首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To understand the depositional processes and environmental changes during the initial flooding of the North China Platform, this study focuses on the Lower to Middle Cambrian Zhushadong and Mantou formations in Shandong Province, China. The succession in the Jinan and Laiwu areas comprises mixed carbonate and siliciclastic deposits composed of limestone, dolostone, stromatolite, thrombolite, purple and grey mudstone, and sandstone. A detailed sedimentary facies analysis of seven well‐exposed sections suggests that five facies associations are the result of an intercalation of carbonate and siliciclastic depositional environments, including local alluvial fans, shallowing‐upward carbonate–siliciclastic peritidal cycles, oolite dominant shoals, shoreface and lagoonal environments. These facies associations successively show a transition from an initially inundated tide‐dominated carbonate platform to a wave‐dominated shallow marine environment. In particular, the peritidal sediments were deposited during a large number of depositional cycles. These sediments consist of lime mudstone, dolomite, stromatolite and purple and grey mudstones. These shallowing‐upward cycles generally resulted from carbonate production in response to an increase of accommodation during rising sea‐level. The carbonate production was, however, interrupted by frequent siliciclastic input from the adjacent emergent archipelago. The depositional cycles thus formed under the influence of both autogenetic changes, including sediment supply from the archipelago, and allogenic control of relative sea‐level rise in the carbonate factory. A low‐relief archipelago with an active tidal regime allowed the development of tide‐dominated siliciclastic and carbonate environments on the vast platform. Siliciclastic input to these tidal environments terminated when most of the archipelago became submerged due to a rapid rise in sea‐level. This study provides insights on how a vast Cambrian carbonate platform maintained synchronous sedimentation under a tidal regime, forming distinct cycles of mixed carbonates and siliciclastics as the system kept up with rising relative sea‐level during the early stage of basin development in the North China Platform.  相似文献   

2.
Sequence stratigraphy, based on climatic, tectonic, and base level parameters, can be used to understand carbonate sedimentation in continental basins. The uppermost continental fill of the Guadix Basin (Betic Cordillera), containing both siliciclastics and carbonates, is investigated here. In its central sector a thick succession of fluvio-lacustrine sediments appear, hosting several important Pliocene and Pleistocene macrovertebrate sites (Fonelas Project). The need to characterize the stratigraphic and sedimentologic context of these important paleontologic sites has lead to litho-, magneto- and biostratigraphic studies. These data, together with the sedimentologic analysis of the Pliocene and Pleistocene siliciclastic and carbonate successions, establish a sedimentary model for the fluvio-lacustrine sedimentation of the two last stages of sedimentation in the Guadix Basin (Units V and VI). Unit V comprises mostly fluvial siliciclastic sediments with less abundant carbonate beds interpreted as floodplain lakes or ponds. The latter, Unit VI, is dominated by vertically-stacked, carbonate palustrine successions. Using two pre-existent continental stratigraphic models, the influence of climate, tectonism, and stratigraphic base level during the last 3.5 Ma on the sedimentary evolution of the fluvio-lacustrine system in the Guadix Basin, especially the carbonate sedimentation patterns, is outlined.  相似文献   

3.
4.
《Gondwana Research》2002,5(3):683-699
The early Carboniferous sedimentation of the Tethyan Margin of Gondwana in the Kashmir Himalaya represents alternating siliciclastic - carbonate succession consisting of distinct stratigraphic sequences which are bounded by discontinuities. The discontinuities in the sedimentation are related to environmental changes in the form of subaerial exposure, subaqueous erosion, subaqueous omission or changes in texture and facies. These distinct surface zones or time significant boundaries can be correlated across the depositional platform. Low stand, high stand and transgressive sedimentation units in the lower and middle parts of early Carboniferous Syringothyris Limestone Formation in Banihal area have been recognised. This is explained by superposition of high frequency and low amplitude sea level fluctuations on a large-scale trend under greenhouse conditions during the early Carboniferous period. The facies associations present in the early Carboniferous succession of the Himalaya broadly represent intertidal (peritidal), shallow subtidal, deeper subtidal, off-shore-slope and deeper environments. Discontinuities that are interpreted as progradational, retrogradational and aggradational phases of sedimentation bound these facies associations. This formation represents continental margin depositional setting which is authenticated by deposition of siliciclastic sediments. This marginal depositional setting is greatly affected by numerous dynamic processes including tectonic and other active sea as well as continental processes. The records of all those processes in this formation reflect the eustatic changes in sea level. These periodic eustatic changes have generated the various discontinuities, stratigraphic sequences or systems tracts. Overall it appears that interplay of many processes such as sediment supply, thermal and tectonic activity, eustatic and climatic changes in the Kashmir Tethyan depositional basin generated these distinct depositional sequences during the early Carboniferous period.  相似文献   

5.
General classifications of Phanerozoic carbonate facies and controlling them factors are reviewed. Three principal carbonate factories distinguished by W. Schlager (2000, 2003) are the tropical shallow-water, the cool-water, and the mudmound factories. The general term for facies associations in the first factory is photozoan carbonates. The cool-water factory encompasses environments producing heterozoan carbonate facies. The mudmound factory is a non-actualistic sedimentary system producing mound-shape buildups of non-skeletal microbial micrites (also termed automicrites). The benthic carbonate production is controlled by light, bottom temperature, eutrophication, siliciclastic influx, and the evolution of marine ecosystems. The cyclic alternation of skeletal associations (“biofacies”) formed under the control of high-amplitude sea level changes is exemplified by the Moscovian (Carboniferous) epeiric carbonates of the East European Craton. Three principal biofacies associations in this example are bryonoderm extended (heterozoan), staffellid-syphonean (photozoan). and Meekella-Ortonella (intertidal flat to stagnant lagoon).  相似文献   

6.
ABSTRACT In active tectonic areas of humid equatorial regions, nearshore shallow‐water environments are commonly sites of near‐continuous siliciclastic influx and/or punctuated volcaniclastic input. Despite significant clastic influence, Neogene carbonates developed in SE Asia adjacent to major deltas or volcanic arcs, and are comparable with modern mixed carbonate–clastic deposits in the region. Research into delta‐front patch reefs from Borneo and fore‐arc carbonate platform development from Java is described and used to evaluate the effects of siliciclastic and volcaniclastic influx on regional carbonate sedimentation, local changes in carbonate‐producing biota and sequence development. Regional carbonate development in areas of high siliciclastic or volcaniclastic input was influenced by the presence of antecedent highs, changes in the amounts or rates of clastic input, delta lobe switching or variations in volcanic activity, energy regimes and relative sea‐level change. A variety of carbonate‐producing organisms, including larger benthic foraminifera, some corals, coralline algae, echinoderms and molluscs could tolerate near‐continuous siliciclastic or volcaniclastic influx approximately equal to their own production rates. These organisms adopted various ‘strategies’ for coping with clastic input, including a degree of mobility, morphologies adapted to unstable substrate inhabitation or shedding sediment, and shapes adapted to low light levels. Local carbonate production was also affected by energy regime, clastic grain sizes and associated nutrient input. Clastic input influenced the inhabitable depth range for photoautotrophs, the zonation of light‐dependent assemblages and the morphology and sequence development of mixed carbonate–clastic successions. This study provides data on the dynamic interactions between carbonate and non‐carbonate clastic sediments and, when combined with information from comparable modern environments, allows a better understanding of the effects of siliciclastic and volcaniclastic influx on carbonate production.  相似文献   

7.
A mathematical model of carbonate platform evolution is presented in which depth‐dependent carbonate growth rates determine platform‐top accumulation patterns in response to rising relative sea‐level. This model predicts that carbonate platform evolution is controlled primarily by the water depth and sediment accumulation rate conditions at the onset of relative sea‐level rise. The long‐standing ‘paradox of a drowned platform’ arose from the observation that maximum growth rate potentials of healthy platforms are faster than those of relative sea‐level rise. The model presented here demonstrates that a carbonate platform could be drowned during a constant relative sea‐level rise whose rate remains less than the maximum carbonate production potential. This scenario does not require environmental changes, such as increases in nutrient supply or siliciclastic sedimentation, to have taken place. A rate of relative sea‐level rise that is higher than the carbonate accumulation rate at the initial water depth is the only necessary condition to cause continuous negative feedbacks to the sediment accumulation rates. Under these conditions, the top of the carbonate platform gradually deepens until it is below the active photic zone and drowns despite the strong maximum growth potential of the carbonate production factory. This result effectively resolves the paradox of a drowned carbonate platform. Test modelling runs conducted with 2·5 m and 15 m initial sea water depths at bracketed rates of relative sea‐level rise have determined how fast the system catches up and maintains the ‘keep‐up’ phase. This is the measure of time necessary for the basin to respond fully to external forcing mechanisms. The duration of the ‘catch‐up’ phase of platform response (termed ‘carbonate response time’) scales with the initial sea water depth and the platform‐top aggradation rate. The catch‐up duration can be significantly elongated with an increase in the rate of relative sea‐level rise. The transition from the catch‐up to the keep‐up phases can also be delayed by a time interval associated with ecological re‐establishment after platform flooding. The carbonate model here employs a logistical equation to model the colonization of carbonate‐producing marine organisms and captures the initial time interval for full ecological re‐establishment. This mechanism prevents the full extent of carbonate production to be achieved at the incipient stage of relative sea‐level rise. The increase in delay time due to the carbonate response time and self‐organized processes associated with biological colonization increase the chances for platform drowning due to deepening of water depth (> ca 10 m). Furthermore this implies a greater likelihood for an autogenic origin for high‐frequency cyclic strata than has been estimated previously.  相似文献   

8.
Abstract The Infra Krol Formation and overlying Krol Group constitute a thick (< 2 km), carbonate-rich succession of terminal Proterozoic age that crops out in a series of doubly plunging synclines in the Lesser Himalaya of northern India. The rocks include 18 carbonate and siliciclastic facies, which are grouped into eight facies associations: (1) deep subtidal; (2) shallow subtidal; (3) sand shoal; (4) peritidal carbonate complex; (5) lagoonal; (6) peritidal siliciclastic–carbonate; (7) incised valley fill; and (8) karstic fill. The stromatolite-rich, peritidal complex appears to have occupied a location seaward of a broad lagoon, an arrangement reminiscent of many Phanerozoic and Proterozoic platforms. Growth of this complex was accretionary to progradational, in response to changes in siliciclastic influx from the south-eastern side of the lagoon. Metre-scale cycles tend to be laterally discontinuous, and are interpreted as mainly autogenic. Variations in the number of both sets of cycles and component metre-scale cycles across the platform may result from differential subsidence of the interpreted passive margin. Apparently non-cyclic intervals with shallow-water features may indicate facies migration that was limited compared with the dimensions of facies belts. Correlation of these facies associations in a sequence stratigraphic framework suggests that the Infra Krol Formation and Krol Group represent a north- to north-west-facing platform with a morphology that evolved from a siliciclastic ramp, to carbonate ramp, to peritidal rimmed shelf and, finally, to open shelf. This interpretation differs significantly from the published scheme of a basin centred on the Lesser Himalaya, with virtually the entire Infra Krol–Krol succession representing sedimentation in a persistent tidal-flat environment. This study provides a detailed Neoproterozoic depositional history of northern India from rift basin to passive margin, and predicts that genetically related Neoproterozoic deposits, if they are present in the High Himalaya, are composed mainly of slope/basinal facies characterized by fine-grained siliciclastic and detrital carbonate rocks, lithologically different from those of the Lesser Himalaya.  相似文献   

9.
碳酸盐与陆源碎屑混合沉积体系研究进展   总被引:24,自引:1,他引:24  
广义的碳酸盐与陆源碎屑的混合沉积是指碳酸盐岩与陆源碎屑岩高频率交互沉积及岩石中碳酸盐组分与陆源碎屑组分的混合产出。本文综述了混合沉积体系的研究意义;评述了80年代以来的国内外研究现状和成果,认为海平面变化是混合沉积的主要控制因素,其次有构造升降、物源供应、气候以及突出发性事件等因素;提出了混合沉积体系的研究应该以沉积相、微相分析为基础,并与沉积地球化学、阴极发光研究相结合。  相似文献   

10.
Using the Linok Formation as an example, spatiotemporal relationships between siliciclastic and carbonate systems in the epeirogenic-type basin and an initial stage of the carbonate platform development are considered. Clayey-carbonate rocks of the Linok Formation correspond to the middle part of the upper Middle Riphean, up to 1.4 km thick terrigenous-carbonate cycle occurring at the base of the Turukhansk Uplift section. The formation is subdivided into the lower clayey-calcareous (18–43 m), middle, mainly argillite (40–75 m), and upper carbonate (120–220 m) subformations. The analysis of facies associations revealed that the formation was deposited as a symmetrical transgressive-regressive rock succession representing a common stratigraphic sequence. Rocks from the lower and middle subformations correspond to the agradational development of the distal and relatively deep part of the basin with mixed clayey-calcareous sedimentation, whereas the upper subformation reflects the processes of formation and expansion of the carbonate platform. It is shown that the platform development initiated in the external area of the basin, from where fine-grained sediments expanded to the internal deep-water zones. It is assumed that progradation of the platform at the initial stage of its development was characterized by diffused patterns  相似文献   

11.
Siliciclastic intervals in Lower Permian carbonate–siliciclastic cyclothems in western Kansas record climate control on facies progression, deposition and preservation. The 26 000 km2 study area comprises seven marine‐continental (carbonate–siliciclastic) cyclothems caused by glacioeustasy. Core data and a three‐dimensional geological model provide a detailed view of the sub‐surface on a gently sloping ramp. Siliciclastic intervals in the cyclothems are fine‐grained red beds with extensive pedogenic features, indicating a continental origin. Bed geometry (sheet‐like deposits that thin to the east), lateral grading, grain size (very fine‐grained sand to silt) and grain angularity (sub‐angular to angular) suggest that the sediment is loess sourced from the west, probably the Ancestral Rocky Mountains. There is a repeated record of glacial‐cycle‐scale, climate‐controlled cyclicity within siliciclastic intervals that has not been recognized previously. Aeolian silt grain size coarsens upward towards the middle, then fines upward in each siliciclastic interval. When sea‐level was high (interglacial) and carbonate production flourished, aeolian sedimentation nearly ceased, suggesting increased vegetation and rainfall at the source. As sea‐level fell, fine‐grained siliciclastic sediments were deposited under relatively dry, but seasonally wet conditions on an exposed ramp. Laterally graded coarser grained siliciclastic sediments with diagnostic fabrics indicate drier conditions with seasonal rainfall during a continued relative fall in sea‐level. The coarsest siliciclastic sediments were deposited during the lowest sea‐level and driest conditions, but still with sufficient seasonal moisture to allow vegetative cover and bioturbation. Subsequent upward fining is correlated with sedimentological indications of wetter conditions during relative sea‐level rise. Unlike common sequence stratigraphic models that relate siliciclastic sediment accumulation to base‐level rise, continental deposits were preserved because plants and pedogenesis stabilized aeolian sediment. The aggradational landscape formed by this process had several metres of positive relief that reduced accommodation for overlying marine carbonate strata. Thus, this mechanism for continental siliciclastic aggradation has a significant effect on sequence stratigraphic architecture.  相似文献   

12.
Abstract The north-east Australian margin is the largest modern example of a tropical mixed siliciclastic/carbonate depositional system, with an outer shelf hosting the Great Barrier Reef (GBR) and an inner shelf dominated by fluvially sourced siliciclastic sediment wedges. The long-term interplay between these sediment components and sea level is recorded in the Queensland Trough, a 1–2 km deep N–S elongate basin situated between the GBR platform and the Queensland Plateau. In this paper, 154 samples from 45 surface grabs and six well-dated piston cores were analysed for total carbonate content, carbonate mineralogy and Sr concentration to establish spatial and temporal patterns of carbonate accumulation in the Queensland Trough over the last 300 kyr. Surface carbonate contents are lowest on the inner-shelf (<5%) and in the trough axis (<60%) because of siliciclastic dilution. Carbonate on the shelf is mostly Sr-rich aragonite and high-Mg calcite (HMC), whereas that in the basin is mostly low-Mg calcite. Once normalized to remove the effects of siliciclastic dilution, surface Sr-rich aragonite and HMC abundances decrease linearly to background levels ≈ 100 km seaward of the shelf edge. Core samples show that, over time, normalized aragonite and Sr abundances are greatest during periods of shelf flooding and lowest when sea level drops below the shelf edge. This is consistent with changes in the production of coral and calcareous algae, and the shedding of their debris from the shelf. Interestingly, normalized HMC concentrations on the slope peak during periods of major transgression, perhaps because of maximum off-shelf transport from inter-reef areas or intermediate water dissolution. After accounting for siliciclastic dilution, there are strong similarities in both spatial and temporal patterns of carbonate minerals between slopes and basins of the north-east Australian margin and those of pure carbonate margins such as the Bahamas. A limited set of basic processes, including the formation and breakdown of carbonate on the shelf, the transport of carbonate off the shelf and eustatic sea level, probably controls carbonate accumulation in slope and basin settings of tropical environments, irrespective of proximal siliciclastic sediment sources.  相似文献   

13.
The Burdigalian mixed siliciclastic–carbonate deposits of the Dam Formation are well-exposed in Al Lidam area, in the eastern province of Saudi Arabia. They represent a shallow part of the Arabian plate continental margin. The Dam Formation is correlatable to the Miocene reservoirs in both Iran and Iraq. Therefore, studying the Dam Formation lithologic heterogeneity in a small distance with high resolution could help in further work related to pattern prediction of the Miocene reservoir properties. High-resolution sedimentological investigation was carried out through six outcrops. The facies parameters (lithology, sedimentary structures, main fossils, paleocurrent patterns and geometries of the sedimentary bodies) were described. The results revealed 15 lithofacies that have been further grouped into 7 lithofacies associations 5 of which are carbonates and include (1) interbedded dolostone and evaporates, (2) microbialite buildup, (3) ooid-dominated grainstones, (4) burrowed skeletal peloidal wackestone–packstone and (5) mollusc-dominated wackestone–packstone. The remaining two associations are of siliciclastics and include (6) intertidal siliciclastics and (7) wave-dominated siliciclastics. These lithofacies were interpreted to reflect deposition in a mixed siliciclastic–carbonate ramp system that includes subtidal, shoreface, intertidal, foreshore, supratidal and estuarine deposits in a shallowing-upward succession. Each one of these lithofacies association has distinct geometry and architecture pattern. Oolites and heterozoan lithofacies occur as sheets and show great continuity along the strike direction. Oolites pass laterally in the dip direction into more skeletal- and peloid-dominated zones, whereas heterozoan lithofacies stay continuous in the dip directions and change from siliciclastic to carbonate heterozones. In contrast, microbialite lithofacies lack continuous beds and occur as localised bioherms and biostroms. Channelised lithofacies are restricted laterally into isolated channel bodies and vertically in the contact boundary between siliciclastic and carbonate lithofacies, whereas the interbedded dolostone and evaporite lithofacies form distinct, relatively thick continuous layers. With continuous exposures in both strike (1.2 km) and dip (0.15 km) directions, the outcrops in the Al Lidam area provide unique opportunity to study the heterogeneity among lithofacies of the mixed siliciclastic–carbonate system of the Dam Formation. Such study may provide insights to predict occurrence and distribution of lithofacies bodies in their equivalent reservoirs which are important for reservoir characterisation.  相似文献   

14.
利用岩芯、薄片、测录井以及测试分析等资料,结合区域地质,研究了渤海湾盆地饶阳凹陷大王庄地区古近系沙三上亚段(Es3上)I油组发育的混积岩特征,分析了其沉积环境,探讨了其沉积模式。研究结果表明:大王庄地区古近系沙三上亚段I油组混积岩分为(含)陆源碎屑质—碳酸盐岩和(含)碳酸盐质—陆源碎屑岩两大类,以灰(云)质砂岩、砂质泥晶云岩为主,(含)陆源碎屑质—碳酸盐岩主要分布于工区中部和北部,(含)碳酸盐质—陆源碎屑岩分布于西部和南部;混积成因类型以原地混合和相源混合为主,相源混合出现于Es3上I油组早中期,原地混合出现于Es3上I油组早期;少量母源混合出现于Es3上I油组晚期。饶阳凹陷大王庄地区古近系沙三上亚段I油组沉积环境主要位于滨浅湖,可划分为砂质混积滩坝沉积、碳酸盐岩混积滩坝沉积以及滨浅湖泥混积3种沉积微相类型。综合分析湖平面变化、构造演化、古地貌等对混合沉积的控制作用,建立了湖平面先稳定上升后下降的混积岩沉积模式:随着湖平面的缓慢上升,混合沉积呈增多趋势,以相源混合和原地混合为主;当湖平面到达一定高度时,纯碳酸盐岩增多,混合沉积减少,以相源混合为主;后期,湖平面下降,可能形成母源混合沉积。  相似文献   

15.
最近十年来研究的地质数据包括比尔马尼亚盆地岩相的地层、岩性、岩石、粒度和地球化学资料。这些数据已进入专用的“Foxsedba”数据表以建立比尔马尼亚盆地的数据总库。采用Harward制图法在x-y轴(粒度参数和地球化学数据)上作图。该盆地各种岩相的环境解释模式都配备有“图象”软件。最后,上述资料被用来解释所推断的比尔马尼亚盆地各种岩相的沉积环境。该盆地的沉积充填物含硅质碎屑、碳酸盐和磷块岩相的混合组合,指示变幻不定的沉积环境,即有若干具间歇海进事件的沉积海退事件。结果,磷块岩主要形成一种浅水正化学沉积和异化学沉积的复杂组合。  相似文献   

16.
On rimmed shelves of Bahamian-type, characterized by chlorozoan associations and typical of tropical seas, carbonate production keeps pace with normal sea-level rise except when rapid rise or drastic environmental changes occurs. On the other hand, open temperate carbonate shelves are characterized by low carbonate production of the foramol association (molluscs, benthic foraminifera, bryozoans, coralline algae, etc.) and generally show seaward relict sediments, because carbonate production cannot keep pace with normal rate of sea-level change.

Several examples of recent drowning foramol carbonate platforms (e.g., large areas of the Mediterranean Sea, eastern-northeastern Yucatan Shelf) as well as analogous ancient drowned foramol-type carbonate platforms (e.g., early to middle Miocene of the Southern Apennines; Miami Terrace) may support the idea that the drowning of many ancient carbonate platforms has been favoured by their biogenic (foramol sensu lato) constitution. Because of their typically low rate of growth, foramol carbonate platforms are fated to be drowned even if the sea-level rise is one with which the normal growth of chlorozoan platforms can keep pace. Similar conditions may also occur in tropical areas where variations in environmental conditions, such as the presence of cold waters, changes in salinity and increased nutrients, preclude the development of chlorozoan associations.  相似文献   


17.
The Late Cenomanian–Mid Turonian succession in central Spain is composed of siliciclastic and carbonate rocks deposited in a variety of coastal and marine shelf environments (alluvial plain–estuarine, lagoon, shoreface, offshore‐hemipelagic and carbonate ramp). Three depositional sequences (third order) are recognized: the Atienza, Patones and El Molar sequences. The Patones sequence contains five fourth‐order parasequence sets, while a single parasequence set is recognized in the Atienza and El Molar sequences. Systems tracts can be recognized both in the sequences and parasequence sets. The lowstand systems tracts (only recognized for Atienza and Patones sequences) are related to erosion and sequence boundary formation. Transgressive systems tracts are related to marine transgression and shoreface retreat. The highstand systems tracts are related to shoreface extension and progradation, and to carbonate production and ramp progradation. Sequences are bounded by erosion or emergence surfaces, whose locations are supported by mineralogical analyses and suggest source area reactivation probably due to a fall in relative sea‐level. Transgressive surfaces are subordinate erosion and/or omission surfaces with a landward facies shift, interpreted as parasequence set boundaries. The co‐existence of siliciclastic and carbonate sediments and environments occurred as facies mixing or as distinct facies belts along the basin. Mixed facies of coastal areas are composed of detrital quartz and clays derived from the hinterland, and dolomite probably derived from bioclastic material. Siliciclastic flux to coastal areas is highly variable, the maximum flux postdates relative sea‐level falls. Carbonate production in these areas may be constant, but the final content is a function of changing inputs in terrigenous sediments and carbonate content diminishes through a dilution effect. Carbonate ramps were detached from the coastal system and separated by a fringe of offshore, fine‐grained muds and silts as distinct facies belts. The growth of carbonate ramp deposits was related to the highstand systems tracts of the fourth‐order parasequence sets. During the growth of these ramps, some sediment starvation occurred basinwards. Progradation and retrogradation of the different belts occur simultaneously, suggesting a sea‐level control on sedimentation. In the study area, the co‐existence of carbonate and siliciclastic facies belts depended on the superimposition of different orders of relative sea‐level cycles, and occurred mainly when the second‐order, third‐order and fourth‐order cycles showed highstand conditions.  相似文献   

18.
The Neoproterozoic Zerrissene Turbidite Complex of central-western Namibia comprises five turbiditic units. From the base to the top they are the Zebrapüts Formation (greywacke and pelite), Brandberg West Formation (marble and pelite), Brak River Formation (greywacke and pelite with dropstones), Gemsbok River Formation (marble and pelite) and Amis River Formation (greywacke and pelites with rare carbonates and quartz-wacke).In the Lower Ugab River valley, five siliciclastic facies were recognised in the Brak River Formation. These are massive and laminated sandstones, classical turbidites (thick- and thin-bedded), mudrock, rare conglomerate and breccia. For the carbonate Gemsbok River Formation four facies were identified including massive non-graded and graded calcarenite, fine grained evenly bedded blue marble and calcareous mudrock. Most of these facies are also present in the other siliciclastic units of the Zerrissene Turbidite Complex as observed in other areas.The vertical facies association of the siliciclastic Brak River Formation is interpreted as representing sheet sand lobe to lobe-fringe palaeoenvironment with the abandonment of siliciclastic deposition at the top of the succession. The vertical facies association of the carbonate Gemsbok Formation is interpreted as the slope apron succession overlain by periplatform facies, suggesting a carbonate slope sedimentation of a prograding depositional shelf margin.If the siliciclastic–carbonate paired succession would represent a lowstand relative sea-level and highstand relative sea-level, respectively, the entire turbidite succession of the Zerrissene Turbidite Complex can be interpreted as three depositional sequences including two paired siliciclastic–carbonate units (Zebrapüts-Brandberg West formations; Brak River–Gemsbok formations) and an incomplete succession without carbonate at the top (Amis River Formation).  相似文献   

19.

The Great Barrier Reef represents the largest modern example of a mixed siliciclastic‐carbonate system. The Burdekin River is the largest source of terrigenous sediment to the lagoon and is therefore an ideal location to investigate regional patterns of mixed sedimentation. Sediments become coarser grained and more poorly sorted away from the protection of eastern headlands, with mud accumulation focused in localised ‘hot spots‘ in the eastern portion of embayments protected from southeast trade winds. The middle shelf has a variable facies distribution but is dominated by coarse carbonate sand. North of Bowling Green Bay, modern coarse carbonate sand and relict quartzose sand occur. Shore‐normal compositional changes show Ca‐enrichment and Al‐dilution seawards towards the reef, and shore‐parallel trends show Al‐dilution westwards (across bays) along a Ca‐depleted mixing line. Intermediate siliciclastic‐carbonate sediment compositions occur on the middle shelf due to the abundance of relict terrigenous sand, a pattern that is less developed on the narrow northern Great Barrier Reef shelf. Rates of sediment deposition from seismic evidence and radiochemical tracers suggest that despite the magnitude of riverine input, 80–90% of the Burdekin‐derived sediment is effectively captured in Bowling Green Bay. Over millennial time‐scales, stratigraphic controls suggest that sediment is being preferentially accreted back to the coast.  相似文献   

20.
Previous field studies have demonstrated that sedimentation is an important factor that can limit oyster reef growth and restoration success. High relief reefs are more productive and resilient than low relief reefs, in part, because increasing reef height reduces sedimentation and enhances oyster growth. In this study, we investigated the relationship between initial reef height and reef development using a simple model. The model contains three coupled differential equations that describe changes in oyster volume, shell volume, and sediment volume per unit area of reef with time. The model was used to investigate how parameters such as flow speed, sediment grain size, and food concentration affect reef survival and final reef height. Whether or not a reef survives depends primarily on the shape of the sediment concentration profile relative to the initial reef height. Over a long time period, three different steady-state reef heights are possible, depending on the environmental parameters and initial reef height: (1) If growth outpaces sedimentation, the reef achieves the maximum possible height, which is independent of sedimentation parameters; (2) if deposition outpaces growth and the shear stress does not exceed the critical shear stress, the reef is buried in sediment and dies; and (3) if deposition outpaces growth and the shear stress exceeds the critical shear stress, a reduced steady-state height is achieved that depends on both growth and sedimentation parameters. The model can be used to assess the ways in which measurable environmental parameters affect reef restoration success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号