–1.28 averaging 0.72), and quartzarenitic. The fluvial channel sandstone facies are coarse- to very coarse-grained, mostly poorly sorted (standard deviation ranges from 0.6–1.56 averaging 1.17), and subarkosic. Typical sedimentary structures displayed by the shoreface and tidal channel facies include burrows, clay drapes, hummocky and herringbone cross stratifications, whereas the fluvial channel sandstone facies are dominated by massive and planar cross beddings. The tidal marsh to coastal swamp shales and ferruginised siltstone facies are fossiliferous and bioturbated, whereas the nonmarine swamp siltstones contain vegetal imprints and lignite interbeds. The overbank claystone facies are massive and kaolinitic.In the study area, a regressive to transgressive model is proposed for the Patti Formation. This model correlates with stratigraphically equivalent sediments of the Ajali and Mamu Formations in the adjacent Anambra Basin to a great extent.  相似文献   

13.
The Feos Formation of the Nijar Basin comprises sediments deposited during the final stage of the Messinian salinity crisis when the Mediterranean was almost totally isolated. Levels of soft‐sediment deformation structures occur in both conglomeratic alluvial sediments deposited close to faults and the hyposaline Lago Mare facies, a laminated and thin‐bedded succession of whitish chalky marls and intercalated sands alternating with non‐marine coastal plain deposits. Deformation structures in the coarse clastics include funnel‐shaped depressions filled with conglomerate, liquefaction dykes terminating downwards in gravel pockets, soft‐sediment mixing bodies, chaotic intervals and flame structures. Evidence for soft‐sediment deformation in the fine‐grained Lago Mare facies comprises syndepositional faulting and fault‐grading, sandstone dykes, mixed layers, slumping and sliding of sandstone beds, convolute bedding, and pillar and flame structures. The soft‐sediment deformed intervals resemble those ascribed elsewhere to seismic shaking. Moreover, the study area provides the appropriate conditions for the preservation of deformation structures induced by seismicity; such as location in a tectonically active area, variable sediment input to produce heterolithic deposits and an absence of bioturbation. The vertical distribution of soft‐sediment deformation implies frequent seismic shocks, underlining the importance of seismicity in the Betic region during the Late Messinian when the Nijar Basin became separated from the Sorbas Basin to the north. The presence of liquefied gravel injections in the marginal facies indicates strong earthquakes (M ≥ 7). The identification of at least four separate fissured levels within a single Lago Mare interval suggests a recurrence interval for large magnitude earthquakes of the order of millennia, assuming that the cyclicity of the alternating Lago Mare and continental intervals was precession‐controlled. This suggestion is consistent with the present‐day seismic activity in SE Spain.  相似文献   

14.
The textural and geochemical aspects of the sediments of subtropical mangrove ecosystem and surrounding areas have been studied and discussed. Forty sediment samples were collected from different areas of mangrove environment and surrounding areas along the Egyptian Red Sea coast. The sediments of each study areas are characterized by the abundance of sand with minor amounts of mud and gravel. The mean size of the sediments ranged from medium grained to fine grained at the study areas. Cluster analysis showed that the distribution of gravel, sand, and mud fractions is related to bottom facies and type of sediment source. Generally, sand fraction is the main category among the three constituents. Carbonate content recorded minor values in the study areas. The CaCo3 content of the sediments ranged from 4.7 % at Hamata area to 64.9 % at Erier area. Terrigenous and biogenic components are the factor controlling of the carbonate content of studies sediments. The organic carbon content ranged from 1.10 at Hamata area to 3.1 % at Sharm el-Qibli and Erier areas, which is controlled by particle size of the sediments. Phosphorus content in the different studied localities is related to the sources of phosphorus to the area. Our observations provide evidence that there are no significant differences in environmental texture and geochemistry of the sediments of subtropical mangrove ecosystem and surrounding areas of the Egyptian Red Sea coast.  相似文献   

15.
Jeju Island is a Quaternary shield volcano built upon the Yellow Sea continental shelf off the Korean Peninsula. Decades of borehole drilling reveals that the shield‐forming lavas of the island are underlain by extensive hydrovolcanic deposits (the Seoguipo Formation), which are about 100 m thick and show diverse depositional features. This study provides criteria for distinguishing between hydrovolcanic deposits formed by primary (pyroclastic) and secondary (resedimentation) processes in subaerial and submarine settings based on the observations of several selected cores from the formation. Five facies associations are identified, including: (i) primary hydrovolcanic deposits formed by pyroclastic surges and co‐surge fallouts in tuff rings (facies association PHTR); (ii) primary hydrovolcanic deposits formed by Surtseyan fallout and related pyroclastic transport processes in tuff cones (facies association PHTC); (iii) secondary hydrovolcanic deposits formed by debris flows, hyperconcentrated flood flows, sheet floods and rill flows in subaerial settings (facies association RHAE); (iv) secondary hydrovolcanic deposits formed in submarine settings under the influence of waves, tides and occasional mass flows (facies association RHMAR); and (v) non‐volcaniclastic and fine‐grained deposits formed in nearshore to offshore settings (facies association NVMAR). The primary hydrovolcanic facies associations (PHTR and PHTC) are distinguished from one another on the basis of distinct lithofacies characteristics and vertical sequence profiles. These facies differ from the secondary hydrovolcanic and non‐volcaniclastic facies associations (RHAE, RHMAR and NVMAR) because of their distinctive sedimentary structures, textures and compositions. The depositional processes and settings of some massive and crudely stratified volcaniclastic deposits, which occur in many facies associations, could not be discriminated unambiguously even with microscopic observations. Nevertheless, these facies associations could generally be distinguished because they occur typically in packets or sequences, several metres to tens of metres thick and bounded by distinct stratigraphic discontinuities, and comprise generally distinct sets of lithofacies. The overall characteristics of the Seoguipo Formation suggest that it is composed of numerous superposed phreatomagmatic volcanoes intercalated with marine or non‐marine, volcaniclastic or non‐volcaniclastic deposits. Widespread and continual hydrovolcanic activity, together with volcaniclastic sedimentation, is inferred to have persisted for more than a million years in Jeju Island under the influence of fluctuating Quaternary sea‐levels, before effusion of the shield‐forming lavas. Extensive distribution of hydrovolcanic deposits in the subsurface of Jeju Island highlights that there can be significant differences in the eruption style, growth history and internal structure between shelfal shield volcanoes and oceanic island volcanoes.  相似文献   

16.
《Geodinamica Acta》2013,26(1-3):41-48
Clastic karst deposits occur at different positions within karst areas, whereas surface karst deposits, sediments of the crack filling facies, the cave entrance facies and the inner cave facies have to be distinguished. The karstification itself is of minor importance for the formation of clastic deposits. Except for incasional debris and impure limestones or marls the contribution of carbonate rocks to clastic karst deposits is low. The majority of clastic material is allogenic and siliciclastic.

Regarding the depositional processes cave sediments can be divided into fluvial cave deposits, gravitative or percolative deposits, decomposition deposits and rock breakdown. An actualistic approach could be a useful tool for the identification of fluvial cave deposits. By means of the depositional features of recent cave sediments and classical sedimentological features cave deposits of unknown origin can be classified.  相似文献   

17.
To understand the depositional processes and environmental changes during the initial flooding of the North China Platform, this study focuses on the Lower to Middle Cambrian Zhushadong and Mantou formations in Shandong Province, China. The succession in the Jinan and Laiwu areas comprises mixed carbonate and siliciclastic deposits composed of limestone, dolostone, stromatolite, thrombolite, purple and grey mudstone, and sandstone. A detailed sedimentary facies analysis of seven well‐exposed sections suggests that five facies associations are the result of an intercalation of carbonate and siliciclastic depositional environments, including local alluvial fans, shallowing‐upward carbonate–siliciclastic peritidal cycles, oolite dominant shoals, shoreface and lagoonal environments. These facies associations successively show a transition from an initially inundated tide‐dominated carbonate platform to a wave‐dominated shallow marine environment. In particular, the peritidal sediments were deposited during a large number of depositional cycles. These sediments consist of lime mudstone, dolomite, stromatolite and purple and grey mudstones. These shallowing‐upward cycles generally resulted from carbonate production in response to an increase of accommodation during rising sea‐level. The carbonate production was, however, interrupted by frequent siliciclastic input from the adjacent emergent archipelago. The depositional cycles thus formed under the influence of both autogenetic changes, including sediment supply from the archipelago, and allogenic control of relative sea‐level rise in the carbonate factory. A low‐relief archipelago with an active tidal regime allowed the development of tide‐dominated siliciclastic and carbonate environments on the vast platform. Siliciclastic input to these tidal environments terminated when most of the archipelago became submerged due to a rapid rise in sea‐level. This study provides insights on how a vast Cambrian carbonate platform maintained synchronous sedimentation under a tidal regime, forming distinct cycles of mixed carbonates and siliciclastics as the system kept up with rising relative sea‐level during the early stage of basin development in the North China Platform.  相似文献   

18.
新西兰taranaki盆地中的Pakawau组和Kapuni组属于晚白垩世-始新世。它们为-套含煤层的陆相-海陆交互相层系,该层系中生物扰动和虫孔十分发育,研究表明生物构造的发育程度和虫孔大小是判别古水体底部沉积物中氧溶量的有效标志。  相似文献   

19.
Lyså, A., Hjelstuen, B. O. & Larsen, E. 2009: Fjord infill in a high‐relief area: Rapid deposition influenced by deglaciation dynamics, glacio‐isostatic rebound and gravitational activity. Boreas, 10.1111/j.1502‐3885.2009.00117.x. ISSN 0300‐9483. Seismic profiles and gravity cores have been collected from the previously glaciated Nordfjord system on the west coast of Norway. The results give new information about the deglaciation history of the area and contribute to our understanding of fjord fill in high relief areas. During the last deglaciation, up to 360 m of sediments was deposited in the 135 km long fjord system. Shortly after the coastal area became ice‐free, ~12 300 14C years BP, the first ice‐marginal deposits were formed, probably due to a minor glacier re‐advance. The greatest volume of sediments in the fjord was deposited during the Allerød ice recession period, the Younger Dryas re‐advance and the succeeding ice retreat period until the ice disappeared from the fjord in early Preboreal. During the Allerød, the fjord was ice‐free and glaciomarine stratified sediments were deposited. The ice margin is suggested to have been located just west of Lake Strynevatnet before the advance during the Younger Dryas. In the late phase of the Younger Dryas, and within the succeeding ~1000 years, the glacio‐isostatic rebound was rapid, and extensive re‐sedimentation took place. Slide activities continued into mid‐Holocene, albeit with less intensity and were followed by normal and calm marine conditions that prevailed until the present. One huge rock avalanche into the fjord took place between 2200 and 1800 14C yr BP, probably triggering a tsunami and several slides in the fjord. Even though glacigenic sediments totally dominate in terms of sediment volume, the present study underlines the importance of re‐sedimentation and other gravitational processes in such fjord settings.  相似文献   

20.
渤海湾盆地莱州湾凹陷垦利油区沙三上亚段是目前中深层油气勘探开发的重点主力含油层系。综合研究区沉积背景,以三维地震资料、岩心及测井资料为依托,结合地震沉积学研究,开展了垦利油区沙三上亚段辫状河三角洲沉积特征及演化规律研究。结果表明,莱州湾凹陷垦利油区沙三上亚段沉积期,发育以莱北低凸起、垦东凸起及潜在物源区潍北低凸起供源形成的辫状河三角洲沉积体系。研究区辫状河三角洲平原砂体以细—中砂岩为主,前缘砂体以粉—细砂岩为主,分选性中等较好。牵引流性质的沉积构造十分发育,多见生物扰动构造,反映三角洲前缘动荡的水体环境。顺物源方向发育斜交前积反射地震相,垂直物源方向识别出多期丘状反射地震相。综合古地貌、沉积特征及振幅属性切片,明确研究区沙三上亚段以北部物源莱北低凸起供源为主导,沉积中块及沉积东块为主体沉积区,莱北低凸起供源的三角洲呈后退趋势,其展布面积大(95~130 km2)。沉积西块及东块为多物源供给区,来自垦东凸起的三角洲前缘沉积逐渐萎缩,来自潍北低凸起的三角洲区前缘沉积逐渐向湖盆中央推进。上述沉积展布及演化规律为进一步精细勘探开发提供了沉积地质基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号