首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A paradigm for the design, monitoring, and optimization of in situ methyl tert -butyl ether (MTBE) aerobic biobarriers is presented. In this technology, an oxygen-rich biologically reactive treatment zone (the "biobarrier") is established in situ and downgradient of the source of dissolved MTBE contamination in groundwater, typically gasoline-impacted soils resulting from leaks and spills at service station sites or other fuel storage and distribution facilities. The system is designed so that groundwater containing dissolved MTBE flows to, and through, the biobarrier treatment zone, ideally under natural gradient conditions so that no pumping is necessary. As the groundwater passes through the biobarrier, the MTBE is converted by microorganisms to innocuous by-products. The system also reduces concentrations of other aerobically degradable chemicals dissolved in the groundwater, such as benzene, toluene, xylenes, and tert -butyl alcohol. This design paradigm is based on experience gained while designing, monitoring, and optimizing pilot-scale and full-scale MTBE biobarrier systems. It is largely empirically based, although the design approach does rely on simple engineering calculations. The paradigm emphasizes gas injection–based oxygen delivery schemes, although many of the steps would be common to other methods of delivering oxygen to aquifers.  相似文献   

2.
Methyl tert -butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (<3%14C-MTBW as 14CO2) after a seven-month incubation period, Tert -butyl alcohol (TBA), a proposed microbial-MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.  相似文献   

3.
This research continues a 7-year study of oxygen-containing organic compounds present in groundwater at gasoline and diesel fuel release sites that are quantified as diesel-range “total petroleum hydrocarbons” when measured by methods utilizing solvent extraction and gas chromatography. Two-dimensional gas chromatography with time-of-flight mass spectrometry was used to tentatively identify 1162 compounds (TICs) in 113 groundwater samples from 22 sites. Samples were collected from wells either upgradient of the release, within the source zone, or downgradient of the source but still within the plume of dissolved organics associated with release. The names and formulas of all TICs found in samples from each well type are presented and the results from upgradient and downgradient locations are compared in detail. About 60% of the most frequently detected TICs in downgradient wells were also detected in upgradient wells. A majority of these were saturated straight chain alkyl acids, commonly called fatty acids, or fatty acid esters. Of TICs frequently detected in downgradient wells but not upgradient wells, over half were branched alkyl alcohols. Hierarchical cluster analysis results suggest about 80% of the chemical composition of downgradient samples is more similar to upgradient samples than to source area samples. This similarity is due to the presence of the same types of fatty acids and esters. Principal component analysis indicates a continuum of biodegradation between the source area and downgradient samples with the latter becoming more consistent with upgradient samples. Results suggest some TICs may not be petroleum degradation intermediates but compounds synthesized by microorganisms through secondary production and carbon cycling.  相似文献   

4.
Diisopropanolamine Biodegradation Potential at Sour Gas Plants   总被引:1,自引:0,他引:1  
The potential for aerobic and anaerobic biodegradation of a sour gas treatment chemical, diisopropanolamine (DIPA), was studied using contaminated aquifer materials from three sour gas treatment sites in western Canada. DIPA was found to be readily consumed under aerobic conditions at 8°C and 28°C in shake flask cultures incubated with aquifer material from each of the sites, and this removal was characterized by first-order kinetics. In addition, DIPA biodegradation was found to occur under nitrate-, Min(IV)., and Fe(III)-reducing conditions at 28°C, and in some cases at 8°C, in laboratory microcosms, DIPA loss corresponded to consumption of nitrate, and production of Mn(II) and Fe(II) in viable microcosms compared to corresponding sterile controls. A threshold DIPA concentration near 40 mg/L was observed in the anaerobic microcosms. This report provides the first evidence that DIPA is biodegraded under anaerobic conditions, and our data suggest that biodegradation may contribute to DIPA attenuation under aerobic and anaerobic conditions in aquifers contaminated with this sour gas treatment chemical.  相似文献   

5.
Effects of nutrients on crude oil biodegradation in the upper intertidal zone   总被引:10,自引:0,他引:10  
Oh YS  Sim DS  Kim SJ 《Marine pollution bulletin》2001,42(12):1367-1372
To enhance biodegradation, nutrients in the form of slow-release fertilizer (SRF) were applied to oil-contaminated microcosms (3%, v/v) which simulated intertidal environmental systems. Although nutrient concentrations in the interstitial water were not proportional to those in amended SRF, microbial activity, growth of oil-degrading microorganisms, and oil-degradation rate were closely related to the concentration of nutrients in the interstitial water. Adding nutrients at higher dose (microcosm I, 144.4 mg C/kg sand/day, versus microcosm II, 8.5 mg C/kg sand/day) had a positive effect on oil degradation rate, which was especially obvious during the early phase of treatment. Use of pristane, phytane, and nor-hopane as biomarkers enabled the detection of significant treatment differences in hydrocarbon biodegradation, which were not reliable enough when the data were normalized to sand mass.  相似文献   

6.
A field lest to evaluate the applicability of an oxygon-releasing compound (ORC) to the rernediation of ground water contaminated with benzone and toluene was conducted in the Borden Aquifer in Ontario. Canada. Benzene and toluene were injected as organic substrates to represent BTEX compounds, bromide was used as a tracer, and nitrate was added to avoid nitrate-limited conditions.
The fate of the solutes was monitored along four lines of monitoring points and wells. Two lines studied the behavior of the solutes upgradient and downgradient of two large-diameter well screens filled with briquets containing ORC and briquets without ORC. One line was used to study the solute behavior upgradient and downgradient of columns of ORC powder placed directly in the saturated zone. The remaining line was a control.
The results indicate that ORC in both briquet and powder form can release significant amounts of oxygen to conlaminated ground water passing by it. In the formulation used in this work, oxygen release persisted for at least 10 weeks. Furthemiore, the study indicates that the enhancement of the available dissolved oxygen content of at least 4 mg/L each of the ground water by ORC can support biodegradation of benzene and toluene dissolved in ground water. Such concentrations are typical of those encountered at sites contaminated with petroleum hydrocarbons; therefore, these results suggest that there is promise for ORC to enhance in situ biodegradation of BTKX contaminants at such sites using passive (nonpumping) systems to contact the contaminated ground water with the oxygen source.  相似文献   

7.
In 1988 and 1989, a natural gradient tracer test was performed in the shallow, aerobic and aquifer at Canadian Forces Base (CFB) Borden. A mixture of ground water containing dissolved oxygenated gasoline was injected below the water table along with chloride (Cl-) as a conservative tracer. The migration of BTEX, MTBE, and Cl was monitored in detail for 16 moths. The mass of BTEX compounds in the plume diminished significantly with time due to intrinsic aerobic biodegradation, while MTBE showed only a small decrease in mass over the 16-month period. In 1995/96, a comprehensive ground water sampling program was undertaken to define the mass of MTBE still present in the aquifer. Since the plume had migrated into an unmonitored section of the Borden Aquifer, numerical modeling and geostatistical methods were applied to define an optimal sampling grid and to improve the level of confidence in the results. A drive point profiling system was used to obtain ground water samples. Numerical modeling with no consideration of degradation pedicted maximum concentrations in excess of 3000 μg/L; field sampling found maximum concentrations of less than 200 μg/L. A mass balance for the remaining MTBE mass in the aquifer eight years after injection showed that only 3% of the original mass remained. Sorption, volatilization, a biotic degradation, and plant uptake are not considered significant attenuation processes for the field conditions. Therefore, we suggest that biodegradation may have played a major role in the attenuation of MTBE within the Borden Aquifer.  相似文献   

8.
At a large industrial facility, methyl tert‐butyl ether (MTBE) was released to the subsurface and dispersed into the light, non‐aqueous phase liquids (LNAPL), in the first aquifer, with the LNAPL serving as a continuous source of MTBE in groundwater. Compound‐specific isotope analysis was conducted on both MTBE and tert‐butyl alcohol (TBA) in groundwater samples collected in 2008, 2011, and 2013 from wells located along and off the center line of the MTBE plume. The study demonstrated the onset and progress of biodegradation of MTBE between 2008 and 2013. The TBA observed in 2008 appears to be derived only in part from MTBE transformation while a significant portion of TBA might be contributed directly from LNAPL sources. In 2011 to 2013, the dominant source of TBA in the mid‐gradient plume was MTBE transformation. A contribution of an offsite LNAPL source, in particular to the down‐gradient area of the plume, is possible but could not be unequivocally confirmed. The time series provided direct evidence for MTBE biodegradation, but also a valuable insight on the sources of TBA.  相似文献   

9.
Quantifying the overall progress in remediation of contaminated groundwater has been a significant challenge. We utilized the GeoTracker database to evaluate the progress in groundwater remediation from 2001 to 2011 at over 12,000 sites in California with contaminated groundwater. This paper presents an analysis of analytical results from over 2.1 million groundwater samples representing at least $100 million in laboratory analytical costs. Overall, the evaluation of monitoring data shows a large decrease in groundwater concentrations of gasoline constituents. For benzene, half of the sites showed a decrease in concentration of 85% or more. For methyl tert‐butyl ether (MTBE), this decrease was 96% and for TBE, 87%. At remediation sites in California, the median source attenuation rate was 0.18/year for benzene and 0.36/year for MTBE, corresponding to half‐lives of 3.9 and 1.9 years, respectively. Attenuation rates were positive (i.e., decreasing concentration) for benzene at 76% of sites and for MTBE at 85% of sites. An evaluation of sites with active remediation technologies suggests differences in technology effectiveness. The median attenuation rates for benzene and MTBE are higher at sites with soil vapor extraction or air sparging compared with sites without these technologies. In contrast, there was little difference in attenuation rates at sites with or without soil excavation, dual phase extraction, or in situ enhanced biodegradation. The evaluation of remediation technologies, however, did not evaluate whether specific systems were well designed or implemented and did not control for potential differences in other site factors, such as soil type.  相似文献   

10.
Although the anaerobic biodegradation of methyl tert‐butyl ether (MTBE) and tert‐butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA‐stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate‐reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio‐Sep® beads amended with 13C5‐MTBE, 13C1‐MTBE (only methoxy carbon labeled), or 13C4‐TBA. 13C‐DNA and 12C‐DNA extracted from the Bio‐Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert‐butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C‐labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE‐ and TBA‐degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate‐reducing bacteria and iron‐reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert‐butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross‐feeding on 13C‐labeled metabolites such as acetate.  相似文献   

11.
Groundwater remediation and no-further action decision making at petroleum underground storage tank (UST) sites has largely been based on an understanding of plume length, plume stability, and attenuation rates for key hydrocarbon constituents. Regulatory guidance to support and guide such decisions is based in part on plume studies involving individual hydrocarbon constituents, namely benzene and methyl tert-butyl ether (MTBE). Questions remain regarding whether current guidance is applicable to chemical mixtures such as gasoline range organics (GRO), diesel range organics (DRO), and oxygen containing organic compounds (OCOCs) resulting from hydrocarbon biodegradation. To help address this concern, data from California's GeoTracker database were used to estimate maximum plume lengths, plume stability, and attenuation rates of DRO (which can be used as an analytical surrogate for OCOCs) and GRO relative to benzene and MTBE. The distributions of maximum plume lengths were similar for the four constituents with medians ranging from 27 to 32 m. The fraction of monitoring wells with a decreasing concentration trend ranged from 19% for DRO to 40% for MTBE, while fewer than 7% of the wells had an increasing concentration trend for any of the constituents. Median attenuation rates ranged from 0.10% day−1 for DRO to 0.17% day−1 for MTBE. The results suggest attenuation based risk management is appropriate for DRO and GRO plumes at most petroleum UST sites.  相似文献   

12.
A whole-core injection method was used to determine depth-related rates of microbial mineralization of (14)C-phenanthrene added to both contaminated and clean marine sediments of Puget Sound, WA. For 26-day incubations under micro-aerobic conditions, conversions of (14)C-phenanthrene to (14)CO(2) in heavily PAH-contaminated sediments from two sites in Eagle Harbor were much higher (up to 30%) than those in clean sediments from nearby Blakely Harbor (<3%). The averaged (14)C-phenanthrene degradation rates in the surface sediment horizons (0-3 cm) were more rapid (2-3 times) than in the deeper sediment horizons examined (>6 cm), especially in the most PAH polluted EH9 site. Differences in mineralization were associated with properties of the sediments as a function of sediment depth, including grain-size distribution, PAH concentration, total organic matter and total bacterial abundance. When strictly anaerobic incubations (in N(2)/H(2)/CO(2) atmosphere) were used, the phenanthrene biodegradation rates at all sediment depths were two times slower than under micro-aerobic conditions, with methanogenesis observed after 24 days. The main rate-limiting factor for phenanthrene degradation under anaerobic conditions appeared to be the availability of suitable electron acceptors. Addition of calcium sulfate enhanced the first order rate coefficient (k(1) increased from 0.003 to 0.006 day(-1)), whereas addition of soluble nitrate, even at very low concentration (<0.5 mM), inhibited mineralization. Long-term storage of heavily polluted Eagle Harbor sediment as intact cores under micro-aerobic conditions also appeared to enhance anaerobic biodegradation rates (k(1) up to 0.11 day(-1)).  相似文献   

13.
We compare two methods for estimating the natural source zone depletion (NSZD) rate at fuel release sites that occurs by groundwater flow through the source zone due to dissolution and transport of biodegradation products. Dissolution is addressed identically in both methods. The “mass budget method”, previously proposed and applied by others, estimates the petroleum hydrocarbon biodegradation rate based on dissolved electron acceptor delivery and dissolved biodegradation product removal by groundwater flow. The mass budget method relies on assumed stoichiometry for the degradation reactions and differences in concentrations of dissolved species (oxygen, nitrate, sulfate, reduced iron, reduced manganese, nonvolatile dissolved organic carbon, methane) at monitoring locations upgradient and downgradient of the source zone. We illustrate a refinement to account for degradation reactions associated with loss of reduced iron from solution. The “carbon budget method,” a simplification of approaches applied by others, addresses carbon‐containing species in solution or lost from solution (precipitated) and does not require assumptions about stoichiometry or information about electron acceptors. We apply both methods to a fuel release site with unusually detailed monitoring data and discuss applicability to more typical and less thoroughly monitored sites. The methods, as would typically be applied, yield similar results but have different constraints and uncertainties. Overall, we conclude that the carbon budget method has greater practical utility as it is simpler, requires fewer assumptions, accounts for most iron‐reducing reactions, and does not include CO2 that escapes from the saturated to the unsaturated zone.  相似文献   

14.
Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert -butyl ether (MTBE), tert -butyl alcohol (TBA), and tert -amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- 14C-MTBE and U-14C-TBA to 14CO2 and the novel biodegradation of U- 14C-TAME to 14CO2 under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation.  相似文献   

15.
In Germany, the gasoline additive methyl tert‐butyl ether (MTBE) is almost constantly detected in measurable concentrations in surface waters and is not significantly removed during riverbank filtration. The removal of MTBE from water has been the focus of many studies that mostly were performed at high concentration levels and centred in understanding the mechanisms of elimination. In order to assess the performance of conventional and advanced water treatment technologies for MTBE removal in the low concentration range further studies were undertaken. Laboratory experiments included aeration, granulated activated carbon (GAC) adsorption, ozonation and advanced oxidation processes (AOP). The results show that the removal of MTBE by conventional technologies is not easily achieved. MTBE is only removed by aeration at high expense. Ozonation at neutral pH values did not prove to be effective in eliminating MTBE at all. The use of ozone/H2O2 (AOP) may lead to a partly elimination of MTBE. However, the ozone/H2O2 concentrations required for a complete removal of MTBE from natural waters is much higher than the ozone levels applied nowadays in waterworks. MTBE is only poorly adsorbed on activated carbon, thus GAC filtration is not efficient in eliminating MTBE. A comparison with real‐life data from German waterworks reveals that if MTBE is detected in the raw water it is most often found in the corresponding drinking water as well due to the poor removal efficiency of conventional treatment steps.  相似文献   

16.
The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and 13C Nuclear Magnetic Resonance (13C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Autoregressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the 13C NMR spectra clearly differentiates sediment samples closer to the Subaé estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay.  相似文献   

17.
Chloride contamination of groundwater in urban areas due to deicing is a well‐documented phenomenon in northern climates. The objective of this study was to evaluate the effects of permeable pavement on degraded urban groundwater. Although low impact development practices have been shown to improve stormwater quality, no infiltration practice has been found to prevent road salt chlorides from entering groundwater. The few studies that have investigated chlorides in permeable asphalt have involved sampling directly beneath the asphalt; no research has looked more broadly at surrounding groundwater conditions. Monitoring wells were installed upgradient and downgradient of an 860 m2 permeable asphalt parking lot at the University of Connecticut (Storrs, Connecticut). Water level and specific conductance were measured continuously, and biweekly samples were analyzed for chloride. Samples were also analyzed for sodium (Na), calcium (Ca), and magnesium (Mg). Analysis of variance analysis indicated a significantly (p < 0.001) lower geometric mean Cl concentration downgradient (303.7 mg/L) as compared to upgradient (1280 mg/L). Concentrations of all alkali metals increased upgradient and downgradient during the winter months as compared to nonwinter months, indicating that cation exchange likely occurred. Despite the frequent high peaks of chloride in the winter months as well as the increases in alkali metals observed, monitoring revealed lower Cl concentrations downgradient than upgradient for the majority of the year. These results suggest that the use of permeable asphalt in impacted urban environments with high ambient chloride concentrations can be beneficial to shallow groundwater quality, although these results may not be generalizable to areas with low ambient chloride concentrations.  相似文献   

18.
Crude oil bioremediation field experiment in the Sea of Japan   总被引:4,自引:0,他引:4  
Experimental bioremediation of crude oil was conducted for approximately 3 months in the intertidal zone of the Sea of Japan, Hyogo Prefecture. Artificial mixtures of weathered Arabian light crude oil and sand taken from the experimental site were wrapped in polyester net envelopes. The envelopes were placed in drum-shaped acrylic vessels with perforated sides to facilitate seawater exchange. The vessels were laid in the intertidal area. Slow release nitrogen and phosphorus synthetic fertilizer granules were added to the oil-sand mixtures in three different amounts. Some oil-sand mixtures were unfertilized controls. The oil-sand mixtures were periodically sampled and changes in the composition of the residual oils were monitored. Oil samples were subjected to gas chromatography coupled with mass spectrometry for analysis of some representative semi-volatile aliphatic and aromatic compounds. All values for each analyte were normalized against that of hopane to evaluate the extent of oil biodegradation. Significant increases in the concentrations of both nitrogen and phosphorus were found in the fertilized sections in accordance with the amounts of added fertilizers. Although significant natural attenuation of oil was observed in the unfertilized sections, fertilization stimulated the degradation rate of the oil in the early stage of the experimental term. The extent of the oil biodegradation increased as the amount of added fertilizer increased. However, the final degradation efficiencies for each oil component in the fertilized sections were not significantly different from those in the unfertilized sections, and the degradation of each oil component had almost ceased after 6 weeks. We conclude that excessive amounts of macronutrients are required to accelerate oil biodegradation and that fertilization is only effective in the early stages.  相似文献   

19.
The occurrence and concentration of the fuel additive methyl-tert-butyl ether (MTBE) were measured in dry weather runoff, municipal wastewater and industrial effluents, and coastal receiving waters in southern California. Combined, refineries and sewage treatment plants release approximately 214 kg day(-1) of MTBE into the marine environment, with Santa Monica Bay receiving most (98%) of this discharge. Dry weather urban runoff was analysed for samples collected from 25 streams and rivers, and accounted for less than 0.5% of the mass of MTBE discharged to coastal waters. Receiving water samples were collected from 23 stations in Santa Monica Bay, Los Angeles Harbour and Mission Bay or San Diego Bay. MTBE was detected at low concentrations near effluent discharges, however there was no evidence of baywide MTBE contamination related to these outfalls. Marinas and areas used intensively for recreational boating had the highest average MTBE concentration (8.8 microg l(-1)). Surface water contamination was most widespread in San Diego Bay and Mission Bay, areas with no refinery or sewage treatment plant inputs.  相似文献   

20.
Effects on sediments of fish farming activity near Vrgada Island was analysed through living and total foraminiferal assemblages and concentration of major, minor and trace elements from three sediment cores. Elemental concentrations of sediments are in accordance with carbonate characteristics of the surrounding area and show mostly natural element variations between sampling locations and throughout the cores, with no significant increases due to fish farming activity. Only phosphorus concentration shows elevate values below the fish cage, assigned to fish pellets. Foraminiferal communities are dominated by epifaunal and stress tolerant species, while diversity indices point to normal marine conditions. The type of substrate and phosphorus content in sediments principally influence foraminiferal community composition, while other elemental concentrations have no perceptible effect on the assemblages. Some foraminiferal species Ammoniatepida, Ammoniabeccarii, Elphidiumcrispum, Elphidiummacellum and genus Haynesina are confirmed to be tolerant to elevated nutrient (phosphorus) content, while Ammonia parkinsoniana shows sensitivity to pollution. Postmortem processes cause decrease of foraminiferal density and species richness with core depth. All results point to negligible influence of fish farming and relatively stable environmental conditions at all sampling locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号