首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
P. Varga  K.R. Rybicki 《Icarus》2006,180(1):274-276
We show that the fast tidal cycling postulated by Lathe [Lathe, R., 2004. Icarus 168, 18-22] is not a plausible mechanism to explain the origin of life on Earth about 3.9 Ga ago. The value of LOD at this remote epoch was probably comprised between 15 to 17 h, and the Earth-Moon distance was only about 20% smaller than nowadays, implying that the tidal frequencies and amplitudes were not so dramatically different from the present ones as stated in Lathe's paper.  相似文献   

2.
The chaotic behaviour of the motion of the planets in our Solar System is well established. In this work to model a hypothetical extrasolar planetary system our Solar System was modified in such a way that we replaced the Earth by a more massive planet and let the other planets and all the orbital elements unchanged. The major result of former numerical experiments with a modified Solar System was the appearance of a chaotic window at κ E ∈ (4, 6), where the dynamical state of the system was highly chaotic and even the body with the smallest mass escaped in some cases. On the contrary for very large values of the mass of the Earth, even greater than that of Jupiter regular dynamical behaviour was observed. In this paper the investigations are extended to the complete Solar System and showed, that this chaotic window does still exist. Tests in different ‘Solar Systems’ clarified that including only Jupiter and Saturn with their actual masses together with a more ‘massive’ Earth (4 < κ E < 6) perturbs the orbit of Mars so that it can even be ejected from the system. Using the results of the Laplace‐Lagrange secular theory we found secular resonances acting between the motions of the nodes of Mars, Jupiter and Saturn. These secular resonances give rise to strong chaos, which is the cause of the appearance of the instability window. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The dynamics of the circular restricted three-body Earth-Moon-particle problem predicts the existence of the retrograde periodic orbits around the Lagrangian equilibrium point L1. Such orbits belong to the so-called family G (Broucke, Periodic orbits in the restricted three-body problem with Earth-Moon masses, JPL Technical Report 32–1168, 1968) and starting from them it is possible to define a set of trajectories that form round trip links between the Earth and the Moon. These links occur even with more complex dynamical systems as the complete Sun-Earth-Moon-particle problem. One of the most remarkable properties of these trajectories, observed for the four-body problem, is a meaningful inclination gain when they penetrate into the lunar sphere of influence and accomplish a swing-by with the Moon. This way, when one of these trajectories returns to the proximities of the Earth, it will be in a different orbital plane from its initial Earth orbit. In this work, we present studies that show the possibility of using this property mainly to accomplish transfer maneuvers between two Earth orbits with different altitudes and inclinations, with low cost, taking into account the dynamics of the four-body problem and of the swing-by as well. The results show that it is possible to design a set of nominal transfer trajectories that require ΔV Total less than conventional methods like Hohmann, bi-elliptic and bi-parabolic transfer with plane change.  相似文献   

4.
Fission from the Earth's mantle explains why the density of the Moon is similar to that of the Earth's mantle.If following the fission origin of the Moon, the Earth-Moon distance increases progressively, the Moon can recollect chemicals evaporated by the Earth but not volatile enough to be lost as gases.In this way, the surface of the Moon can be enriched in refractory elements as most of the authors have proposed.At 3 Earth radii the long geosynchronous phase allows the formation of a solid crust which will record the Earth's magnetic field and the equilibrium hydrostatic from at that distance.When geosynchronism is broken the Moon will recede; its shape will no longer fit the hydrostatic form. The crust will either break or will exercise pressure on the lower layers. Meteor craters will allow lava to come to the surface. Such flows will be very large where the shape of the crust does not fit at all the geosynchronous form. Large lava flows will appear this way on the near side where the shape has changed the most. The new lava flows no longer record the magnetic field of the Earth because with the end of the synchronous position the field is alternative for the Moon; only the remanent field can influence the new lava.Three out of five samples dated at 3.6 b.y. suggest nevertheless that the field decreased slowly without becoming alternative. This means that the geosynchronous phase may have lasted longer and put the Moon on a more distant orbit, as Alfvén and Arrhenius suggested.The interpretation of lunar magnetism as influenced by the Earth cannot discard any interpretation or suggestion of its own lunar magnetic process. It is quite possible that both mechanisms have worked as some samples show.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademic Nazionale del Lincei in Rome, Italy.  相似文献   

5.
The second zonal and the second sectorial Stokes parameters of the Moon's gravitational field and/or the polar and equatorial flattenings of the lunar triaxial level ellipsoid have been explained by the tidal and rotational distortions due to the Earth. The Epoch at which the Moon's figure formation was finished has been estimated as 1.6 × 109 y B. P. when the Earth-Moon distance was about 168 400 km and the orbital/rotational period of the Moon about 8 days.  相似文献   

6.
The problem of the origin of the Moon has led to various hypotheses: simultaneous accretion, fission, capture, etc. These theories were based primarily on global mechanical considerations. New geological data (Turcotteet al., 1974; Kahn and Pompea, 1978) have led to fresh approaches and new versions of these theories.As suggested by Wise (1969) and O'Keefe (1972), the initial Earth may have taken unstable forms when radial segregation sped up the rotation. The Moon may have been created as the small part of the pyroid of Poincaré.Fission theory was mainly discarded, in the past, on the basis of energy considerations. We are now arriving at the conclusion that these considerations are void if the fission was followed by a very long period of geostationary rotation of the Moon at a distance of about 3 Earth radius (i.e., out of the Roche limit). Indeed the large amount of energy of the initial system could have been released slowly and therefore evacuated by losses of material and radiation.The accretion of the Earth and the radial segregation of heavy chemicals toward the center has led to a differential rotation of the different layers with a faster rotation at the center. During the geostationary period the Moon was synchronous with respect to the surface layer. That Earth-Moon system has both a correct angular momentum and a large stability provided that the viscosity of intermediate layers was small enough, which is in concordance with its high temperature.Even with a very hot system, a superficial cold layer appears because of its low conductivity and the radiation equilibrium with outer space. This implies a slow loss of energy: the geosynchronous Moon receded extremely slowly.During the geostationary period lithophile elements were extracted with water by the radial segregation and were deposited in the area facing the Moon. One massive continent was formed, as suggested by Grjebine (1978).As the continent became thicker and sank into the mantle, convection currents appeared and speeded up the cooling of the Earth. The viscosity increased and the synchronization between the Moon and the surface of the Earth became more difficult to maintain. When synchronism was broken important lunar tides transferred energy and momentum from the Earth to the Moon which receded toward its present position and the modification of its equilibrium shape explains the formation of lunar maria in the near side.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

7.
In this paper main implication of basic properties detected in the satellite systems of Jupiter, Saturn and Uranus, and presented by the author in an earlier contribution (Barricelli, 1971b) are investigated. The similarity between the primary periods in the three systems, their apparent relation to the axial rotation periods of the three planets and other features suggesting that collisions with the planetary surfaces may have played a role in the evolution of the three satellite systems are interpreted by assuming that in each case a satellite of unusually large size was originally disintegrated at the Roche limit of its primary. The disintegration of large satellites and their fusion with the respective planets is assumed to be a normal feature in the latest stage of planetary growth and the main cause of axial rotation in the respective planets.These assumptions make it possible to give a selfconsistent interpretation of the similarity between the axial rotation periods of the three planets and their relation to the primary periods (as defined by Barricelli, 1971b) in the three systems.Similar assumptions when applied to the Earth-Moon system make it possible to understand why the Moon, in its closest approach to the Earth is found to have been almost exactly at the Roche limit (Gerstenkorn, 1955; MacDonald, 1964), a coincidence which is too good to be accidental. According to this interpretation our Moon is a portion (representing about one third) of our original satellite, which survived its approach to the Roche limit and the ensuing fusion process with the Earth. It can be shown (see text) that under certain conditions this could leave a residual satellite with a stationary distance from the Earth (which in retrospect would be identified as its lowest distance from the Earth) at the Roche limit.The only other case in which we have observational evidence of parts of a satellite surviving its fusion process at the Roche limit is represented by the rings of Saturn and possibly the small innermost satellite Janus which seems to have been feeding on the rings.  相似文献   

8.
对地月系统而言, 在很大程度上角动量守恒是正确的. 地月距离的变化主要是受到月球引起的潮汐能量耗散的影响. 根据月球的平均运动和它的长期加速度, 就可以计算出月潮能量耗散的数值. 海洋是潮汐能量耗散的主要区域. 由于潮汐的高度正比于月球对潮汐隆起的万有引力, 由此可导出总的月球潮汐摩擦力正比于月球平均运动的平方. 如果采用月球平均加速度数值-20.72$''\cdot$cy-2, 就可以推算出35亿年来地月之间的距离以及回归年日数和朔望月日数的演化. 此理论结果与古生物钟的数据进行比对, 两者符合较好.  相似文献   

9.
The spatial and temporal variations of the Earth deformation and the gravitational field are important both in the theoretical research and in the construction of geospatial database. The Earth deforms due to various mechanisms and the deformation further induces changes in the gravitational potential of the Earth, i.e. the deformation-induced additional potential or the Euler gravitational increment. Based on the theory of vector spherical harmonics, we discuss in this paper the Earth deformation and gravitational increment resulting from the tidal force, loading force and the stress of the Earth's surface. We write out the expression for the Euler gravitational potential increment and the relations between different Love numbers. These are all important points in the research on Earth deformation.  相似文献   

10.
William K. Hartmann 《Icarus》1976,27(4):553-559
Significant fractions of each planet's late-accreted mass originated not at its own distance from the Sun, but from a neighboring planet's orbit, according to results that follow from calculations by Wetherill (1975). “Late-accreted” refers to a loosely defined period after planets acquired most of their present mass. In an idealized model, Mercury, Venus, Earth, and Mars received 47, 45, 37, and 52% of their late-accreted mass from planetesimals formed closer to other planets. Resulting compositional anomalies in outer parts of early planets could be significant; atmospheric tests of Lewis's predicted S deficiency on Venus may be inconclusive.The Moon's orbit around Earth puts it in a special category: sorting occurs between Moon-impacting and Earth-impacting material according to approach velocity. In the above model, the moon receives 60% of its late-accreted mass from planetesimals formed near Venus' orbit. Distant planetesimals could be perturbed into the Earth-Moon system and cause major changes in the Moon's composition with only minor effect on Earth. The entire lunar bulk composition anomaly could be explained by plausible reservoirs of distant low-density material.  相似文献   

11.
Jörg Fritz  Roald Tagle 《Icarus》2007,189(2):591-594
A late Eocene asteroid shower to the Earth-Moon system resulted in an increased flux of impact ejected 3He-rich lunar matter to Earth, which is recorded by a 2 Ma enduring 3He-anomaly in marine sediments.  相似文献   

12.
高懿  萧耐园 《天文学报》2007,48(4):456-462
根据角动量守恒原理,计算了地月系经潮汐演化到达平衡状态时的旋转周期和地月距离.并根据当前与平衡状态时地月系的总能量差,计算了到达平衡状态的时间.进而估计了地月距离变化和地球自转速率变化的长期趋势.  相似文献   

13.
Simulations of a late lunar-forming impact   总被引:3,自引:0,他引:3  
Robin M. Canup 《Icarus》2004,168(2):433-456
Results of about 100 hydrodynamic simulations of potential Moon-forming impacts are presented, focusing on the “late impact” scenario in which the lunar forming impact occurs near the very end of Earth's accretion (Canup and Asphaug, 2001, Nature 412, 708-712). A new equation of state is utilized that includes a treatment of molecular vapor (“M-ANEOS”; Melosh, 2000, in: Proc. Lunar Planet. Sci. Conf. 31st, p. 1903). The sensitivity of impact outcome to collision conditions is assessed, in particular how the mass, angular momentum, composition and origin (target vs. impactor) of the material placed into circumterrestrial orbit vary with impact angle, speed, impactor-to-target mass ratio, and initial thermal state of the colliding objects. The most favorable conditions for producing a sufficiently massive and iron-depleted protolunar disk involve collisions with an impact angle near 45 degrees and an impactor velocity at infinity <4 km/sec. For a total mass and angular momentum near to that of the current Earth-Moon system, such impacts typically place about a lunar mass of material into orbits exterior to the Roche limit, with the orbiting material composed of 10 to 30% vapor by mass. In all cases, the vast majority of the orbiting material originates from the impactor, consistent with previous findings. By mapping the end fate (escaping, orbiting, or in the planet) of each particle and the peak temperature it experiences during the impact onto the figure of the initial objects, it is shown that in the successful collisions, the impactor material that ends up in orbit is primarily that portion of the object that was heated the least, having avoided direct collision with the Earth. Using these and previous results as a guide, a continuous suite of impact conditions intermediate to the “late impact” (Canup and Asphaug, 2001, Nature 412, 708-712) and “early Earth” (Cameron, 2000, in: Canup, R.M., Righter, K. (Eds.), Origin of the Earth and Moon, pp. 133-144; 2001, Meteorit. Planet. Sci. 36, 9-22) scenarios is identified that should also produce iron-poor, ∼lunar-sized satellites and a system angular momentum similar to that of the Earth-Moon system. Among these, those that leave the Earth >95% accreted after the Moon-forming impact are favored here, implying a giant impactor mass between 0.11 and 0.14 Earth masses.  相似文献   

14.
The concept “the tidal force function of the Earth-Moon system” is introduced and its exact determination based on the Stokes constants (harmonic coefficients) in the external gravitational potential of both bodies is outlined. The exact determination of the torque due to the Moon exerted on the Earth may be performed in terms of the Stokes constants of both bodies and the mutual position of both ellipsoids of inertia.  相似文献   

15.
The aim of this paper is to show that in the case of a low probability of asteroid collision with the Earth, the appropriate selection and weighting of the data are crucial for the impact investigation and for analysing the impact possibilities using extensive numerical simulations. By means of the Monte Carlo special method, a large number of 'clone' orbits have been generated. A full range of orbital elements in the six-dimensional parameter space, that is, in the entire confidence region allowed by the observational material, has been examined. On the basis of 1000 astrometric observations of (99942) Apophis, the best solutions for the geocentric encounter distance of  6.065 ± 0.081 R  (without perturbations by asteroids) or  6.064 ± 0.095 R  (including perturbations by the four largest asteroids) were derived for the close encounter with the Earth on 2029 April 13. The present uncertainties allow for special configurations ('keyholes') during this encounter that may lead to very close encounters in future approaches of Apophis. Two groups of keyholes are connected with the close encounter with the Earth in 2036 (within the minimal distance of  5.7736−5.7763 R  on 2029 April 13) and 2037 (within the minimal distance of  6.3359–6.3488 R  ). The nominal orbits for our most accurate models run almost exactly in the middle of these two impact keyhole groups. A very small keyhole for the impact in 2076 has been found between these groups at the minimal distance of 5.97347   R  . This keyhole is close to the nominal orbit. The present observations are not sufficiently accurate to eliminate definitely the possibility of impact with the Earth in 2036 and for many years after.  相似文献   

16.
We show that the spin period of the white dwarf in the magnetic cataclysmic variable (CV) EX Hydrae represents an equilibrium state in which the corotation radius is comparable with the distance from the white dwarf to the inner Lagrange point. We also show that a continuum of spin equilibria exists at which P spin is significantly longer than ∼0.1 P orb. Most systems occupying these equilibrium states should have orbital periods below the CV period gap, as observed.  相似文献   

17.
In 1799 Laplace discovered that the three principal moments of the Moon are not in equilibrium with the Moon's current orbital and rotational state. Some authors suggested that the Moon may carry a fossil figure. More than 3 billion years ago, the liquid Moon was closer to the Earth and revolved faster. Then the Moon migrated outwards and its rotation slowed down. During the early stage of this migration, the Moon was continually subjected to tidal and rotational stretching and formed into an ellipsoid. Subsequently the Moon cooled down and solidified quickly. Eventually, the solid Moon's lithosphere was stable and as a result we may see the very early lunar figure.  相似文献   

18.
We present a new analysis of the expected magnetospheric radio emission from extrasolar giant planets (EGPs) for a distance limited sample of the nearest known extrasolar planets. Using recent results on the correlation between stellar X-ray flux and mass-loss rates from nearby stars, we estimate the expected mass-loss rates of the host stars of extrasolar planets that lie within 20 pc of the Earth. We find that some of the host stars have mass-loss rates that are more than 100 times that of the Sun and, given the expected dependence of the planetary magnetospheric radio flux on stellar wind properties, this has a very substantial effect. Using these results and extrapolations of the likely magnetic properties of the extrasolar planets, we infer their likely radio properties.
We compile a list of the most promising radio targets and conclude that the planets orbiting Tau Bootes, Gliese 86, Upsilon Andromeda and HD 1237 (as well as HD 179949) are the most promising candidates, with expected flux levels that should be detectable in the near future with upcoming telescope arrays. The expected emission peak from these candidate radio emitting planets is typically ∼40–50 MHz. We also discuss a range of observational considerations for detecting EGPs.  相似文献   

19.
Richard Lathe 《Icarus》2006,180(1):277-280
Tidal cycling has been causally implicated at the origin of life, but the speed of early tides has not been established. The rotation period of the Earth is the dominant parameter, and a length of day (LOD) of under 6 h at 3.9 Ga was inferred by regression from present values [Lathe, R. 2004. Icarus 168, 18-22]. However, this would imply critical lunar proximity at that time; in their commentary Varga et al. instead argue for a more distant Moon, proposing LOD=16.8 h. The debate is accentuated because regression from current values requires an Earth-Moon juxtaposition at around 2 Ga, for which there is no evidence. A smooth retreat from a Moon-forming impact at 4.5 Ga is also irreconcilable with the weight of paleotidal evidence. An inflection in the lunar recession curve is required to reconcile current and recent Earth-Moon values with a 4.5 Ga origin, requiring a change in tidal friction during the evolution of the Earth-Moon system. Depending on whether this took place at ∼2-2.5 Ga before present, or more recently (∼0.8-0.2 Ga), LOD values are estimated at between 12 and 16 h, suggesting a compromise figure of LOD=∼14 h, with tides every ∼7 h, at 3.9 Ga.  相似文献   

20.
The discussion of tidal friction in the Earth-Moon system given in successive editions ofThe Earth by Jeffreys is shown to contain a serious dynamical error. When the treatment is corrected, it shows that the moment of inertia of the Earth must be changing. The apparent secular accelerations of the Moon and Sun require a diminishing moment of inertia, and the rate is in agreement with the phase-change hypothesis for the nature of the core.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号