首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report the discovery of five Narrow-Line Seyfert 1 galaxies (NLSls) identified from the ROSAT All-Sky Survey bright sources. One of them has a quasarlike luminosity and two, including the quasar-like one, have close companions and/or show interacting features. We calculate the central black hole masses and Eddington ratios for the five NLSls. In combination with the objects of Kaspi et al., we find that NLSls have smaller central black hole masses and higher accretion rate than normal Seyfert ls.  相似文献   

2.
We report the discovery of five Narrow-Line Seyfert 1 galaxies (NLSls) identified from the ROSAT All-Sky Survey bright sources. One of them has a quasar-like luminosity and two, including the quasar-like one, have close companions and/or show interacting features. We calculate the central black hole masses and Eddington ratios for the five NLSls. In combination with the objects of Kaspi et al., we find that NLSls have smaller central black hole masses and higher accretion rate than normal Seyfert 1s.  相似文献   

3.
The growth of supermassive black holes by merging and accretion in hierarchical models of galaxy formation is studied by means of Monte Carlo simulations. A tight linear relation between masses of black holes and masses of bulges arises if the mass accreted by supermassive black holes scales linearly with the mass-forming stars and if the redshift evolution of mass accretion tracks closely that of star formation. Differences in redshift evolution between black hole accretion and star formation introduce a considerable scatter in this relation. A non-linear relation between black hole accretion and star formation results in a non-linear relation between masses of remnant black holes and masses of bulges. The relation of black hole mass to bulge luminosity observed in nearby galaxies and its scatter are reproduced reasonably well by models in which black hole accretion and star formation are linearly related but do not track each other in redshift. This suggests that a common mechanism determines the efficiency for black hole accretion and the efficiency for star formation, especially for bright bulges.  相似文献   

4.
Narrow Line Seyfert 1 galaxies (NLS1s) are intriguing owing to their continuum as well as emission-line properties. The observed peculiar properties of the NLS1s are believed to be as a result of an accretion rate close to the Eddington limit. As a consequence of this, for a given luminosity, NLS1s have smaller black hole (BH) masses compared with normal Seyfert galaxies. Here we argue that NLS1s might be Seyfert galaxies in their early stage of evolution and as such may be low-redshift, low-luminosity analogues of high-redshift quasars. We propose that NLS1s may reside in rejuvenated, gas-rich galaxies. We also argue in favour of collisional ionization for production of Fe  ii in active galactic nuclei.  相似文献   

5.
In a previous paper, it was suggested that contamination of the nuclear luminosity by the host galaxy plays an important role in determining the parameters of the standard a disk of AGNs. Using the nuclear absolute B band magnitude instead of the total absolute B band magnitude, we have recalculated the central black hole masses, accretion rates and disk inclinations for 20 Seyfert 1 galaxies and 17 Palomar-Green (PG) quasars. It is found that a small value of a is needed for the Seyfert 1 galaxies than for the PG quasars. This difference in a possibly leads to the different properties of Seyfert 1 galaxies and quasars. Furthermore, we find most of the objects in this sample are not accreting at super-Eddington rates if we adopt the nuclear optical luminosity in our calculation.  相似文献   

6.
We assembled a sample of Seyfert 1 galaxies, quasi-stellar objects (QSOs) and low-luminosity active galactic nuclei (LLAGNs) observed by ASCA , the central black hole masses of which have been measured. We found that the X-ray variability (which is quantified by the 'excess variance' σ rms2) is significantly anti-correlated with the central black hole mass, and it is likely that a linear relationship of σ rms2∝ M bh−1 exists. It can be interpreted that the short time-scale X-ray variability is caused by some global coherent variations in the X-ray emission region, which is scaled by the size of the central black hole. Hence the central black hole mass is the driving parameter of the previously established relation between X-ray variability and luminosity. Our findings favour the hypothesis that the narrow-line Seyfert 1 galaxies and QSOs harbour smaller black holes than the broad-line objects, and can also easily explain the observational fact that high-redshift QSOs have greater variability than local AGNs at a given luminosity. Further investigations are needed to confirm our findings, and a large sample X-ray variability investigation can give constraints on the physical mechanisms and evolution of AGNs.  相似文献   

7.
We present XMM-Newton European Photon Imaging Camera (EPIC) observations of the bright Seyfert 1 galaxy MCG–6-30-15, focusing on the broad Fe K α line at ∼6 keV and the associated reflection continuum, which is believed to originate from the inner accretion disc. We find these reflection features to be extremely broad and redshifted, indicating an origin in the very central regions of the accretion disc. It seems likely that we have caught this source in the 'deep minimum' state first observed by Iwasawa et al. The implied central concentration of X-ray illumination is difficult to understand in any pure accretion disc model. We suggest that we are witnessing the extraction and dissipation of rotational energy from a spinning black hole by magnetic fields connecting the black hole or plunging region to the disc.  相似文献   

8.
We analyse the scaling of the X-ray power density spectra with the mass of the black hole in the examples of Cyg X-1 and the Seyfert 1 galaxy NGC 5548. We show that the high-frequency tail of the power density spectrum can be successfully used for the determination of the black hole mass. We determine the masses of the black holes in six broad-line Seyfert 1 galaxies, five narrow-line Seyfert 1 galaxies and two quasi-stellar objects (QSOs) using the available power density spectra. The proposed scaling is clearly appropriate for other Seyfert galaxies and QSOs. In all but one of the normal Seyferts, the resulting luminosity to Eddington luminosity ratio is smaller than 0.15, with the source MCG -6-15-30 being an exception. The applicability of the same scaling to a narrow-line Seyfert 1 is less clear and there may be a systematic shift between the power spectra of NLS1 and S1 galaxies of the same mass, leading to underestimation of the black hole mass. However, both the method based on variability and the method based on spectral fitting show that those galaxies have relatively low masses and a high luminosity to Eddington luminosity ratio, supporting the view of those objects as analogues of galactic sources in their high, soft or very high state, based on the overall spectral shape. The bulge masses of their host galaxies are similar to that of normal Seyfert galaxies, so they do not follow the black hole mass–bulge mass relation for Seyfert galaxies, being evolutionarily less advanced, as suggested by Mathur. The bulge mass–black hole mass relation in our sample is consistent with being linear, with the black hole to bulge ratio ∼0.03 per cent, similar to Wandel and Laor for low-mass objects, but significantly shifted from the relation of Magorrian et al. and McLure & Dunlop.  相似文献   

9.
《New Astronomy Reviews》2000,44(7-9):427-429
Recently, reliable mass estimates for the central black holes in AGN became feasible due to emission-line reverberation techniques. Using this method as a calibrator, it is possible to determine black hole masses for a wide range of AGN, in particular NLS1s. Do NLS1s have smaller black holes than ordinary Seyfert 1 galaxies? Are their black holes smaller compared to the sizes of their host galaxies? Do they have larger L/M ratios? Do NLS1s have hotter accretion disks? I confront these questions with accretion disk theory and with the data, showing that the above may well be the case.  相似文献   

10.
In this contribution, I briefly review recent progress in detecting and measuring the properties of relativistic iron lines observed in stellar‐mass black hole systems, and the aspects of these lines that are most relevant to studies of similar lines in Seyfert‐1 AGN. In particular, the lines observed in stellar‐mass black holes are not complicated by complex low‐energy absorption or partial‐covering of the central engine, and strong lines are largely independent of the model used to fit the underlying broad‐band continuum flux. Indeed, relativistic iron lines are the most robust diagnostic of black hole spin that is presently available to observers, with specific advantages over the systematics–plagued disk continuum. If accretion onto stellar‐mass black holes simply scales with mass, then the widespread nature of lines in stellar‐mass black holes may indicate that lines should be common in Seyfert‐1 AGN, though perhaps harder to detect. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Compact remnants – stellar mass black holes and neutron stars formed in the inner few parsec of galactic centres are predicted to sink into the central parsec due to dynamical friction on low-mass stars, forming a high concentration cusp. Same physical region may also contain very high-density molecular clouds and accretion discs that are needed to fuel supermassive black hole (SMBH) activity. Here we estimate gas capture rates on to the cusp of stellar remnants, and the resulting X-ray luminosity, as a function of the accretion disc mass. At low disc masses, most compact objects are too dim to be observable, whereas in the high disc case most of them are accreting at their Eddington rates. We find that for low accretion disc masses, compact remnant cusps may be more luminous than the central SMBHs. This 'diffuse' emission may be of importance for local moderately bright active galactic nuclei (AGNs), especially low-luminosity AGNs. We also briefly discuss how this expected emission can be used to put constraints on the black hole cusp near our Galactic Centre.  相似文献   

12.
We present estimated ratios of the central black hole mass to the bulge mass (Mbh/Mbulge) for 15 Narrow Line Seyfert 1 galaxies (NLS1s). It is found that NLS1s apparently have lower mass ratios: the average mass ratio is about 1 × 10-4 with a spread of 2, which is one order of magnitude lower than for Broad Line AGNs and quiescent galaxies. This lower value, as compared to that established essentially for all other types of galaxies, can be accounted for by an underestimation of the black hole masses and an overestimation of the bulge masses in the NLS1s.  相似文献   

13.
We consider the power of a relativistic jet accelerated by the magnetic field of an accretion disc. It is found that the power extracted from the disc is mainly determined by the field strength and configuration of the field far from the disc. Comparing it with the power extracted from a rotating black hole, we find that the jet power extracted from a disc can dominate over that from the rotating black hole. However, in some cases, the jet power extracted from a rapidly rotating hole can be more important than that from the disc, even if the poloidal field threading the hole is not significantly larger than that threading the inner edge of the disc. The results imply that the radio-loudness of quasars may be governed by its accretion rate, which might be regulated by the central black hole mass. It is proposed that the different disc field generation mechanisms might be tested against observations of radio-loud quasars if their black hole masses are available.  相似文献   

14.
We present a study of the spectral variability of the Seyfert I galaxy MCG–6-30-15 based on the two long XMM–Newton observations from 2000 and 2001. The X–ray spectrum and variability properties of the 2001 data have previously been well described with a two-component model consisting of a variable power-law and a much less variable reflection component, containing a broad relativistic iron line from the accretion disc around a rapidly rotating Kerr black hole. The lack of variability of the reflection component has been interpreted as an effect of strong gravitational light bending very close to the central black hole. Using an improved reflection model, we fit the two-component model to time-resolved spectra of both observations. Assuming that the photon index of the power law is constant, we reconfirm the old result and show that this does not depend on the time-scale of the analysis.  相似文献   

15.
The fluorescent iron K α emission-line profile provides an excellent probe of the innermost regions of active galactic nuclei. Fe  xxv and Fe  xxvi in diffuse plasma above the accretion disc can affect the X-ray spectrum by iron K α resonant absorption. This in turn can influence the interpretation of the data and the estimation of the accretion disc and black hole parameters. We embark on a fully relativistic computation of this effect and calculate the iron line profile in the framework of a specific model in which rotating, highly ionized and resonantly absorbing plasma occurs close to the black hole. This can explain the features seen in the iron K α line profile recently obtained by Nandra et al. for the type 1 Seyfert galaxy NGC 3516. We show that the redshift of this feature can be mainly gravitational in origin and accounted for without the need to invoke fast accretion of matter on to the black hole. New X-ray satellites such as XMM , ASTRO-E and Chandra provide excellent opportunities to test the model against high-quality observational data.  相似文献   

16.
We have collected short-timescale variability data of 47 blazars, estimated the masses of their central black holes and the sizes of their radiation regions at different wavebands, and made a statistical analysis on the calculated results. It is found that the central black hole mass of blazars falls in the range 107M to 1010M, and that the BL Lac objects and the flat-spectrum radio quasars have very different central black hole masses (the latter being generally greater), while they have very similar sizes of radiation regions in the infrared and γ-ray wavebands. Also, using the collected bolometric luminosity data, we have analyzed the relationship between the bolometric luminosity of blazars and their short-timescale variability, and it is concluded that the radiations from the radio-selected BL Lac objects (RBLs) and flat-spectrum radio quasars (FSRQs) are strongly beam-confined, while the effect of relativistic beaming is relatively small for the X-ray-selected BL Lac objects (XBLs).  相似文献   

17.
本文详细讨论了在Blandford-Znajek过程中吸积盘中心黑洞的角动量和质量的总变化率与质量吸积率和能量提取率之比的关系,在此基础上讨论了BlandfordZnajek过程对黑洞吸积盘内边缘半径r_(ms)演化的影响,并证明在此过程中中心黑洞的熵总是增大的。  相似文献   

18.
Using a Monte Carlo method, we derive spectra arising from Comptonization taking place close to a Kerr black hole. We consider a model consisting of a hot thermal corona Comptonizing seed photons emitted by a cold accretion disc. We find that general relativistic effects are crucial for the emerging spectra in models, which involve significant contribution of radiation produced in the black hole ergosphere. As a result of this contribution, spectra of hard X-ray emission produced in the vicinity of a rapidly rotating black hole strongly depend on the inclination of the line of sight, with larger inclinations corresponding to harder spectra. Remarkably, such anisotropy could be responsible for properties of the X-ray spectra of Seyfert galaxies, which appear to be intrinsically harder in type 2 objects than in type 1, as reported recently.  相似文献   

19.
The research on quasar OJ 287 has lasted over 100 years. OJ 287 exhibits the phenomenon of periodic two-peak outbursts with the eruptive period of 12 years. Observations are rather well interpreted with the black hole binary model. In this model, the secondary black hole moves around the primary black hole and crashes against the accretion disk of the primary black hole, causing outbursts. This model reasonably explains the light curves of OJ 287 and correctly predicts the time of future outbursts. These indirectly justify the precessional effect of general relativity and the existence of gravitational waves. The massive black hole in the center of galaxy is an important kind of gravitational wave source. However, the number of the galaxies with precisely determined kinematical equations of inner components is quite small. The precise kinematic orbits of black holes are provided by the black hole binary model, so the radiation of gravitational waves can be studied on the basis of these kinematic orbits. Based on the existing work, the evolutionary relations of the radiation power and waveform of gravitational waves with time are first derived by using the post-Newtonian approximation method. According to the current progress of the detection equipment of gravitational waves, i.e., IPTA (International Pulsar Timing Array), the direct detection of gravitational waves from OJ 287 may be possible within the future decade.  相似文献   

20.
The sizes of the Broad Line Region (BLR) of some Seyfert 1 galax-ies and nearby quasars can be determined by the reverberation mapping method.Combining with the observed FWHM of Hβ emission line and assuming that themotion of BLR clouds is virialized, the black hole masses of these objects have beenestimated. However, this method strongly depends on the poorly-understood geom-etry and inclination of the BLR. On the other hand, a tight correlation between theblack hole mass and the bulge velocity dispersion was recently found for both activeand nearby inactive galaxies. This may provide another method, independent of theBLR geometry, for estimating the black hole mass. Using this method for estimatingthe black hole mass and combining with the measured BLR size and FWHM of Hβemission line, we derived the BLR inclination angles for 20 Seyfert I galaxies underthe assumption that the BLR is disk-like. The derived inclination angles agree wellwith those derived previously by fitting the UV continuum and Hβ emission lineprofiles. Adopting a relation between the FWHMs of [OⅢ]λ5007 forbidden line andthe stellar velocity dispersion, we also estimated the BLR inclinations for 50 nar-row line Seyfert 1 galaxies (NLSls). We found that the inclinations of broad LineSeyfert 1 galaxies (BLS1s) are systematically greater than those of NLS1s, whichseldom exceed 30. This may be an important factor that leads to the differencesbetween NLS1s and BLS1s if the BLR of NLS1s is really disk-like.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号