首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a two-step stochastic inversion approach for monitoring the distribution of CO2 injected into deep saline aquifers for the typical scenario of one single injection well and a database comprising a common suite of well logs as well as time-lapse vertical seismic profiling (VSP) data. In the first step, we compute several sets of stochastic models of the elastic properties using conventional sequential Gaussian co-simulations (SGCS) representing the considered reservoir before CO2 injection. All realizations within a set of models are then iteratively combined using a modified gradual deformation algorithm aiming at reducing the mismatch between the observed and simulated VSP data. In the second step, these optimal static models then serve as input for a history matching approach using the same modified gradual deformation algorithm for minimizing the mismatch between the observed and simulated VSP data following the injection of CO2. At each gradual deformation step, the injection and migration of CO2 is simulated and the corresponding seismic traces are computed and compared with the observed ones. The proposed stochastic inversion approach has been tested for a realistic, and arguably particularly challenging, synthetic case study mimicking the geological environment of a potential CO2 injection site in the Cambrian-Ordivician sedimentary sequence of the St. Lawrence platform in Southern Québec. The results demonstrate that the proposed two-step reservoir characterization approach is capable of adequately resolving and monitoring the distribution of the injected CO2. This finds its expression in optimized models of P- and S-wave velocities, density, and porosity, which, compared to conventional stochastic reservoir models, exhibit a significantly improved structural similarity with regard to the corresponding reference models. The proposed approach is therefore expected to allow for an optimal injection forecast by using a quantitative assimilation of all available data from the appraisal stage of a CO2 injection site.  相似文献   

2.
The utilization of anthropogenic CO2 for enhanced oil recovery (EOR) can significantly extend the production life of an oil field, and help in the reduction of atmospheric emission of anthropogenic CO2 if sequestration is considered. This work summarizes the prospect of EOR and sequestration using CO2 flooding from an Indian mature oil field at Cambay basin through numerical modelling, simulation and pressure study based on limited data provided by the operator. To get an insight into CO2-EOR and safe storage process in this oil field, a conceptual sector model is developed and screening standard is proposed keeping in mind the major pay zone of the producing reservoir. To construct the geomodel, depth maps, well positions and coordinates, well data and well logs, perforation depths and distribution of petrophysical properties as well as fluid properties provided by the operator, has been considered. Based on the results from the present study, we identified that the reservoir has the potential for safe and economic geological sequestration of 15.04×106 metric ton CO2 in conjunction with a substantial increase in oil recovery of 10.4% of original oil in place. CO2-EOR and storage in this mature field has a bright application prospect since the findings of the present work could be a better input to manage the reservoir productivity, and the pressure field for significant enhancement of oil recovery followed by safe storage.  相似文献   

3.
Careful site characterization is critical for successful geologic storage of carbon dioxide (CO2) because of the many physical and chemical processes impacting CO2 movement and containment under field conditions. Traditional site characterization techniques such as geological mapping, geophysical imaging, well logging, core analyses, and hydraulic well testing provide the basis for judging whether or not a site is suitable for CO2 storage. However, only through the injection and monitoring of CO2 itself can the coupling between buoyancy flow, geologic heterogeneity, and history-dependent multi-phase flow effects be observed and quantified. CO2 injection and monitoring can therefore provide a valuable addition to the site-characterization process. Additionally, careful monitoring and verification of CO2 plume development during the early stages of commercial operation should be performed to assess storage potential and demonstrate permanence. The Frio brine pilot, a research project located in Dayton, Texas (USA) is used as a case study to illustrate the concept of an iterative sequence in which traditional site characterization is used to prepare for CO2 injection and then CO2 injection itself is used to further site-characterization efforts, constrain geologic storage potential, and validate understanding of geochemical and hydrological processes. At the Frio brine pilot, in addition to traditional site-characterization techniques, CO2 movement in the subsurface is monitored by sampling fluid at an observation well, running CO2-saturation-sensitive well logs periodically in both injection and observation wells, imaging with crosswell seismic in the plane between the injection and observation wells, and obtaining vertical seismic profiles to monitor the CO2 plume as it migrates beyond the immediate vicinity of the wells. Numerical modeling plays a central role in integrating geological, geophysical, and hydrological field observations.  相似文献   

4.
Carbon dioxide (CO2) has been injected in the subsurface permeable formations as a means to cut atmospheric CO2 emissions and/or enhance oil recovery (EOR). It is important to constrain the boundaries of the CO2 plume in the target formation and/or other formations hosting the CO2 migrated from the target formation. Monitoring methods and technologies to assess the CO2 plume boundaries over time within a reservoir of interest are required. Previously introduced methods and technologies on pressure monitoring to detect the extent of the CO2 plume require at least two wells, i.e. pulser and observation wells. We introduce pressure transient technique requiring single well only. Single well pressure transient testing (drawdown/buildup/injection/falloff) is widely used to determine reservoir properties and wellbore conditions. Pressure diagnostic plots are used to identify different flow regimes and determine the reservoir/well characteristics. We propose a method to determine the plume extent for a constant rate pressure transient test at a single well outside the CO2 plume. Due to the significant contrast between mobility and storativity of the CO2 and native fluids (oil or brine), the CO2 boundary causes deviation in the pressure diagnostic response from that corresponding to previously identified heterogeneities. Using the superposition principle, we develop a relationship between the deviation time and the plume boundary. We demonstrate the applicability of the proposed method using numerically generated synthetic data corresponding to homogeneous, heterogeneous, and anisotropic cases to evaluate its potential and limitations. We discuss ways to identify and overcome the potential limitations for application of the method in the field.  相似文献   

5.
6.
A numerical model was developed to investigate the potential to detect fluid migration in a (homogeneous, isotropic, with constant pressure lateral boundaries) porous and permeable interval overlying an imperfect primary seal of a geologic CO2 storage formation. The seal imperfection was modeled as a single higher-permeability zone in an otherwise low-permeability seal, with the center of that zone offset from the CO2 injection well by 1400 m. Pressure response resulting from fluid migration through the high-permeability zone was detectable up to 1650 m from the centroid of that zone at the base of the monitored interval after 30 years of CO2 injection (detection limit = 0.1 MPa pressure increase); no pressure response was detectable at the top of the monitored interval at the same point in time. CO2 saturation response could be up to 774 m from the center of the high-permeability zone at the bottom of the monitored interval, and 1103 m at the top (saturation detection limit = 0.01). More than 6% of the injected CO2, by mass, migrated out of primary containment after 130 years of site performance (including 30 years of active injection) in the case where the zone of seal imperfection had a moderately high permeability (10??17 m2 or 0.01 mD). Free-phase CO2 saturation monitoring at the top of the overlying interval provides favorable spatial coverage for detecting fluid migration across the primary seal. Improved sensitivity of detection for pressure perturbation will benefit time of detection above an imperfect seal.  相似文献   

7.
CO2 is now considered as a novel heat transmission fluid to extract geothermal energy. It can achieve the goal of energy exploitation and CO2 geological sequestration. Taking Zhacanggou as research area, a “Three-spot” well pattern (one injection with two production), “wellbore–reservoir” coupled model is built, and a constant injection rate is set up. A fully coupled wellbore–reservoir simulator—T2Well—is introduced to study the flow mechanism of CO2 working as heat transmission fluid, the variance pattern of each physical field, the influence of CO2 injection rate on heat extraction and the potential and sustainability of heat resource in Guide region. The density profile variance resulting from temperature differences of two wells can help the system achieve “self-circulation” by siphon phenomenon, which is more significant in higher injection rate cases. The density of CO2 is under the effect of both pressure and temperature; moreover, it has a counter effect on temperature and pressure. The feedback makes the flow process in wellbore more complex. In low injection rate scenarios, the temperature has a dominating impact on the fluid density, while in high rate scenario, pressure plays a more important role. In most scenarios, it basically keeps stable during 30-year operation. The decline of production temperature is <5 °C. However, for some high injection rate cases (75 and 100 kg/s), due to the heat depletion in reservoir, there is a dramatic decline for production temperature and heat extraction rate. Therefore, a 50-kg/s CO2 injection rate is more suitable for “Three-spot” well pattern in Guide region.  相似文献   

8.
Seismic surveys successfully imaged a small scale CO2 injection (1,600 ton) conducted in a brine aquifer of the Frio Formation near Houston, Texas. These time-lapse borehole seismic surveys, crosswell and vertical seismic profile (VSP), were acquired to monitor the CO2 distribution using two boreholes (the new injection well and a pre-existing well used for monitoring) which are 30 m apart at a depth of 1,500 m. The crosswell survey provided a high-resolution image of the CO2 distribution between the wells via tomographic imaging of the P-wave velocity decrease (up to 500 m/s). The simultaneously acquired S-wave tomography showed little change in S-wave velocity, as expected for fluid substitution. A rock physics model was used to estimate CO2 saturations of 10–20% from the P-wave velocity change. The VSP survey resolved a large (∼70%) change in reflection amplitude for the Frio horizon. This CO2 induced reflection amplitude change allowed estimation of the CO2 extent beyond the monitor well and on three azimuths. The VSP result is compared with numerical modeling of CO2 saturations and is seismically modeled using the velocity change estimated in the crosswell survey.  相似文献   

9.
In this paper, we focus on the geological storage of CO2 in reservoirs with zones that are cold enough to facilitate CO2 hydrate formation at local pressures. A 2D hydro-chemical mechanical model which has five layers (three layers with aquifers and two layers with cap rock in which we introduced two fractures) is created. We apply a reactive transport reservoir simulator, RetrasoCodeBright (RCB), in which hydrate is treated as a pseudo mineral. Following the recent modifications to account for hydrate dynamics in the code through a kinetic approach (Kvamme et al., Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), 2011b), we have further improved the simulator to implement the nonequilibrium thermodynamic calculations. In the present study, we spot the light on the hydrate formation effects on porosity in different regions, as well as on the flow pattern. These simulations are based on classical relationships between porosity and permeability, but the outline of ongoing modifications is presented as well. A critical question in such systems is whether hydrate formation can contribute to stabilizing the storage, given that hydrates are pore filling and cannot be stable toward mineral surfaces. The implications of hydrate formation on the geo-mechanical properties of the model reservoir are other aspects addressed in this study.  相似文献   

10.
Practical geologic CO2 sequestration will require long-term monitoring for detection of possible leakage back into the atmosphere. One potential monitoring method is multi-spectral imaging of vegetation reflectance to detect leakage through CO2-induced plant stress. A multi-spectral imaging system was used to simultaneously record green, red, and near-infrared (NIR) images with a real-time reflectance calibration from a 3-m tall platform, viewing vegetation near shallow subsurface CO2 releases during summers 2007 and 2008 at the Zero Emissions Research and Technology field site in Bozeman, Montana. Regression analysis of the band reflectances and the Normalized Difference Vegetation Index with time shows significant correlation with distance from the CO2 well, indicating the viability of this method to monitor for CO2 leakage. The 2007 data show rapid plant vigor degradation at high CO2 levels next to the well and slight nourishment at lower, but above-background CO2 concentrations. Results from the second year also show that the stress response of vegetation is strongly linked to the CO2 sink–source relationship and vegetation density. The data also show short-term effects of rain and hail. The real-time calibrated imaging system successfully obtained data in an autonomous mode during all sky and daytime illumination conditions.  相似文献   

11.
A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 day−1 were injected from a 100-m long, ~2.5-m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0–10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.  相似文献   

12.
Proper characterizations of background soil CO2 respiration rates are critical for interpreting CO2 leakage monitoring results at geologic sequestration sites. In this paper, a method is developed for determining temperature-dependent critical values of soil CO2 flux for preliminary leak detection inference. The method is illustrated using surface CO2 flux measurements obtained from the AmeriFlux network fit with alternative models for the soil CO2 flux versus soil temperature relationship. The models are fit first to determine pooled parameter estimates across the sites, then using a Bayesian hierarchical method to obtain both global and site-specific parameter estimates. Model comparisons are made using the deviance information criterion (DIC), which considers both goodness of fit and model complexity. The hierarchical models consistently outperform the corresponding pooled models, demonstrating the need for site-specific data and estimates when determining relationships for background soil respiration. A hierarchical model that relates the square root of the CO2 flux to a quadratic function of soil temperature is found to provide the best fit for the AmeriFlux sites among the models tested. This model also yields effective prediction intervals, consistent with the upper envelope of the flux data across the modeled sites and temperature ranges. Calculation of upper prediction intervals using the proposed method can provide a basis for setting critical values in CO2 leak detection monitoring at sequestration sites.  相似文献   

13.
The primary goals of seismic interpretation and quantification are to understand and define reservoir architecture and the distribution of petrophysical properties. Since seismic interpretation is associated with major uncertainties, outcrop analogues are used to support and improve the resulting conceptual models. In this study, the Miocene carbonates of Cerro de la Molata (Las Negras, south‐east Spain) have been selected as an outcrop analogue. The heterogeneous carbonate rocks of the Cerro de la Molata Platform were formed by a variety of carbonate‐producing factories, resulting in various platform morphologies and a wide range of physical properties. Based on textural (thin sections) and petrophysical (porosity, density, carbonate content and acoustic properties) analyses of the sediments, eleven individual facies types were determined. The data were used to produce synthetic seismic profiles of the outcrop. The profiles demonstrate that the spatial distribution of the facies and the linked petrophysical properties are of key importance in the appearance of the synthetic seismic sections. They reveal that carbonate factory and facies‐specific reflection patterns are determined by porosity contrasts, diagenetic modifications and the input of non‐carbonate sediment. The reflectors of the seismograms created with high‐frequency wavelets are coherent with the spatial distribution of the predefined facies within the depositional sequences. The synthetic seismograms resulting from convolution with lower frequency wavelets do not show these details – the major reflectors coincide with: (i) the boundary between the volcanic basement and the overlying carbonates; (ii) the platform geometries related to changes in carbonate factories, thus sequence boundaries; and (iii) diagenetic zones. Changes in seismic response related to diagenesis, switching carbonate producers and linked platform geometries are important findings that need to be considered when interpreting seismic data sets.  相似文献   

14.
The Johansen formation is a candidate site for large-scale CO2 storage offshore of the south-western coast of Norway. An overview of the geology for the Johansen formation and neighboring geological formations is given, together with a discussion of issues for geological and geophysical modelling and integrated fluid flow modelling. We further describe corresponding simulation models. Major issues to consider are capacity estimation and processes that could potentially cause CO2 to leak out of the Johansen formation and into the formations above. Currently, these issues can only be investigated through numerical simulation. We consider the effect of different boundary conditions, sensitivity with respect to vertical grid refinement and permeability/transmisibility data, and the effect of residual gas saturations, since these strongly affect the CO2-plume distribution. The geological study of the Johansen formation is performed based on available seismic and well data. Fluid simulations are performed using a commercial simulator capable of modelling CO2 flow and transport by simple manipulation of input files and data. We provide details for the data and the model, with a particular focus on geology and geometry for the Johansen formation. The data set is made available for download online.  相似文献   

15.
Predicting the fate of the injected CO2 is crucial for the safety of carbon storage operations in deep saline aquifers: especially the evolution of the position, the spreading and the quantity of the mobile CO2 plume during and after the injection has to be understood to prevent any loss of containment. Fluid flow modelling is challenging not only given the uncertainties on subsurface formation intrinsic properties (parameter uncertainty) but also on the modelling choices/assumptions for representing and numerically implementing the processes occurring when CO2 displaces the native brine (model uncertainty). Sensitivity analysis is needed to identify the group of factors which contributes the most to the uncertainties in the predictions. In this paper, we present an approach for assessing the importance of model and parameter uncertainties regarding post-injection trapping of mobile CO2. This approach includes the representation of input parameters, the choice of relevant simulation outputs, the assessment of the mobile plume evolution with a flow simulator and the importance ranking for input parameters. A variance-based sensitivity analysis is proposed, associated with the ACOSSO-like meta-modelling technique to tackle the issues linked with the computational burden posed by the use of long-running simulations and with the different types of uncertainties to be accounted for (model and parameter). The approach is tested on a potential site for CO2 storage in the Paris basin (France) representative of a project in preliminary stage of development. The approach provides physically sound outcomes despite the challenging context of the case study. In addition, these outcomes appear very helpful for prioritizing the future characterisation efforts and monitoring requirements, and for simplifying the modelling exercise.  相似文献   

16.
The feasibility of CO2 storage and enhanced gas recovery (EGR) effects in the mature Altmark natural gas field in Central Germany has been studied in this paper. The investigations were comprehensive and comprise the characterization of the litho- and diagenetic facies, mineral content, geochemical composition, the petrophysical properties of the reservoir rocks with respect to their potential reactivity to CO2 as well as reservoir simulation studies to evaluate the CO2 wellbore injectivity and displacement efficiency of the residual gas by the injected CO2. The Rotliegend sediments of the Altmark pilot injection area exhibit distinct mineralogical, geochemical, and petrophysical features related to litho- and diagenetic facies types. The reservoir rock reactivity to CO2 has been studied in autoclave experiments and associated effects on two-phase transport properties have been examined by means of routine and special core analysis before and after the laboratory runs. Dissolution of calcite and anhydrite during the short-term treatments leading to the enhancements of permeability and porosity as well as stabilization of the water saturation relevant for CO2 injection have been observed. Numerical simulation of the injection process and EGR effects in a sector of the Altmark field coupled with a wellbore model revealed the possibility of injecting the CO2 gas at temperatures as low as 10 °C and pressures around 40 bar achieving effective inflow in the reservoir without phase transition in the wellbore. The small ratio of injected CO2 volume versus reservoir volume indicated no significant EGR effects. However, the retention and storage capacity of CO2 will be maximized. The migration/extension of CO2 varies as a function of heterogeneity both in the layers and in the reservoir. The investigation of CO2 extension and pressure propagation suggested no breakthrough of CO2 at the prospective production well during the 3-year injection period studied.  相似文献   

17.
About two hydrological years of continuous data of discharge, temperature, electrical conductivity and pH have been recorded at the Glarey spring in the Tsanfleuron glaciated karst area in the Swiss Alps, to understand how glaciated karst aquifer systems respond hydrochemically to diurnal and seasonal recharge variations, and how calcite dissolution by glacial meltwater contributes to the atmospheric CO2 sink. A thermodynamic model was used to link the continuous data to monthly water quality data allowing the calculation of CO2 partial pressures and calcite saturation indexes. The results show diurnal and seasonal hydrochemical variations controlled chiefly by air temperature, the latter influencing karst aquifer recharge by ice and snowmelt. Karst process-related atmospheric CO2 sinks were more than four times higher in the melting season than those in the freezing season. This finding has implication for understanding the atmospheric CO2 sink in glaciated carbonate rock terrains: the carbon sink will increase with increasing runoff caused by global warming, i.e., carbonate weathering provides a negative feedback for anthropogenic CO2 release. However, this is a transient regulation effect that is most efficient when glacial meltwater production is highest, which in turn depends on the future climatic evolution.  相似文献   

18.
Technology of CO2 capture and sequestration (CCS) is one of the many solutions to reduce greenhouse gases and alleviate the current global warming, but its security is important and needs to be evaluated. A simulator which links TOUGHREACT and FLAC3D was used to simulate the process of coupled temperature-hydrologic-mechanics (THM) in CCS. A test on laboratory scale was set up and water was injected into compacted sand covered by low permeability clay to study the land uplift displacement. The results were used to verify the accuracy of the simulator for calculating the THM coupling. The effects of injection quantity, injection time, and injection mode on land uplift were also studied on the constructed model. At last, a land uplift evaluation system was built to quantify the CO2 escape if any. The evaluation process can be divided into five steps: model generalization, acquisition of model parameters, numerical modeling, simulation and analysis, monitor comparison, and evaluation of model results. The major output of this study will provide a feasible method for quantitative analysis of CO2 leakage in CCS projects.  相似文献   

19.
A regional scale, showcase saline aquifer CO2 storage model from the North German Basin is presented, predicting the regional pressure impact of a small industrial scale CO2 storage operation on its surroundings. The intention of the model is to bridge the gap between generic and site-specific, studying the role of fluid flow boundary conditions and petrophysical parameters typically found in the North German Basin. The numerical simulation has been carried out using two different numerical simulators, whose results matched well. The most important system parameters proved to be the model’s hydrological boundary conditions, rock compressibility, and permeability. In open boundary aquifers, injection-induced overpressures dissipate back to hydrostatic level within a few years. If a geological flow barrier is present on at least one side of the aquifer, pressure dissipation is seriously retarded. In fully closed compartments, overpressures can never fully dissipate, but equilibrate to a compartment-wide remnant overpressure. At greater distances to the injection well, maximum fluid pressures are in the range of a few bar only, and reached several years to decades after the end of the actual injection period. This is important in terms of long-term safety and monitoring considerations. Regional pressure increase impacts the storage capacities of neighbouring sites within hydraulically connected units. It can be concluded that storage capacities may be seriously over- or underestimated when the focus is on a single individual storage site. It is thus necessary to assess the joint storage capacities and pressure limitations of potential sites within the same hydraulic unit.  相似文献   

20.
October Field is one of the most prolific offshore oil fields in the Gulf of Suez of Egypt. It consists of a number of marine platforms and produces oil from different reservoirs of different geological ages from the Lower Cretaceous to the Miocene. The aim of this study was to enhance a seismic-log evaluational procedure to evaluate the Miocene-aged Asl and Hawara Formations which encounter the main hydrocarbon and source rock potentials in the area North of October Oil Field. The well logging data, the borehole seismic data, and the velocity surveys are all used in this study. A number of synthetic seismograms are constructed and interpreted together with the deduced seismic impedance and reflection coefficient data for many wells in the study area. In addition, a comprehensive velocity analysis is performed using the seismic times and the computed average and interval velocities. These seismic-derived parameters are primarily used in recognizing and locating precisely the marl and sand sections of Asl Formation which show low to middle amplitudes. Furthermore, a quantitative well logging analysis is carried out over Asl and Hawara Formations to shed light over their hydrocarbon potentiality. Good oil saturation is exhibited by the Asl sand section which reaches to more than 90% in the southern parts of the study area. The petrophysical characters of this sand are very good in terms of good effective porosity (9% to13%), low shale volume (V sh?<?5%), and high oil saturation (S h?>?85%). The sections of the Asl marl and the Hawara shale on the other hand are considered completely wet. An integrated model making use of the seismic- and log-derived properties is applied over the two studied formations for better understanding the reservoir of interest. Many relations are constructed between velocity, seismic impedance, and the rock pore spaces on one hand and between the velocity, lithology, and fluid content on the other hand. This study revealed that the sand section attains very good oil-bearing potentiality in the study area and proved that the application of an integrated model of the log- and seismic-derived properties led to an enhanced evaluation of the Asl and Hawara Formations, good discrimination between their lithological components besides precise differentiation from the overlying Middle to Late Miocene sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号