首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper provides a summary of a number of indoor air quality studies reporting concentrations of volatile organic compounds (VOCs) in indoor air samples collected from residential properties in North America and provides average values for certain statistics (percentiles, detection frequency, maximum). This compilation includes several VOCs that are commonly assessed in studies of subsurface vapor intrusion to indoor air, but may also be attributable to consumer products, building materials, or even outdoor air (ambient) sources, specifically benzene, carbon tetrachloride, chloroform, 1,1-dichloroethane, 1,1-dichloroethene, 1,2-dichloroethane, cis and trans-1,2-dichloroethene, ethylbenzene, methyl tert-butyl ether, methylene chloride, tetrachloroethene, trichloroethene, toluene, trichloro-1,2,2-trifluoroethane, 1,1,1-trichloroethane, vinyl chloride, and meta, para, and ortho-xylene. In studies spanning 1990 through 2005, eleven of these compounds were detected in more than 50% of samples collected, and for several compounds (benzene, carbon tetrachloride, chloroform, ethylbenzene, and tetrachloroethene) the lower and upper quintiles of the indoor air concentrations are within the range of typical risk-based target levels. These summary statistics may help interpret data collected during a vapor intrusion investigation and communicate the findings of indoor air quality studies to building occupants and other stakeholders. Similar studies have been published in the past, but there has been a gradual change in indoor air quality over time and a large amount of new data has been collected, so this paper provides more relevant information for current use than previous compilations.  相似文献   

2.
Groundwater contamination associated with an industrial facility in Utah has led to concerns about potential vapor intrusion into residences outside the facility boundary. Trichloroethylene (TCE) is the main contaminant of concern with 1,2-dichloroethane (1,2-DCA) present in some areas. An air-monitoring program implemented to detect vapor intrusion of these compounds found 1,2-DCA in homes outside areas of groundwater contamination, suggesting indoor sources in these cases. Investigative indoor air and product sampling were conducted to isolate consumer products emitting 1,2-DCA and to quantify the emission rates of identified products. The combination of room-by-room air sampling and emission measurements was successfully used to identify molded plastic holiday ornaments, having measured emission rates as high as 0.3 µg 1,2-DCA/min. Subsequent testing of seven comparable retail items found similar 1,2-DCA emissions. Screening-level calculations show that the measured emission rates of 1,2-DCA from these items can lead to indoor concentrations high enough to be of regulatory concern (0.094 to 9.4 µg/m3 based on 10–6 to 10–4 cancer risk levels).  相似文献   

3.
Vapor intrusion (VI) involves migration of volatile contaminants from subsurface through unsaturated soil into overlying buildings. In 2015, the US EPA recommended an approach for screening VI risks associated with gasoline releases from underground storage tank (UST) sites. Additional assessment of the VI risk from petroleum hydrocarbons was deemed unnecessary for buildings separated from vapor sources by more than recommended vertical screening distances. However, these vertical screening distances did not apply to potential VI risks associated with releases of former leaded gasoline containing 1,2-dichloroethane (1,2-DCA), because of a lack of empirical data on the attenuation of 1,2-DCA in soil gas. This study empirically evaluated 144 paired measurements of 1,2-DCA concentrations in soil gas and groundwater collected at 47 petroleum UST sites combined with BioVapor modeling. This included (1) assessing the frequency of 1,2-DCA detections in soil gas below 10−6 risk-based screening levels at different vertical separation distances and (2) comparing the US EPA recommended vertical screening distances with those predicted by BioVapor modeling. Vertical screening distances were predicted for different soil types using aerobic biodegradation rate constants estimated from the measured soil-gas data combined with conservative estimates of source concentrations. The modeling indicates that the vertical screening distance of 6 feet (1.8 m) recommended for dissolved-phase sources is applicable for 1,2-DCA below certain threshold concentrations in groundwater, while 15 feet (4.6 m) recommended for light nonaqueous phase liquid (LNAPL) sources is applicable for sites with clay and loam soils in the vadose zone, but not sand, if 1,2-DCA concentrations in groundwater exceed 150 μg/L. This dependence of the predicted vertical screening distances on soil type places added emphasis on proper soil characterization for VI screening at sites with 1,2-DCA sources. The soil-gas data suggests that a vertical screening distance of 15 feet (4.6 m) is necessary for both dissolved-phase and LNAPL sources.  相似文献   

4.
《Advances in water resources》2007,30(6-7):1528-1546
A series of laboratory, field, and modeling studies were performed evaluating the potential for in situ aerobic cometabolism of chlorinated aliphatic hydrocarbon (CAH) mixtures, including 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA) and 1,1-dichloroethene (1,1-DCE) by bioaugmented microorganisms that grew on butane. A butane-grown bioaugmentation culture, primarily comprised of a Rhodococcus sp., was developed that effectively transformed mixtures of the three CAHs, under subsurface nutrient conditions. Microcosm experiments and modeling studies showed rapid transformation of 1,1-DCE with high transformation product toxicity and weak inhibition by butane, while 1,1,1-TCA was much more slowly transformed and strongly inhibited by butane. Field studies were conducted in the saturated zone at the Moffett Field In-Situ Test Facility in California. In the bioaugmented test leg, 1,1-DCE was most effectively transformed, followed by 1,1-DCA, and 1,1,1-TCA, consistent with the results from the laboratory studies. A 1-D reactive/transport code simulated the field responses during the early stages of testing (first 20 days), with the following extents of removal achieved at the first monitoring well; 1,1-DCE (∼97%), 1,1-DCA (∼77%), and 1,1,1-TCA (∼36%), with little or no CAH transformation observed beyond the first monitoring well. As time proceeded, decreased performance was observed. The modeling analysis indicated that this loss of performance may have been associated with 1,1-DCE transformation toxicity combined with the limited addition of butane as a growth substrate with longer pulse cycles. When shorter pulse cycles were reinitiated after 40 days of operation, 1,1-DCE transformation was restored and the following transformation extents were achieved; 1,1-DCE (∼94%), 1,1-DCA (∼8%), and 1,1,1-TCA (∼0%), with some CAH transformation occurring past the first monitoring well. Modeling analysis of this period indicated that the bioaugmented culture was likely not the dominant butane-utilizing microorganism present. This was consistent with observations in the indigenous leg during this period that showed effective butane utilization and the following extents of transformation: 1,1-DCE (∼86 %), 1,1-DCA (∼5%), and 1,1,1-TCA (∼0%). The combination of lab and field scale studies and supporting modeling provide a means of evaluating the performance of bioaugmentation and the cometabolic treatment of CAH mixtures.  相似文献   

5.
A value of 0.001 is recommended by the United States Environmental Protection Agency (USEPA) for its groundwater‐to‐indoor air Generic Attenuation Factor (GAFG), used in assessing potential vapor intrusion (VI) impacts to indoor air, given measured groundwater concentrations of volatile chemicals of concern (e.g., chlorinated solvents). The GAFG can, in turn, be used for developing groundwater screening levels for VI given target indoor air quality screening levels. In this study, we examine the validity and applicability of the GAFG both for predicting indoor air impacts and for determining groundwater screening levels. This is done using both analysis of published data and screening model calculations. Among the 774 total paired groundwater‐indoor air measurements in the USEPA's VI database (which were used by that agency to generate the GAFG) we found that there are 427 pairs for which a single groundwater measurement or interpolated value was applied to multiple buildings. In one case, up to 73 buildings were associated with a single interpolated groundwater value and in another case up to 15 buildings were associated with a single groundwater measurement (i.e., that the indoor air contaminant concentrations in all of the associated buildings were influenced by the concentration determined at a single point). In more than 70% of the cases (390 of 536 paired measurements in which horizontal building‐monitoring well distance was recorded) the monitoring wells were located more than 30 m (and one up to over 200 m) from the associated buildings. In a few cases, the measurements in the database even improbably implied that soil gas contaminant concentrations increased, rather than decreased, in an upward direction from a contaminant source to a foundation slab. Such observations indicate problematic source characterization within the data set used to generate the GAFG, and some indicate the possibility of a significant influence of a preferential contaminant pathway. While the inherent value of the USEPA database itself is not being questioned here, the above facts raise the very real possibility that the recommended groundwater attenuation factors are being influenced by variables or conditions that have not thus far been fully accounted for. In addition, the predicted groundwater attenuation factors often fall far beyond the upper limits of predictions from mathematical models of VI, ranging from screening models to detailed computational fluid dynamic models. All these models are based on the same fundamental conceptual site model, involving a vadose zone vapor transport pathway starting at an underlying uniform groundwater source and leading to the foundation of a building of concern. According to the analysis presented here, we believe that for scenarios for which such a “traditional” VI pathway is appropriate, 10?4 is a more appropriately conservative generic groundwater to indoor air attenuation factor than is the EPA‐recommended 10?3. This is based both on the statistical analysis of USEPA's VI database, as well as the traditional mathematical models of VI. This result has been validated by comparison with results from some well‐documented field studies.  相似文献   

6.
In order to collect baseline information on the environmental occurrence of volatile organic compounds (VOCs) in groundwater in East China, shallow groundwater samples were collected from five alluvial plains in East China in 2008 to 2009. All samples were analyzed for 54 VOCs representing a wide variety of uses and origins. Sampling sites were mainly selected in the areas to be susceptible to contamination from human activities in terms of previous hydrogeological survey. The data of all samples showed a variety of different hydrogeological systems with potential sources of VOCs, with 36 of the 54 VOCs being found. The most frequently detected compounds include naphthalene (56.9%), chloroform (16.9%), 1,2‐dichloroethane (16.2%), 1,2‐dichloropropane (13.1%), and 1,2,3‐trichlorobenzene (12.3%). The concentrations of methylene chloride, 1,2‐dichloroethane, carbon tetrachloride, trichloroethene, 1,2‐dichloropropane, and tetrachloroethene exceeded the relating drinking water standards. Future work will be needed to identify those factors that are most important in determining the occurrence and concentrations of VOCs in groundwater in China.  相似文献   

7.
Different types of data can be collected to evaluate whether or not vapor intrusion is a concern at sites impacted with volatile organic compound (VOC) contamination in the subsurface. Typically, groundwater, soil gas, or indoor air samples are collected to determine VOC concentrations in the different media. Sample results are evaluated using a “multiple lines of evidence” approach to interpret whether vapor intrusion is occurring. Data interpretation is often not straightforward because of many complicating factors, particularly in the evaluation of indoor air. More often than not, indoor air sample results are affected by indoor or other background sources making interpretation of concentration‐based data difficult using conventional sampling approaches. In this study, we explored the practicality of compound‐specific isotope analysis (CSIA) as an additional type of evidence to distinguish between indoor sources and subsurface sources (i.e., vapor intrusion). We developed a guide for decision‐making to facilitate data interpretation and applied the guidelines at four different test buildings. To evaluate the effectiveness of the CSIA method for vapor intrusion applications, we compared the interpretation from CSIA to interpretations based on data from two different investigation approaches: conventional sampling and on‐site GC/MS analysis. Interpretations using CSIA were found to be generally consistent with the other approaches. In one case, CSIA provided the strongest line of evidence that vapor intrusion was not occurring and that a VOC source located inside the building was the source of VOCs in indoor air.  相似文献   

8.
Groundwater elevation fluctuation has been recognized as one mechanism causing temporal indoor air volatile organic chemical (VOC) impacts in vapor intrusion risk assessment guidance. For dissolved VOC sources, groundwater table fluctuation shortens/lengthens the transport pathway, and delivers dissolved contaminants to soils that are alternating between water saturated and variably saturated conditions, thereby enhancing volatilization potential. To date, this mechanism has not been assessed with field data, but enhanced VOC emission flux has been observed in lab-scale and modeling studies. This work evaluates the impact of groundwater elevation changes on VOC emission flux from a dissolved VOC plume into a house, supplemented with modeling results for cyclic groundwater elevation changes. Indoor air concentrations, air exchange rates, and depth to groundwater (DTW) were collected at the study house during an 86-d constant building underpressurization test. These data were used to calculate changes in trichloroethylene (TCE) emission flux to indoor air, during a period when DTW varied daily and seasonally from about 3.1 to 3.4 m below the building foundation (BF). Overall, TCE flux to indoor air varied by about 50% of the average, without any clear correlation to changes in DTW or its change rate. To complement the field study, TCE surface emission fluxes were simulated using a one-dimensional model (HYDRUS 1D) for conditions similar to the field site. Simulation results showed time-averaged surface TCE fluxes for cyclic water-table elevations were greater than for stationary water-table conditions at an equivalent time-averaged water-table position. The magnitudes of temporal TCE emission flux changes were generally less than 50% of the time-averaged flux, consistent with the field site observations. Simulation results also suggested that TCE emission flux changes due to groundwater fluctuation are likely to be significant at sites with shallow groundwater (e.g., < 0.5 m BF) and permeable soil types (e.g., sand).  相似文献   

9.
Contamination of groundwater with chlorinated ethenes is common and represents a threat to drinking water sources. Standard anaerobic bioremediation methods for the highly chlorinated ethenes PCE and TCE are not always effective in promoting complete degradation. In these cases, the target contaminants are degraded to the daughter products DCE and/or vinyl chloride. This creates an additional health risk, as vinyl chloride is even more toxic and carcinogenic than its precursors. New treatment modalities are needed to deal with this widespread environmental problem. We describe successful bioremediation of a large, migrating, dilute vinyl chloride plume in Massachusetts with an aerobic biostimulation treatment approach utilizing both oxygen and ethene. Initial microcosm studies showed that adding ethene under aerobic conditions stimulated the rapid degradation of VC in site groundwater. Deployment of a full‐scale treatment system resulted in plume migration cutoff and nearly complete elimination of above‐standard VC concentrations.  相似文献   

10.
A model is presented for estimating vapor concentrations in buildings because of volatilization from soil contaminated by non- aqueous phase liquids (NAPL) or from dissolved contaminants in ground water. The model considers source depletion, diffusive- dispersive transport of the contaminant of concern (COC) and of oxygen and oxygen-limited COC biodecay. Diffusive-advective transport through foundations and vapor losses caused by foundation cross-flow are considered. Competitive oxygen use by various species is assumed to be proportional to the product of the average dissolved-phase species concentration and a biopreference factor. Laboratory and field data indicate the biopreference factor to be proportional to the organic carbon partition coefficient for the fuel hydrocarbons studied. Predicted indoor air concentrations were sensitive to soil type and subbase permeability. Lower concentrations were predicted for buildings with shallow foundations caused by flushing of contaminants by cross-flow. NAPL source depletion had a large impact on average exposure concentration. Barometric pumping had a minor effect on indoor air emissions for the conditions studied. Risk-based soil cleanup levels were much lower when biodecay was considered because of the existence of a threshold source concentration below which no emissions occur. Computed cleanup levels at NAPL-contaminated sites were strongly dependent on total petroleum hydrocarbon (TPH) content and COC soil concentration. The model was applied to two field sites with gasoline-contaminated ground water. Confidence limits of predicted indoor air concentrations spanned approximately two orders of magnitude considering uncertainty in model parameters. Measured contaminant concentrations in indoor air were within model-predicted confidence limits.  相似文献   

11.
Mineralization of 14C‐radiolabled vinyl chloride ([1,2‐14C] VC) and cis‐dichloroethene ([1,2‐14C] cis‐DCE) under hypoxic (initial dissolved oxygen (DO) concentrations about 0.1 mg/L) and nominally anoxic (DO minimum detection limit = 0.01 mg/L) was examined in chloroethene‐exposed sediments from two groundwater and two surface water sites. The results show significant VC and dichloroethene (DCE) mineralization under hypoxic conditions. All the sample treatments exhibited pseudo‐first‐order kinetics for DCE and VC mineralization over an extended range of substrate concentrations. First‐order rates for VC mineralization were approximately 1 to 2 orders of magnitude higher in hypoxic groundwater sediment treatments and at least three times higher in hypoxic surface water sediment treatments than in the respective anoxic treatments. For VC, oxygen‐linked processes accounted for 65 to 85% of mineralization at DO concentrations below 0.1 mg/L, and 14CO2 was the only degradation product observed in VC treatments under hypoxic conditions. Because the lower detection limit for DO concentrations measured in the field is typically 0.1 to 0.5 mg/L, these results indicate that oxygen‐linked VC and DCE biodegradation can be significant under field conditions that appear anoxic. Furthermore, because rates of VC mineralization exceeded rates of DCE mineralization under hypoxic conditions, DCE accumulation without concomitant accumulation of VC may not be evidence of a DCE degradative “stall” in chloroethene plumes. Significantly, mineralization of VC above the level that could reasonably be attributed to residual DO contamination was also observed in several nominally anoxic (DO minimum detection limit = 0.01 mg/L) microcosm treatments.  相似文献   

12.
Temporal and spatial variability of indoor air volatile organic compound (VOC) concentrations can complicate vapor intrusion (VI) assessment and decision-making. Indicators and tracers (I&T) of VI, such as differential temperature, differential pressure, and indoor radon concentration, are low-cost lines of evidence to support sampling scheduling and interpretation of indoor air VOC sampling results. This study compares peak indoor air chlorinated VOC concentrations and I&T conditions before and during those peak events at five VI sites. The sites differ geographically and in their VI conceptual site models (CSM). Relative to site-specific baseline values, the results show that cold or falling outdoor temperatures, rising cross slab differential pressures, and increasing indoor radon concentrations can predict peak VOC concentrations. However, cold outdoor air temperature was not useful at one site where elevated shallow soil temperature was a better predictor. Correlations of peak VOC concentrations to elevated or rising barometric pressure and low wind speed were also observed with some exceptions. This study shows how the independent variables that control or predict peak indoor air VOC concentrations are specific to building types, climates, and VI CSMs. More I&T measurements at VI sites are needed to identify scenario-specific baseline and peak related I&T conditions to improve decision-making.  相似文献   

13.
Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple‐well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride‐cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high‐chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high‐chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.  相似文献   

14.
Shallow trichloroethene (TCE) groundwater and soil contamination associated with a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Superfund Site in Michigan resulted in a vapor intrusion (VI) investigation of overlying condominium units. Units with data suggesting a complete VI pathway received subslab depressurization systems (SSDs). Performance monitoring following the installation of an SSD at one unit indicated that the indoor air TCE concentrations remained elevated, despite pressure field extension tests that showed the system should effectively reduce VI from soil gas. Therefore, a cost-efficient and incremental investigation was launched to identify other potential source(s) of TCE using a field-portable gas chromatograph/mass spectrometer (GS/MS). The combination of room-by-room air sampling, potential VI entry point sampling, and emission tests of potential sources were used, which resulted in successfully identifying a bedroom furniture set as an indoor source of TCE for the unit. Although many common household products are recognized as indoor sources of TCE, emissions from finished furniture products have not been widely discussed in the VI literature. The findings of this study indicate that off gassing from furniture can lead to TCE concentrations in indoor air that exceed regulatory guidelines.  相似文献   

15.
Vapor intrusion pathway evaluations commonly begin with a comparison of volatile organic chemical (VOC) concentrations in groundwater to generic, or Tier 1, screening levels. These screening levels are typically quite low reflecting both a desired level of conservatism in a generic risk screening process as well as limitations in understanding of physical and chemical processes that impact vapor migration in the subsurface. To study the latter issue, we have collected detailed soil gas and groundwater vertical concentration profiles and evaluated soil characteristics at seven different sites overlying chlorinated solvent contaminant plumes. The goal of the study was to evaluate soil characteristics and their impacts on VOC attenuation from groundwater to deep soil gas (i.e., soil gas in the unsaturated zone within 2 feet of the water table). The study results suggest that generic screening levels can be adjusted by a factor of 100× at sites with fine‐grained soils above the water table, as identified by visual observations or soil air permeability measurements. For these fine‐grained soil sites, the upward‐adjusted screening levels maintain a level of conservatism while potentially eliminating the need for vapor intrusion investigations at sites that may not meet generic screening criteria.  相似文献   

16.
Quantifying the overall progress in remediation of contaminated groundwater has been a significant challenge. We utilized the GeoTracker database to evaluate the progress in groundwater remediation from 2001 to 2011 at over 12,000 sites in California with contaminated groundwater. This paper presents an analysis of analytical results from over 2.1 million groundwater samples representing at least $100 million in laboratory analytical costs. Overall, the evaluation of monitoring data shows a large decrease in groundwater concentrations of gasoline constituents. For benzene, half of the sites showed a decrease in concentration of 85% or more. For methyl tert‐butyl ether (MTBE), this decrease was 96% and for TBE, 87%. At remediation sites in California, the median source attenuation rate was 0.18/year for benzene and 0.36/year for MTBE, corresponding to half‐lives of 3.9 and 1.9 years, respectively. Attenuation rates were positive (i.e., decreasing concentration) for benzene at 76% of sites and for MTBE at 85% of sites. An evaluation of sites with active remediation technologies suggests differences in technology effectiveness. The median attenuation rates for benzene and MTBE are higher at sites with soil vapor extraction or air sparging compared with sites without these technologies. In contrast, there was little difference in attenuation rates at sites with or without soil excavation, dual phase extraction, or in situ enhanced biodegradation. The evaluation of remediation technologies, however, did not evaluate whether specific systems were well designed or implemented and did not control for potential differences in other site factors, such as soil type.  相似文献   

17.
Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. However, few studies have been conducted to determine the impact of particulates on trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinyl chloride concentrations.
Laboratory batch studies and field investigations were conducted to evaluate the effects of suspended solids on VOC concentrations in ground water samples analyzed by purge-and-trap gas chromatography. Three different solids were used to assess the effects of suspended particulates. The solids were aquifer material from a field site in North Carolina and two reference clay minerals (kaolinite and Namontimorillonite). During the laboratory portion of this study, the solids were used to determine effects on TCE concentrations under controlled laboratory conditions.
The same solids were used in a field study to compare the laboratory results with field results. Solids were added to the sample vials prior it) sample collection to intentionally increase turbidity levels in the water samples. Results of the study indicate essentially no decrease in TCE, c-DCH, or vinyl chloride concentrations due to increased turbidity levels.  相似文献   

18.
Generic indoor air:subslab soil gas attenuation factors (SSAFs) are important for rapid screening of potential vapor intrusion risks in buildings that overlie soil and groundwater contaminated with volatile chemicals. Insufficiently conservative SSAFs can allow high‐risk sites to be prematurely excluded from further investigation. Excessively conservative SSAFs can lead to costly, time‐consuming, and often inconclusive actions at an inordinate number of low‐risk sites. This paper reviews two of the most commonly used approaches to develop SSAFs: (1) comparison of paired, indoor air and subslab soil gas data in empirical databases and (2) comparison of estimated subslab vapor entry rates and indoor air exchange rates (IAERs). Potential error associated with databases includes interference from indoor and outdoor sources, reliance on data from basements, and seasonal variability. Heterogeneity in subsurface vapor plumes combined with uncertainty regarding vapor entry points calls into question the representativeness of limited subslab data and diminishes the technical defensibility of SSAFs extracted from databases. The use of reasonably conservative vapor entry rates and IAERs offers a more technically defensible approach for the development of generic SSAF values for screening. Consideration of seasonal variability in building leakage rates, air exchange rates, and interpolated vapor entry rates allows for the development of generic SSAFs at both local and regional scales. Limitations include applicability of the default IAERs and vapor entry rates to site‐specific vapor intrusion investigations and uncertainty regarding applicability of generic SSAFs to assess potential short‐term (e.g., intraday) variability of impacts to indoor air.  相似文献   

19.
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year‐round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration‐to‐recharge rates were elevated, while low evapotranspiration‐to‐recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Adaptive site management and aggressive bioremediation in the source zone of a complex chlorinated dense nonaqueous phase liquid (DNAPL) site reduced total chlorinated hydrocarbon mass discharge by nearly 80%. Successful anaerobic bioremediation of chlorinated hydrocarbons can be impaired by inadequate concentrations of electron donors, competing electron acceptors, specific inhibitors such as chloroform, and potentially by high contaminant concentrations associated with residual DNAPL. At the study site, the fractured bedrock aquifer was impacted by a mixture of chlorinated solvents and associated daughter products. Concentrations of 1,1,2,2‐tetrachloroethane (1,1,2,2‐TeCA), 1,1,2‐trichloroethane (1,1,2‐TCA), and 1,2‐dichloroethane (1,2‐DCA) were on the order of 100 to 1000 mg/L. Chloroform was present as a co‐contaminant and background sulfate concentrations were approximately 400 mg/L. Following propylene glycol injections, concentrations of organohalide‐respiring bacteria including Dehalococcoides and Dehalogenimonas spp. increased by two to three orders of magnitude across most of the source area. Statistical analysis indicated that reaching volatile fatty acid concentrations greater than 1000 mg/L and depleting sulfate to concentrations less than 50 mg/L were required to achieve a Dehalococcoides concentration greater than the 104 cells/mL recommended for generally effective reductive dechlorination. In a limited area, chloroform concentrations greater than 5 mg/L inhibited growth of Dehalococcoides populations despite the availability of electron donor and otherwise appropriate geochemical conditions. After implementing a groundwater recirculation system targeting the inhibited area, chloroform concentrations decreased permitting significant increases in concentrations of Dehalococcoides and vinyl chloride reductase gene copies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号