首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
回顾了作为实用天文学和大地测量学中基本研究课题之一的大气折射映射函数研究的进展。介绍了近几年上海天文台发展的大气折射母函数方法 ,以及由此导出的大气折射解析解。对如今广泛地应用在空间测量技术中的几种映射函数做出评述 ;分析了NMF模型的优点和不足之处。介绍了由大气折射母函数方法引出的大气延迟新连分式映射函数和天文大气折射的映射函数方法。利用VLBI实验中高度截止角与基线长度重复率的关系、探空气球 (radiosonde)观测资料、PRARE资料比较了各种映射函数的结果。特别指出了映射函数方法对天文大气折射和光学波段测距精度的改进。讨论了大气折射计算中的主要误差源。  相似文献   

2.
针对空间大地测量技术对中性大气折射延迟改正精度的要求,阐述了折射延迟改正值应随测站和随方位而异的必要性.指出,在尚不能直接测定天文大气折射值的情况下,现有的各种改正模型对大气分布模型的依赖性,不能达到预期的精度和降低观测的截止角.根据云南天文台低纬子午环的特殊结构,和测定大气折射的实践,提出了提高折射延迟改正精度的新方法,即:利用各观测站不同方位从天顶附近直到低地平高度角的天文大气折射实测数据,求解得到折射率差和映射函数的参数,从而建立随测站和随方位而异的大气折射延迟改正模型.这一新方法的实施,将能在不需采用大气分布模型的情况下,把天顶延迟的改正精度提高到1 mm以内,低地平高度角的折射延迟改正精度提高到厘米级,并且把截止高度角压缩到5°以内.  相似文献   

3.
The space geodetic technology requires an accurate model of correction of refraction delay by the neutral atmosphere that varies from one observing station to another, and from one azimuth to the next. It is pointed out that under the present condition the astronomical refraction can not yet be directly determined, any correction model because of its high dependence on the assumed atmospheric distribution, is incapable of achieving the required accuracy or of improving the cut-off altitude. In this paper, based on the special properties of the lower latitude meridian circle at Yunnan Observatory and our experience of determining atmospheric refraction therewith, a new method is proposed for improving the accuracy of refraction delay correction. Namely, the measured data of astronomical refraction of an observing station from near zenith to low altitudes in different azimuths are used to evaluate the refractivities and the parameters of the mapping functions, thereby establishing a model of atmospheric refraction delay correction that varies with the observing station and the azimuth. Since it is unnecessary for the new method to adopt any atmospheric distribution model, application of this new method will improve correction accuracy of refraction delay to better than 1mm at zenith and to centimeters at low altitudes, and improve the cut-off altitude to below 5 degrees.  相似文献   

4.
严豪健 《天文学进展》2000,18(2):104-113
回顾了作为实用天文学和大地测量学中基本研究课题之一的大气折射函数研究的最新进展;介绍了近几年发展的大气折射母函数方法。对如今广泛地应用在空间测量技术中的几种映射函数,如CfA2.2、MTT等模型作出评述;特别分析了NMF模型的优点和不足之处。还介绍了由大气折射母函数方法引出的大气延迟新连分式映射函数和天文大气折射的映射函数方法,利用VLBI实验中高度截止角与基线长变化的关系和探空气球(radios  相似文献   

5.
简单评述了现有各种版本的大气折射表所依据的理论基础和编制方法,指出了实测大气折射值、建立随地形而异的实测大气折射模型的必要性和应具备的基本条件;在分析了长期以来不能直接测定大气折射值的原因后,介绍了一种在不同方向精确测定大气折射值和建立观测点大气折射模型的新方法,以及所依赖的观测仪器具备的特性,最后给出了用实测数据建立的本地大气折射模型。  相似文献   

6.
Because of the influence of atmospheric refraction the astronomical observations of the objects with the angles of elevation below 15° are generally avoided, but for the sake of the complete theoretical research the atmospheric refraction under the condition of lower angles of elevation is still worthy to be analyzed and explored. Especially for some engineering applications the objects with low angles of elevation must be observed sometimes. A new idea for determining atmospheric refraction by utilizing the differential method is proposed. A series of observations of the starry sky at different heights are carried out and by starting from the zenith with a telescope with larger field of view, the derivatives of various orders of atmospheric refraction function at different zenith distances are calculated and finally the actually observed values of atmospheric refraction can be found via numerical integration. The method does not depend upon the strict local parameters and complex precise observational instrumentation, and the observational principle is relatively simple. By the end of 2007 a simply constructed telescope with a larger field of view at Xinglong Observing Station was employed to carry out trial observations. The values of atmospheric refraction at the true zenith distances of 44.8° to 87.5° were obtained from the practical observations based on the differential method, and the feasibility of the method of differential measurement of atmospheric refraction was preliminarily justified. Being limited by the observational conditions, the accuracy of the observed result was limited, the maximal accidental error was about 6” and there existed certain systematic errors. The value of the difference between the result obtained at the zenith distance of 84° and that given in the Pulkovo atmospheric refraction table was about 15”. How to eliminate the cumulative error introduced due to the integration model error is the key problem which needs to be solved in future.  相似文献   

7.
折射延迟改正模型   总被引:4,自引:0,他引:4  
在分析了一些主要的天顸延迟改正模型,并对几种连分式形式的映射函数模型作了归纳后,认为:前者只能都基于大气球对称分布模型,采用差不多相同的各向同性的改正模型,各种映射函数模型的连分式之间,差别仅是形式上的,没有实质性差异。文章利用普尔科沃大气折射表的表列数据作模拟计算,求解折射率差和映射函数的参数证明,可以用天文大气折射定值作模拟处理,得到折射延迟改正模型中的所有参数,并得出结论:映射函数的形式是次要的,随着项数的增加,都能提高模拟精度。文章给出了模拟过程。  相似文献   

8.
Observation made at low evelation angles is the trend of development of GPS (Global Positioning System) meteorology, wherein the development of highly accurate atmospheric hydrostatic delay corrections at low elevating angles is the main key technique. The comparison among three methods for calculating the atmospheric hydrostatic delay correction of the radio waves from space to the ground-based receiver is made: (1) the atmospheric hydrostatic delay obtained from the path integration of the sounding balloon data under the assumption of atmospheric spherical symmetry, (2) the atmospheric hydrostatic delay acquired from the reanalyzed data of the NCEP (National Centers for Environmental Prediction) under the assumption of atmospheric spherical symmetry and (3) the atmospheric hydrostatic delay got from Niell's atmospheric hydrostatic mapping function. The results of the comparison of them with the atmospheric hydrostatic mapping function obtained from the calculation carried out by taking advantage of the data acquired at 89 sounding balloon stations in China in 2001 show that the accuracy of the method of the path integration of the reanalyzed data of NCEP at low elevating angles (bellow 5°) is about 5 times better than that of the Niell mapping function model.  相似文献   

9.
In this paper we used the method of generator function to gave an improved mapping function of astronomical refraction, separately for optical and radio frequencies. We included a complete consideration of the corrections introduced by the physical and geophysical factors required in astronomy and space techniques. We used sounding balloon data to assess the actual accuracy of our corrected refraction formula. The result is 5″ at elevation 2° and 1″ at elevation 5°. We believe that the main factor that limits the accuracy is departure of the model atmosphere from the real atmosphere.  相似文献   

10.
New consideration of atmospheric refraction in laser ranging data   总被引:1,自引:0,他引:1  
In this paper we reconsider the formulae of tropospheric refraction correction for the Satellite Laser Range technique. From the expansion of the complementary error function, a new continued fraction form of the mapping function at optical frequencies is derived. The correction terms related to the operation frequency of the laser beam are considered in both the zenith delay and the mapping function. The correction for low-elevation satellites is briefly reviewed. The theoretical accuracy of the new mapping function has been analysed via the ray tracing integrals under the standard atmospheric profile. With respect to the radiosonde data, the deviations of the new mapping function are investigated in an elevation range down to near 1°, which is comparable with the results of the Marini–Murray formulae .  相似文献   

11.
建立在子午—卯酉交替观测原理基础上的低纬子午环(LowLati-tudeMeridianCircle)即将出厂投入调试及试运行阶段,进一步研究天文蒙气差修正将是低纬子午环进行高精度观测的重要保证之一。作为对天文蒙气差修正的初步研究,本文首先分析了影响天文蒙气差的主要气象因素,对蒙气差随各种条件的变化情况进行了讨论;在此基础上,推算了大气平面平行层模型以及同心球层模型下的蒙气差值,论述了蒙气差表的编制方法,进而对各种蒙气差理论公式计算所得的修正值进行了分析比较;针对理论计算蒙气差值精度的不足,本文着重阐述了利用低纬子午环(LLMC)进行大气蒙气差实测的方法、原理,较为详尽的说明传统的方法不能满足实测大气折射的要求,而低纬子午环由于自身一些新的特点,能够满足Teleki所提出的四个要求;在此基础上推导了相应的计算公式并进一步探讨了实测大气等密度倾斜的方法,最后给出了相应的精度估计,就如何建立一个适合于观测点的实用的实测大气模型进行了探讨  相似文献   

12.
A new application of astronomical atmospheric refraction in space geodesy is utilized. It is pointed out that in order to meet the high needs of this new application there must be an effective method by means of which the instantaneous value of atmospheric refraction can be directly determined. An atmospheric refraction model fitting in the geographical environment surrounding the observing station is established and then transformed into the neutral atmospheric refraction delay correction model. In this article the necessary conditions for the determination of the value of atmospheric refraction are briefly described. A method for the direct determination of the values of instantaneous atmospheric refraction in various directions and at various zenith distances by taking advantage of the observational principle of the low latitude meridian circle, explored by the Yunnan Observatory, is expounded and the atmospheric refraction observational models built on the basis of stellar spectral type classification in the 4 directions of east, south, west and north and by making use of the observed data are given.  相似文献   

13.
鲁春林  李东明 《天文学报》1999,40(2):130-138
利用给出的严格的较差大气折射计算公式,以LAMOST为例,计算了较差大气折射对大视场长露光天文观测的影响.并与其他作者的结果进行了比较.该方法给出的是完整的较差大气折射量,与望远镜和导星方式无关.此外,还讨论了大气色散的影响,并探讨了可能的解决方法  相似文献   

14.
Focusing on lowering the cut-off elevation in the neutral atmosphere refraction delay correction and on raising the accuracy of the correction, we derive the formulae for calculating the correction for the bending of the light path caused by atmospheric refraction. This is the sort of correction that is given after the principal term in theoretical models of neutral atmospheric refraction delay correction, but is often neglected because it is a small quantity. However, in practice, for a not too low elevation like 15°, this term reaches 1 cm order of magnitude and can not be neglected. Li Yan-xing et al. specially gave a derivation of this correction and a computational method by successive approximation and some calculated values. Yan Hao-jian also proposed a formula of direct calculation but his calculated result was more than 3 times smaller than that of Li Yan-xing, which shows that further study of this correction is called for. Here we give a simple, convenient and reliable formula for calculating the correction.  相似文献   

15.
We study the impact of the atmospheric differential chromatic refraction on the measurements and precision of relative astrometry. Specifically, we address the problem of measuring the separations of close pairs of binary stars with adaptive optics in the J and K bands.We investigate the influence of weather conditions, zenithal distance, star’s spectral type and observing wavelength on the astrometric precision and determine the accuracy of these parameters that is necessary to detect exoplanets with existing and planned large ground based telescopes with adaptive optics facilities. The analytical formulae for simple monochromatic refraction and a full approach, as well as moderately simplified procedure, are used to compute refraction corrections under a variety of observing conditions.It is shown that the atmospheric refraction must be taken into account in astrometric studies but the full procedure is not necessary in many cases. Requirements for achieving a certain astrometric precision are specified.  相似文献   

16.
The variation in the length of day has complicated time-varying characteristics and the traditional method for linear time series analysis is always difficult to obtain good effect of prediction. If the non-linear artificial neural network technique is adopted to predict the variation in the length of day, the topological structure of the network model is determined by the least square error method. By taking into account the close relation between the variation in the length of day and the general circulation of atmosphere, the axial sequence of atmospheric angular momentum is introduced into the forecasting model of neural network. The results show that the forecast accuracy is significantly improved by taking advantage of the combination of the length of day and the atmospheric angular momentum sequence in comparison with the individual adoption of the data of the length of day.  相似文献   

17.
标准大气模型建立映射函数的可靠性讨论   总被引:6,自引:0,他引:6  
洪振杰  郭鹏 《天文学报》2004,45(1):68-78
随着新空间技术观测精度的不断提高,大气传播误差的研究已经成为改进观测精度的主要途径之一.为了提高大气延迟改正映射函数的计算精度,在大气剖面的选取上,近年来已经开始从过去的模型大气,逐渐地向实测大气转变.结合个别具有代表性的探空气球站观测资料,比较用标准大气模型建立的映射函数与探空气球资料路径积分的结果,研究用标准大气模型建立映射函数的可靠性,并简单讨论在映射函数中地球物理参数选择的若干问题.  相似文献   

18.
简述了天文大气折射和电磁波中性大气折射延迟的成因,以及不同观测站、不同方位的折射值存在差异的事实;根据测定瞬时天文大气折射、建立本地实测模型的观测原理和要求,分析了长期以来不能直接测定天文大气折射的几个主要障碍,介绍了现已具备的排除这些障碍的必要条件,为建立天文大气折射实测模型,和随观测站、随方位而异的电磁波折射延迟改正模型提供了保证。  相似文献   

19.
This paper presents a study of the atmospheric refraction and its effect on the light coupling efficiency in an instrument using single-mode optical fibres. We show the analytical approach which allowed us to assess the need to correct the refraction in J and H bands while observing with an 8-m Unit Telescope. We then developed numerical simulations to go further in calculations. The hypotheses on the instrumental characteristics are those of AMBER (Astronomical Multi BEam combineR), the near-infrared focal beam combiner of the Very Large Telescope Interferometric mode, but most of the conclusions can be generalized to other single-mode instruments. We used the software package caos to take into account the atmospheric turbulence effect after correction by the European Southern Observatory system Multi-Application Curvature Adaptive Optics. The optomechanical study and design of the system correcting the atmospheric refraction on AMBER is then detailed. We showed that the atmospheric refraction becomes predominant over the atmospheric turbulence for some zenith angles z and spectral conditions: for z larger than 30° in J band for example. The study of the optical system showed that it allows to achieve the required instrumental performance in terms of throughput in J and H bands. First observations in J band of a bright star, α Cir star, at more than 30° from zenith clearly showed the gain to control the atmospheric refraction in a single-mode instrument, and validated the operating law.  相似文献   

20.
电磁波信号在地球大气中的传播受到折射的影响,传播的方向发生了改变,传播的路径变为曲线,长度大于直线距离,相应的传播时间也被延长了,采用一个简化的球对称大气模型计算了光线在不同天顶距下由于路径弯曲而引起的延迟改正.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号