首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A publicly available and maintained electromagnetic finite-difference time domain (FDTD) code has been applied to the forward modelling of the response of 1D, 2D and 3D geophysical targets to a vertical magnetic dipole excitation. The FDTD method is used to analyse target responses in the 1 MHz to 100MHz range, where either conduction or displacement currents may have the controlling role. The response of the geophysical target to the excitation is presented as changes in the magnetic field ellipticity. The results of the FDTD code compare favourably with previously published integral equation solutions of the response of 1D targets, and FDTD models calculated with different finite-difference cell sizes are compared to find the effect of model discretization on the solution. The discretization errors, calculated as absolute error in ellipticity, are presented for the different ground geometry models considered, and are, for the most part, below 10% of the integral equation solutions. Finally, the FDTD code is used to calculate the magnetic ellipticity response of a 2D survey and a 3D sounding of complicated geophysical targets. The response of these 2D and 3D targets are too complicated to be verified with integral equation solutions, but show the proper low- and high-frequency responses.  相似文献   

2.
利用积分方程法的大地电磁三维正演   总被引:3,自引:0,他引:3       下载免费PDF全文
利用积分方程法实现了均匀导电半空间三维大地电磁响应的数值模拟。求取张量格林函数积分时,采用二次剖分算法解决计算中奇异值问题,对于含有贝塞尔函数的积分项,利用结合连分式展开的高斯求积代替常规的快速汉克尔变换方法,确保了张量格林函数的正确计算并提高了计算精度。最后通过数值模拟结果的对比及模型试算验证了算法的正确性,所实现的三维大地电磁数值模拟算法为理论研究三维地电构造的大地电磁响应的分布规律提供了有效的工具,也为研究三维反演算法奠定了基础。  相似文献   

3.
An alternate formulation of the ‘substructure deletion method’ suggested by Dasgupta in 19791 has been successfully implemented. The idea is to utilize simple Green's functions developed for a surface problem to replace the more complicated Green's functions required for embedded problems while still being able to generate an accurate solution. Since the exterior medium is usually represented by a continuum model, the interior medium in the present approach will also be represented by a continuum model rather than a finite element model as suggested originally, thereby eliminating the incompatibility between the solutions of the interior and exterior media. Detailed studies of the method's accuracy and limitations were performed using two-dimensional examples in wave scattering of canyons and alluvial valleys, problems which are more suitable for this method than the embedded foundation problem. The results obtained indicate that the alternate formulation gives accurate results only when the vertical dimension of the scattering object is not too large; if the aspect ratio (vertical over lateral) exceeds a certain limit, the results will not approach the known results given by boundary integral equation solutions or indirect boundary integral equations no matter what the refinement of the model may be. The greatest advantage of the present method is that the task of calculating Green's functions is reduced significantly; computational time using this new formulation is approximately five times less than for conventional boundary integral equation methods.  相似文献   

4.
瞬变电磁法正演计算进展   总被引:4,自引:1,他引:3  
详细介绍了瞬变电磁法正演计算的方法、现状和发展趋势.瞬变电磁法一维正演计算需要将电磁场从频率域转换至时间域,转换方法有三种,分别是Gaver-Stehfest算法、余弦变换和Guptasarma算法.在这三种方法中,使用较多的是Gaver-Stehfest算法和余弦变换,Gaver-Stehfest算法速度较快,但精度不及余弦变换.瞬变电磁法的数值模拟主要集中于2.5维和三维,使用的数值计算方法有积分方程法、有限差分法、有限单元法和SLDM法.积分方程法主要在三维数值模拟中使用,现已很少使用;有限差分法和有限单元法是目前瞬变电磁法2.5维和三维数值模拟的主要方法;SLDM法主要应用于三维数值模拟.我国瞬变电磁法正演计算成果主要集中在回线源激发的瞬变电磁场一维数值计算和利用有限单元法进行2.5维和三维数值模拟.瞬变电磁法正演计算的发展趋势有:数值算法的改进、提高计算效率和研究地形对瞬变电磁场的影响规律.  相似文献   

5.
For wave propagation simulation in piecewise heterogeneous media, Gaussian-elimination-based full-waveform solutions to the generalized Lippmann–Schwinger integral equation (GLSIE) are highly accurate, but involved with extremely time-consuming computations because of the very large size of the resulting boundary–volume integral equation matrix to be inverted. Several flexible approximations to the GLSIE are scaled in an iterative way to adapt numerical solutions to the smoothness of heterogeneous media in terms of incident wavelengths, with a great saving of computing time and memory. Among various typical iterative schemes to the GLSIE matrix, the generalized minimal residual method (GMRES) is an efficient approach to reduce the computational intensity to some degree. The most efficient approximation can be obtained using a Born series, as an alternative iterative solution, to both the boundary-scattering and volume-scattering waves, leading to the Born-series approximation (BSA) scheme and the improved Born-series approximation (IBSA) scheme. These iteration schemes are validated by dimensionless frequency responses to a heterogeneous semicircular alluvial valley, and then applied to a heterogeneous multilayered model by calculating synthetic seismograms to evaluate approximation accuracies. Numerical experiments, compared with the full-waveform numerical solution, indicate that the convergence rates of these methods decrease gradually with increasing velocity perturbations. The comparison also shows that the BSA scheme has a faster convergence than the GMRES method for velocity perturbations less than 10 percent, but converges slowly and even hardly achieves convergence for velocity perturbations greater than 15 percent. The IBSA scheme gives a superior performance over the other methods, with the least iterations to achieve the necessary convergence.  相似文献   

6.
三维反演解释是电磁法勘探发展的重要趋势,而如何提高三维反演的可靠性、稳定性和计算效率是算法开发者们目前的研究重点.本文实现了一种频率域可控源电磁(CSEM)三维反演算法.其中正演基于拟态有限体积法离散化,利用直接矩阵分解技术来求解大型线性系统方程,不仅准确、稳定,而且特别有利于含有大量发射场源位置的CSEM勘探情况;对目标函数的最优化采用高斯牛顿法(GN),具有近似二次的收敛性;使用预条件共轭梯度法(PCG)求解每次GN迭代所得到的法方程,避免了显式求解和存储灵敏度矩阵,减小了计算量.以上这些方法的结合应用,使得本文的三维反演算法准确、稳定且高效.通过陆地和海洋CSEM勘探场景中的典型理论模型的反演测试,验证了本文算法的有效性.  相似文献   

7.
A numerical solution that is significantly more general than other semi-analytical solutions is presented for governing equations describing advective–dispersive transport with multirate mass transfer between mobile and immobile domains. The new solution approach is general in the sense that it does not impose any restrictive assumption on the spatial or temporal variability of advective and dispersive processes in the mobile domain. A single integro-differential equation (IDE) is developed for the concentration in the mobile domain by separating the concentration in the immobile domain from the set of two partial differential equations. The solution to the IDE requires the evaluation of a temporal integral of the concentration in the mobile domain, which is a function of the Laplace transform of the distribution of the mass transfer rate coefficient. The Laplace transform is not limited to flow fields with known constant velocities. The solutions for one- and two-dimensional examples obtained using the new approach agree with those obtained by existing semi-analytical and numerical approaches.  相似文献   

8.
当地表存在三维非均匀电导率分布时,区域大地电磁响应发生畸变. 以往对这种畸变研究多假设近地表为三维,区域构造为一维或二维. 对于更一般的三维/三维构造,为了分析并消除这种畸变影响,真实反映地下三维区域构造信息,本文实现了三维大地电磁相位张量积分方程数值算法,并研究在不同地质模型下相位张量响应. 结果表明,相位张量不仅可以反映一般三维构造信息,亦可有效反映复杂近地表构造下三维区域构造信息,而无须假设区域构造为一维或二维,证明相位张量具有较强抗近地表局部非均匀构造干扰能力,能够保持更为一般的三维区域构造信息. 为了加快正演计算,同时保持一定精度,算法采用了积分方程多网格法.  相似文献   

9.
孙传文  王光锷 《地震地质》1992,14(2):176-182
通过反演受近地表不均匀介质影响的大地电磁测深资料的新方法,可获得较准确的一维地电断面参数、不均匀体埋藏深度及其电性特征。本方法计算速度快,单测ρxy,ρyx可独立反演并相互验证结果的准确性  相似文献   

10.
叠前逆时偏移影响因素分析   总被引:11,自引:3,他引:8       下载免费PDF全文
反射地震勘探中的偏移成像技术是获取地下介质构造形态最有效的手段之一.在叠前深度域偏移方法中,目前工业界采用的方法包括基于射线理论的波动方程积分解法和基于波动理论的微分波动方程单程波解法,这两类方法难以处理地震波横向速度变化剧烈的高陡倾角构造成像问题.近年来勘探地震学研究领域发展起来的叠前逆时偏移采用了双程波求解微分波动方程的算法,这种方法具有相位准确、不受介质横向速度变化和高陡倾角构造的影响、成像精度高、可以利用回转波正确成像等优点,从理论上弥补了当前工业界常规地震偏移所面临的成像缺陷.然而,叠前逆时偏移成像方法从理论走向实用尚需解决如下问题:计算速度和数据存储空间的节省、初始速度模型的建立、震源子波的选择、数值模型边界条件的定义和假像的消除等等.对于计算速度和存储量大的问题,随着计算机硬件的快速发展,将会不断得到改善,同时可以采取一些计算技术和存储策略来加以缓解.本文主要针对初始速度模型的建立、震源子波的选择、数值模型边界条件的定义和假像的消除这些因素,利用简单模型进行了分析.对于反射波造成的传播路径上的假像,给出了一种振幅补偿滤波方法.对勘探地球物理学界给出的SEG/EAGE二维盐丘模型、Marmousi模型和本研究设计的崎岖海底模型进行了叠前逆时偏移成像,均取得了较好的成像效果.  相似文献   

11.
三维复电阻率模型电磁场正演模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
复电阻率法是上世纪70年代发展起来的一种激电分支方法,自提出伊始就受到了国内外学者的广泛关注.很多学者开展了复电阻率电磁场正演计算,但缺少对正演结果的深入分析.本文采用体积分方程法,进行了复电阻率模型的正演模拟,通过对正演结果分析,得出三维复电阻率体的电磁响应是由累积电荷,电磁感应和激电效应共同产生的,并总结了三种效应的电磁响应规律,为准确分析异常提供了依据.  相似文献   

12.
大地电磁法三维交错采样有限差分数值模拟   总被引:29,自引:19,他引:29       下载免费PDF全文
系统地论述了大地电磁三维交错采样有限差分数值模拟算法实现过程中交错网格剖分、积分公式离散化、边界条件、方程组求解、三维张量阻抗的计算等内容. 由于提出了简洁的边界条件,采用了解大型系数矩阵方程组的双共轭梯度稳定解法,所实现的三维交错采样有限差分数值模拟算法具有迭代收敛稳定、计算精度高、速度快等特点. 通过两个理论模型的计算结果检验了算法的正确性和计算精度. 所实现的三维交错采样有限差分数值模拟算法为研究三维反演问题奠定了基础.  相似文献   

13.
In this paper we propose a 3D acoustic full waveform inversion algorithm in the Laplace domain. The partial differential equation for the 3D acoustic wave equation in the Laplace domain is reformulated as a linear system of algebraic equations using the finite element method and the resulting linear system is solved by a preconditioned conjugate gradient method. The numerical solutions obtained by our modelling algorithm are verified through a comparison with the corresponding analytical solutions and the appropriate dispersion analysis. In the Laplace‐domain waveform inversion, the logarithm of the Laplace transformed wavefields mainly contains long‐wavelength information about the underlying velocity model. As a result, the algorithm smoothes a small‐scale structure but roughly identifies large‐scale features within a certain depth determined by the range of offsets and Laplace damping constants employed. Our algorithm thus provides a useful complementary process to time‐ or frequency‐domain waveform inversion, which cannot recover a large‐scale structure when low‐frequency signals are weak or absent. The algorithm is demonstrated on a synthetic example: the SEG/EAGE 3D salt‐dome model. The numerical test is limited to a Laplace‐domain synthetic data set for the inversion. In order to verify the usefulness of the inverted velocity model, we perform the 3D reverse time migration. The migration results show that our inversion results can be used as an initial model for the subsequent high‐resolution waveform inversion. Further studies are needed to perform the inversion using time‐domain synthetic data with noise or real data, thereby investigating robustness to noise.  相似文献   

14.
基于并行化直接解法的频率域可控源电磁三维正演   总被引:9,自引:8,他引:1       下载免费PDF全文
电磁法的三维数值模拟是一个对数值算法和计算机硬件要求都非常高的问题.对常用的微分类方法如有限单元法和有限差分法而言,求解最后所得的大型线性方程组是至关重要的一步,直接影响到正演算法的实用性.如何高效、稳定且准确地解线性方程长期以来一直是被探讨的问题.本文实现了基于线性系统直接求解技术的频率域可控源电磁(CSEM)三维正演.使用交错网格有限体积法(FV)来离散化关于二次电场的Helmholtz方程;使用直接解法取代传统的迭代解法来求解离散线性系统,即对系统矩阵进行完全LU分解,具体通过调用大规模并行矩阵直接求解器(MUMPS)来实现.基于理论模型做了一系列数值实验,首先证明了直接解法的高精度和稳定性,并考察了其内存需求、计算时间和并行可伸缩性等主要计算性能,最后检验了所开发的算法快速模拟多场源CSEM问题的能力以及对常规海洋和陆地CSEM模拟的有效性.  相似文献   

15.
目前,瞬变电磁法(TEM)数据基本都是基于各向同性模型进行反演解释,这对于存在明显电性各向异性的勘探区域会产生较大的反演解释误差.为分析电各向异性对回线源瞬变电磁信号的影响方式与程度,本文通过求解离散化的全张量电导率时间域Helmholtz方程,实现了基于有限体积法的TEM任意各向异性的三维正演算法.该算法采用基于交错网格的拟态有限体积法(MFV)对时域Maxwell方程组进行空间域离散,并利用后退欧拉算法(Backward Euler Method)进行时间域离散.为提高时域电磁场的求解精度与效率,该算法将时间分段等步长算法与方程直接求解法相结合.通过对一维各向异性模型以及三维复杂各向同性模型进行测试,验证了本算法对于回线源瞬变电磁响应计算的正确性及有效性.最后,通过对几类典型电各向异性介质中大回线源瞬变电磁信号响应的分析,总结了不同电各向异性类型对TEM电磁信号的影响模式,结果表明,主轴各向异性情况下TEM信号主要受水平方向电导率的影响,倾斜各向异性对TEM信号的影响程度远大于水平各向异性,而通过水平各向异性信号能较清晰判断出各向异性主轴方向.  相似文献   

16.
In the last two decades, forward modelling for the time domain (transient) electromagnetic method has concentrated almost entirely on multi-dimensional models and algorithms. At the same time, the interpretation of real field data is still mainly one dimensional. This is caused by the lack of an efficient multi-dimensional acquisition procedure supported by sufficiently fast and reliable inversion software, on the one hand, and by the great efficiency of one-dimensional field set up and interpretation of the data on the other hand. The latter is particularly true for the short offset transient electromagnetic method, which is much less sensitive to multi-dimensional effects, compared to long offset methods. The most commonly used one-dimensional forward modelling algorithms are based on the spectral method, which requires calculating rapidly oscillating Fourier–Bessel (Hankel) integrals. Due to the very fast decay of short offset responses, the integrals become computationally unstable at late times of the transient process. Although this problem has been successfully solved for practically feasible measurement times of conventional short offset systems using transverse electric and mixed transverse electric and transverse magnetic fields, it turned out crucial for novel methods based on the use of unimodal transverse magnetic fields. These methods are much more sensitive to geoelectric parameters of the Earth in general and those of resistive targets, in particular, but they generate responses, which drop at late times significantly faster than those of conventional methods. Such behaviour of transverse magnetic fields represents severe computational problem for the spectral method, but is successfully solved by direct time domain algorithms. This article describes a generalization of the well-known Tikhonov's solution to a boundary value problem directly in time domain, which is applied to an arbitrary one-dimensional earth model excited by an arbitrary source. Contrary to existing spectral algorithms, the described method allows accurate calculations of both transverse electric and transverse magnetic transient responses at arbitrarily late times. On the other hand, it is more time efficient than finite-difference/finite element direct time domain algorithms and provides analytical late-stage asymptotic solutions.  相似文献   

17.
复杂介质可控源电磁勘探数值模拟及反演算法的研究一直是国内外地球物理学者研究的热点。本文对复杂介质可控源电磁勘探快速正反演算法研究进行综述,重点对复杂介质快速正反演算法及应用进行分析,指出高效并行、特殊边界条件或将是其真正实用化的关键,当前仍然是极具挑战的研究方向。着重对未受关注的可控源电磁法复杂介质积分方程法正反演算法及其应用研究,如二维、2.5维快速正反演算法;地面、井筒电磁勘探实例、起伏地形异常场模拟等进行讨论。指出国内积分方程法的研究相对滞后,但应用前景较可观;特别是大尺度隐伏资源勘探领域,高精度、高效电磁勘探正反演需求较迫切。通过体积分方程法快速正反演算例分析,表明该方法可适用于大尺度勘探生产,具有较好实用性。复杂地形模拟,高效正反演算法等是积分方程法实用化的关键。   相似文献   

18.
A towed streamer electromagnetic system capable of simultaneous seismic and electromagnetic data acquisition has recently been developed and tested in the North Sea. We introduce a 3D inversion methodology for towed streamer electromagnetic data that includes a moving sensitivity domain. Our implementation is based on the 3D integral equation method for computing responses and Fréchet derivatives and uses the re‐weighted regularized conjugate gradient method for minimizing the objective functional with focusing regularization. We present two model studies relevant to hydrocarbon exploration in the North Sea. First, we demonstrate the ability of a towed electromagnetic system to detect and characterize the Harding field, a medium‐sized North Sea hydrocarbon target. We compare our 3D inversion of towed streamer electromagnetic data with 3D inversion of conventional marine controlled‐source electromagnetic data and observe few differences between the recovered models. Second, we demonstrate the ability of a towed streamer electromagnetic system to detect and characterize the Peon discovery, which is representative of an infrastructure‐led shallow gas play in the North Sea. We also present an actual case study for the 3D inversion of towed streamer electromagnetic data from the Troll field in the North Sea and demonstrate our ability to image all the Troll West Oil and Gas Provinces and the Troll East Gas Province. We conclude that 3D inversion of data from the current generation of towed streamer electromagnetic systems can adequately recover hydrocarbon‐bearing formations to depths of approximately 2 km. We note that by obviating the need for ocean‐bottom receivers, the towed streamer electromagnetic system enables electromagnetic data to be acquired over very large areas in frontier and mature basins for higher acquisition rates and relatively lower cost than conventional marine controlled‐source electromagnetic methods.  相似文献   

19.
A versatile integral equation technique for magnetic modelling   总被引:1,自引:0,他引:1  
A requirement currently exists in both mineral exploration and environmental or engineering geophysics for a technique to model the magnetic fields caused by bodies with large to extreme susceptibilities in which both induced and remanent magnetizations are significant. It is well known that modelling such magnetic fields is not amenable to any known approximation. It is a significantly difficult task that requires the solution of a magnetostatic boundary value problem. Analytical solutions to the problem are extremely useful for providing insight but generally of limited application in practical interpretation due to the geometrical complexity of real situations. Available numerical solutions include both volume and surface integral equation formulations. However neither of these are particularly efficient for the purpose. An alternative surface integral equation formulation is presented here which represents the required magnetic field in terms of a double layer over the surface of the body. The technique accommodates both remanent and induced magnetization and is generally applicable to any 3D body in a magnetic environment for which the Green's function is available. The present technique has significant advantages over other integral equation solutions in the geophysical literature. It is particularly economic in terms of the density of the surface discretization and consequently the computational effort. Moreover, it is extremely robust. It is found to yield accurate solutions for the type of thin bodies that cause numerical instability with other surface integral equation approaches.  相似文献   

20.
传统时间域航空电磁全波形正演模拟主要采用间接法(褶积算法)和直接法(时域有限差分方法等),然而褶积算法需要获得精确的电流二阶导数,这给发射电流数据采集工作带来极大挑战;时域有限差分方法受到网格和时间步长的严格限制,缺乏灵活性.为解决这些问题,本文采用时域有限元方法,通过直接改变每个时间道上的瞬时电流强度模拟任意发射波形的电磁响应.由于无需计算电流二阶导数,大大提高了正演结果的精度.利用基于非结构四面体网格的矢量有限元方法和后推欧拉技术对时间域电场扩散方程进行空间和时间离散,实现三维航空电磁时间域全波形的直接正演模拟.由此不仅可以模拟复杂的地电结构,而且基于后推欧拉法的无条件稳定性,可以更加灵活地选取时间步长,提高计算效率.通过与1D数值模拟结果进行对比验证了该方法的准确性.本文对三维柱状体模型上HELITEM MULTIPULSE和VTEM系统实际发射波形电磁响应进行模拟,并与褶积算法的结果进行比较,验证了本文算法模拟实际发射波形电磁响应的优越性.对复杂三维地质体模型上不同发射波形电磁响应进行模拟,验证了时间域有限元算法可有效处理复杂地下地质结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号