首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations of platinum-group elements (PGE), Co, Re,Au and Ag have been determined in the base-metal sulphide (BMS)of a section of the Merensky Reef. In addition we performeddetailed image analysis of the platinum-group minerals (PGM).The aims of the study were to establish: (1) whether the BMSare the principal host of these elements; (2) whether individualelements preferentially partition into a specific BMS; (3) whetherthe concentration of the elements varies with stratigraphy orlithology; (4) what is the proportion of PGE hosted by PGM;(5) whether the PGM and the PGE found in BMS could account forthe complete PGE budget of the whole-rocks. In all lithologies,most of the PGE (65 up to 85%) are hosted by PGM (essentiallyPt–Fe alloy, Pt–Pd sulphide, Pt–Pd bismuthotelluride).Lesser amounts of PGE occur in solid solution within the BMS.In most cases, the PGM occur at the contact between the BMSand silicates or oxides, or are included within the BMS. Pentlanditeis the principal BMS host of all of the PGE, except Pt, andcontains up to 600 ppm combined PGE. It is preferentially enrichedin Pd, Rh and Co. Pyrrhotite contains, Rh, Os, Ir and Ru, butexcludes both Pt and Pd. Chalcopyrite contains very little ofthe PGE, but does concentrate Ag and Cd. Platinum and Au donot partition into any of the BMS. Instead, they occur in theform of PGM and electrum. In the chromitite layers the whole-rockconcentrations of all the PGE except Pd are enriched by a factorof five relative to S, Ni, Cu and Au. This enrichment couldbe attributed to BMS in these layers being richer in PGE thanthe BMS in the silicate layers. However, the PGE content inthe BMS varies only slightly as a function of the stratigraphy.The BMS in the chromitites contain twice as much PGE as theBMS in the silicate rocks, but this is not sufficient to explainthe strong enrichment of PGE in the chromitites. In the lightof our results, we propose that the collection of the PGE occurredin two steps in the chromitites: some PGM formed before sulphidesaturation during chromitite layer formation. The remainingPGE were collected by an immiscible sulphide liquid that percolateddownward until it encountered the chromitite layers. In thesilicate rocks, PGE were collected by only the sulphide liquid. KEY WORDS: Merensky Reef; Rustenburg Platinum Mine; sulphide; platinum-group elements; image analysis; laser ablation ICP-MS  相似文献   

2.
Summary ?We report, for the first time, the occurrence of five palladium-rich, one palladium bearing and two gold-silver minerals from podiform chromitites in the Eastern Alps. Minerals identified include braggite, keithconnite, stibiopalladinite, potarite, mertieite II, Pd-bearing Pt-Fe alloy, native gold and Ag-Au alloy. They occur in heavy mineral concentrates produced from two massive podiform chromitite samples (unaltered and highly altered) of the Kraubath ultramafic massif, Styria, Austria. Distribution patterns of platinum-group elements (PGE) in these chromitites show considerable differences in the behaviour of the less refractory PGE (PPGE-group: Rh, Pt, Pd) compared to the refractory PGE (IPGE-group: Os, Ir, Ru). PPGE are more enriched in chromitite showing pronounced alteration features. The unaltered chromitite displays a negatively sloped chondrite-normalised PGE pattern similar to typical ophiolitic-podiform chromitite. Except for the Pd- and Au-Ag minerals that are generally rare in ophiolites, about 20 other platinum-group minerals (PGM) have been discovered. They include PGE-sulphides (laurite, erlichmanite, kashinite, bowieite, cuproiridsite, cuprorhodsite, unnamed Ir-rich variety of ferrorhodsite, unnamed Ni-Fe-Cu-Rh- and Ni-Fe-Cu-Ir-Rh monosulphides), PGE alloys (Pt-Fe, Ir-Os, Os-Ir and Ru-Os-Ir), PGE-sulpharsenides (irarsite, hollingworthite, platarsite, ruarsite and a number of intermediate species), sperrylite and a Ru-rich oxide (?). Three PGM assemblages have been recognised and attributed to different processes ranging from magmatic to hydrothermal and weathering-related. Pd-rich minerals are characteristic of both chromitite types, although their chemistry and relative proportions vary considerably. Keithconnite, braggite and Pd-bearing ferroan platinum, together with a number of PGE-sulphides (mainly laurite-erlichmanite) and alloys, are typical only of the unaltered podiform chromitite (assemblage I). Euhedral mono- and polyphase PGM grains in the submicron to 100 μm range show features of primary magmatic assemblages. The diversity of PGM in these assemblages is unusual for ophiolitic environments. In assemblage II, laurite-erlichmanite is intergrown with and overgrown by PGE-sulpharsenides; other minerals of assemblage I are missing. Potarite, stibiopalladinite, mertieite II, native gold and Ag-Au alloys, as well as PGE-sulpharsenides, sperrylite and base metal arsenides and sulphides are characteristic for the highly altered chromitite (assemblage III). They occur either interstitial to chromite in association with metamorphic silicates, in chromite rims or along cracks, and are thus interpreted as having formed by remobilization of PGE by hydrothermal processes during polyphase regional metamorphism. Received August 3, 2000;/revised version accepted December 28, 2000  相似文献   

3.
High-Cr podiform chromitites hosted by upper mantle depleted harzburgite were investigated for PGM and other solid inclusions from Faryab ophiolitic complex, southern Iran. Chemical composition of the chromian spinels, Cr#[100*Cr/(Cr+Al) = 77–85], Mg# [100*Mg/(Mg+Fe2+) = 56–73], TiO2≤0.25wt%, and the presence of abundant primary hydrosilicates included in the chromian spinels indicate that the deposits were formed from aqueous melt generated by high degree of partial melting in a suprasubduction zone setting. Solid phases hosted by chromian spinel grains from the Faryab ophiolitic chromitites can be divided into three categories: PGM, base-metal minerals and silicates. Most of the studied PGM occurred as very small (generally less than 20 μm in size) primary single or composite inclusions of IPGE-bearing phases with or without silicates and base metal minerals. The PGM were divided into the three subgroups: sulfides, alloys and sulfarsenides. Spinel-olivine geothermometry gives the temperatures 1,131–1,177 °C for the formation of the studied chromitites. At those temperatures, fS2 values ranged from 10?3 to 10?1 and provided a suitable condition for Ru-rich laurite formation in equilibrium with Os-Ir alloys. Progressive crystallization of chromian spinel was accompanied by increase of fS2 in the melt. The formation of Os-rich laurite, erlichmanite and then sulfarsenides occurred by increase of fS2 and slight decrease in temperature of the milieu. The compositional and mineralogical determinations of PGM inclusions respect to their spatial distribution in chromian spinels show that the minerals regularly distributed within the chromitites, reflecting cryptic variation consistent with magmatic evolution during host chromian spinel crystallization.  相似文献   

4.
Voluminous platinum-group mineral(PGM) inclusions including erlichmanite(Os,Ru)S_2, laurite(Ru,Os)S_2, and irarsite(Ir,Os,Ru,Rh)As S, as well as native osmium Os(Ir) and inclusions of base metal sulphides(BMS), including millerite(NiS), heazlewoodite(Ni_3S_2), covellite(CuS) and digenite(Cu_3S_2), accompanied by native iron, have been identified in chromitites of the Zedang ophiolite, Tibet. The PGMs occur as both inclusions in magnesiochromite grains and as small interstitial granules between them; most are less than 10 μm in size and vary in shape from euhedral to anhedral. They occur either as single or composite(biphase or polyphase) grains composed solely of PGM, or PGM associated with silicate grains. Os-, Ir-, and Ru-rich PGMs are the common species and Pt-, Pd-, and Rh-rich varieties have not been identified. Sulfur fugacity and temperature appear to be the main factors that controlled the PGE mineralogy during crystallization of the host chromitite in the upper mantle. If the activity of chalcogenides(such as S, and As) is low, PGE clusters will remain suspended in the silicate melt until they can coalesce to form alloys. Under appropriate conditions of ?S_2 and ?O_2, PGE alloys might react with the melt to form sulfides-sulfarsenides. Thus, we suggest that the Os, Ir and Ru metallic clusters and alloys in the Zedang chromitites crystallized first under high temperature and low ?S_2, followed by crystallization of sulphides of the laurite-erlichmanite, solid-solution series as the magma cooled and ?S_2 increased. The abundance of primary BMS in the chromitites suggests that ?S_2 reached relatively high values during the final stages of magnesiochromite crystallization. The diversity of the PGE minerals, in combination with differences in the petrological characteristics of the magnesiochromites, suggest different degrees of partial melting, perhaps at different depths in the mantle. The estimated parental magma composition suggests formation in a suprasubduction zone environment, perhaps in a forearc.  相似文献   

5.
The mineralogy of the platinum-group elements (PGE), and gold, in the Platreef of the Bushveld Complex, was investigated using an FEI Mineral Liberation Analyser. Polished sections were prepared from 171 samples collected from two boreholes, for the in-situ examination of platinum group minerals (PGM). PGM and gold minerals encountered include maslovite (PtBiTe, 32 area% of total PGM), kotulskite (Pd(BiTe), 17?%), isoferroplatinum (Pt3Fe, 15?%), sperrylite (PtAs2, 11?%), cooperite (PtS, 5?%), moncheite (PtTe2; 5?%), electrum (AuAg; 5?%), michenerite (PdBiTe; 3?%), Pd alloys (Pd, Sb, Sn; 3?%), hollingworthite ((Rh,Pt)AsS; 2?%), as well as minor (all <1 area% of total PGM) merenskyite (PdBiTe2), laurite (RuS2), rustenburgite (Pt0.4Pd0.4Sn0.2), froodite (PdBi2), atokite (Pd0.5Pt0.3Sn0.2), stumpflite (PtSb), plumbopalladinite (Pd3Pb2), and zvyagintsevite (Pd3Pb). An observed association of all PGM with base metal sulfides (BMS), and a pronounced association of PGE tellurides, arsenides and Pd&Pt alloys with secondary silicates, is consistent with the remobilisation and recrystallisation of some of the PGM’s during hydrothermal alteration and serpentinisation subsequent to their initial (primary) crystallisation from BMS (e.g. Godel et al. J Petrol 48:1569–1604, 2007; Hutchinson and McDonald Appl Earth Sci (Trans Inst Min Metall B) 114:B208–224, 2008).  相似文献   

6.
朱永峰 《矿床地质》2017,36(4):775-794
铂族元素矿物(Platinum Group Mineral:简称PGM)资料的不断积累,丰富了人们对蛇绿岩中豆荚状铬铁矿成因的认识。文章总结近年来有关PGM的新资料和取得的新认识,探讨豆荚状铬铁矿以及其中PGM的成因问题。幔源岩浆结晶过程中,铬铁矿周边熔体减少将诱发那些易氧化的铂族元素(Os、Ir、Ru)在熔体中达到饱和状态,并结晶形成纳米级PGM。在地幔熔体中,随着硫逸度升高,PGM微粒与熔体中的硫反应并逐渐长大。多期次的熔体抽提和熔体-岩石反应事件,可以在地幔源区通过逐步降低硫逸度、促进含铂族元素的贱金属硫化物分解,形成PGM以及铂族元素合金。低硫逸度环境更有利于PGM的形成和保存。在变质环境或流体环境中,这些PGM往往会与流体反应,造就了PGM矿物的多样性。原生PGM与变质流体反应并发生原地去硫化作用,可以形成次生的PGM环边或者纳米级PGM包体。铬铁矿的多阶段蚀变/再平衡过程可以导致PGM溶解—沉淀—均一化,并扰动Os同位素体系。不同类型矿石在有限空间伴生的现象以及它们所具有显著差异的地球化学特征,说明蛇绿岩是不同地幔组分的机械混杂。随着俯冲板片,铬铁矿团块被拖曳到地幔深部,并通过地幔对流重新出现在扩张中心附近,最终混杂在蛇绿岩中。发生循环的铬铁矿团块因此可以与新生铬铁矿及其围岩伴生在同一蛇绿混杂岩中。  相似文献   

7.
The podiform chromite deposit of the Soghan mafic–ultramafic complex is one of the largest chromite deposits in south-east Iran (Esfandagheh area). The Soghan complex is composed mainly of dunite, harzburgite, lherzolite, pyroxenite, chromitite, wehrlite and gabbro. Olivine, orthopyroxene, and to a lesser extent clinopyroxene with highly refractory nature, are the primary silicates found in the harzburgites and dunites. The forsterite content of olivine is slightly higher in dunites (Fo94) than those in harzburgites (Fo92) and lherzolites (Fo89). Chromian spinel mainly occurs as massive chromitite pods and as thin massive chromitite bands together with minor disseminations in dunites and harzburgites. Chromian spinels in massive chromitites show very high Cr-numbers (80–83.6), Mg-numbers (62–69) and very low TiO2 content (averaging 0.17 wt.%) for which may reflect the crystallization of chromite from a boninitic magma. The Fe3 +-number is very low, down to < 0.04 wt.%, in the chromian spinel of chromitites and associated peridotites of the Soghan complex.PGE contents are variable and range from 80 to 153 pbb. Chromitites have strongly fractionated chondrite-normalized PGE patterns, which are characterized by enrichments in Os, Ir and Rh relative to Pt and Pd. Moreover, the Pd/Ir value which is an indicator of PGE fractionation ranges from < 0.08 to 0.24 in chromitite of the Soghan complex. These patterns and the low PGE abundances are typical of ophiolitic chromitites and indicating a high degree of partial melting (about 20–24%) of the mantle source. Moreover, the PdN/IrN ratios in dunites are unfractionated, averaging 1.2, whereas the harzburgites and lherzolites show slightly positive slopes PGE spidergrams, together with a small positive Ru and Pd anomaly, and their PdN/IrN ratio averages 1.98 and 2.15 respectively.The mineral chemistry data and PGE geochemistry, along with the calculated parental melts in equilibrium with chromian spinel of the Soghan chromitites indicate that the Soghan complex was generated from an arc-related magma with boninitic affinity above a supra-subduction zone setting.  相似文献   

8.
Abstract: Ru–Os–Ir alloys have been found in two podiform chromitites located at the Chiroro and Bankei mines in the Sarugawa peridotite complex in the Kamuikotan zone, Hokkaido, Japan. This is the first report on the occurrence of PGM (= platinum-group minerals) from chromitites in Japan. The Ru–Os–Ir alloys most typically form polyhedra associated with other minerals (Ni–Fe alloys and heazlewoodite) in chromian spinel. The PGM are possibly pseudomorphs after some primary PGM such as laurite and are chemically highly inhomogeneous, indicating a low-temperature alteration origin. This is consistent with intense alteration (formation of serpentine, uvarovite and kämmererite) imposed on the Kamuikotan chromitites. High-temperature primary PGE (platinum–group elements)–bearing sulfides were possibly recrystallized at low temperatures into a new assemblage of PGM, Ni-Fe alloys and sulfides. Placer PGM around the peridotite complexes are chemically different from the PGM in dunite and chromitite possibly due to the, as yet, incomplete search for the rock-hosted PGM. The PGE content in chromitites is distinctly higher in those in the Kamuikotan zone than in those in the Sangun zone of Southwest Japan, consistent with the more refractory nature (Cr# of spinel, up to 0.8) of the former than the latter (Cr# of spinel, 0.5).  相似文献   

9.
Dunite and serpentinized harzburgite in the Cheshmeh-Bid area, northwest of the Neyriz ophiolite in Iran, host podiform chromitite that occur as schlieren-type, tabular and aligned massive lenses of various sizes. The most important chromitite ore textures in the Cheshmeh-Bid deposit are massive, nodular and disseminated. Massive chromitite, dunite, and harzburgite host rocks were analyzed for trace and platinum-group elements geochemistry. Chromian spinel in chromitite is characterized by high Cr~#(0.72-0.78), high Mg~#(0.62–0.68) and low TiO_2(0.12 wt%-0.2 wt%) content. These data are similar to those of chromitites deposited from high degrees of mantle partial melting. The Cr~# of chromian spinel ranges from 0.73 to 0.8 in dunite, similar to the high-Cr chromitite, whereas it ranges from 0.56 to 0.65 in harzburgite. The calculated melt composition of the high-Cr chromitites of the Cheshmeh-Bid is 11.53 wt%–12.94 wt% Al_2O_3, 0.21 wt%–0.33 wt% TiO_2 with FeO/MgO ratios of 0.69-0.97, which are interpreted as more refractory melts akin to boninitic compositions. The total PGE content of the Cheshmeh-Bid chromitite, dunite and harzburgite are very low(average of 220.4, 34.5 and 47.3 ppb, respectively). The Pd/Ir ratio, which is an indicator of PGE fractionation, is very low(0.05–0.18) in the Cheshmeh-Bid chromitites and show that these rocks derived from a depleted mantle. The chromitites are characterized by high-Cr~#, low Pd + Pt(4–14 ppb) and high IPGE/PPGE ratios(8.2–22.25), resulting in a general negatively patterns, suggesting a high-degree of partial melting is responsible for the formation of the Cheshmeh-Bid chromitites. Therefore parent magma probably experiences a very low fractionation and was derived by an increasing partial melting. These geochemical characteristics show that the Cheshmeh-Bid chromitites have been probably derived from a boninitic melts in a supra-subduction setting that reacted with depleted peridotites. The high-Cr chromitite has relatively uniform mantle-normalized PGE patterns, with a steep slope, positive Ru and negative Pt, Pd anomalies, and enrichment of PGE relative to the chondrite. The dunite(total PGE = 47.25 ppb) and harzburgite(total PGE =3 4.5 ppb) are highly depleted in PGE and show slightly positive slopes PGE spidergrams, accompanied by a small positive Ru, Pt and Pd anomalies and their Pdn/Irn ratio ranges between 1.55–1.7 and 1.36-1.94, respectively. Trace element contents of the Cheshmeh-Bid chromitites, such as Ga, V, Zn, Co, Ni, and Mn, are low and vary between 13–26, 466–842, 22-84, 115–179, 826–-1210, and 697–1136 ppm, respectively. These contents are compatible with other boninitic chromitites worldwide. The chromian spinel and bulk PGE geochemistry for the Cheshmeh-Bid chromitites suggest that high-Cr chromitites were generated from Cr-rich and, Ti-and Al-poor boninitic melts, most probably in a fore-arc tectonic setting related with a supra-subduction zone, similarly to other ophiolites in the outer Zagros ophiolitic belt.  相似文献   

10.
The Jinbaoshan Pt–Pd deposit in Yunnan, SW China, is hosted in a wehrlite body, which is a member of the Permian (∼260 Ma) Emeishan Large Igneous Province (ELIP). The deposit is reported to contain one million tonnes of Pt–Pd ore grading 0.21% Ni and 0.16% Cu with 3.0 g/t (Pd + Pt). Platinum-group minerals (PGM) mostly are ∼10 μm in diameter, and are commonly Te-, Sn- and As-bearing, including moncheite (PtTe2), atokite (Pd3Sn), kotulskite (PdTe), sperrylite (PtAs2), irarsite (IrAsS), cooperite (PtS), sudburyite (PdSb), and Pt–Fe alloy. Primary rock-forming minerals are olivine and clinopyroxene, with clinopyroxene forming anhedral poikilitic crystals surrounding olivine. Primary chromite occurs either as euhedral grains enclosed within olivine or as an interstitial phase to the olivine. However, the intrusion has undergone extensive hydrothermal alteration. Most olivine grains have been altered to serpentine, and interstitial clinopyroxene is often altered to actinolite/tremolite and locally biotite. Interstitial chromite grains are either partially or totally replaced by secondary magnetite. Base-metal sulfides (BMS), such as pentlandite and chalcopyrite, are usually interstitial to the altered olivine. PGM are located with the BMS and are therefore also interstitial to the serpentinized olivine grains, occurring within altered interstitial clinopyroxene and chromite, or along the edges of these minerals, which predominantly altered to actinolite/tremolite, serpentine and magnetite. Hydrothermal fluids were responsible for the release of the platinum-group elements (PGE) from the BMS to precipitate the PGM at low temperature during pervasive alteration. A sequence of alteration of the PGM has been recognized. Initially moncheite and atokite have been corroded and recrystallized during the formation of actinolite/tremolite, and then, cooperite and moncheite were altered to Pt–Fe alloy where they are in contact with serpentine. Sudburyite occurs in veins indicating late Pd mobility. However, textural evidence shows that the PGM are still in close proximity to the BMS. They occur in PGE-rich layers located at specific igneous horizons in the intrusion, suggesting that PGE were originally magmatic concentrations that, within a PGE-rich horizon, crystallized with BMS late in the olivine/clinopyroxene crystallization sequence and have not been significantly transported during serpentinization and alteration.  相似文献   

11.
Copper–palladium intermetallic compounds and alloys (2314 grains) from the Au–Pd ore of the Skaergaard layered gabbroic pluton have been studied. Skaergaardite PdCu, nielsenite PdCu3, (Cu,Pd)β, (Cu,Pd)α, (Pd,Cu,Au,Pt) alloys, and native palladium have been identified as a result of 1680 microprobe analyses. The average compositions and various chemical varieties of these minerals are characterized, as well as vertical and lateral zoning in distribution of noble metals. The primary Pd–Cu alloys were formed within a wide temperature interval broadly synchronously with cooling and crystallization of host gabbro and in close association with separation of Fe–Cu sulfide liquid. In the course of crystallization of residual gabbroic melt enriched in iron, noble and heavy metals and saturated with the supercritical aqueous fluid, PGE and Au are selectively concentrated in the Fe–Cu sulfide phase as Pd–Cu and Cu–Au alloys.  相似文献   

12.
Concentrations of platinum group elements (PGE), Ag, As, Au, Bi, Cd, Co, Mo, Pb, Re, Sb, Se, Sn, Te, and Zn, have been determined in base metal sulfide (BMS) minerals from the western branch (402 Trough orebodies) of the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada. The sulfide assemblage is dominated by pyrrhotite, with minor pentlandite, chalcopyrite, and pyrite, and they represent monosulfide solid solution (MSS) cumulates. The aim of this study was to establish the distribution of the PGE among the BMS and platinum group minerals (PGM) in order to understand better the petrogenesis of the deposit. Mass balance calculations show that the BMS host all of the Co and Se, a significant proportion (40–90%) of Os, Pd, Ru, Cd, Sn, and Zn, but very little (<35%) of the Ag, Au, Bi, Ir, Mo, Pb, Pt, Rh, Re, Sb, and Te. Osmium and Ru are concentrated in equal proportions in pyrrhotite, pentlandite, and pyrite. Cobalt and Pd (∼1 ppm) are concentrated in pentlandite. Silver, Cd, Sn, Zn, and in rare cases Au and Te, are concentrated in chalcopyrite. Selenium is present in equal proportions in all three BMS. Iridium, Rh, and Pt are present in euhedrally zoned PGE sulfarsenides, which comprise irarsite (IrAsS), hollingworthite (RhAsS), PGE-Ni-rich cobaltite (CoAsS), and subordinate sperrylite (PtAs2), all of which are hosted predominantly in pyrrhotite and pentlandite. Silver, Au, Bi, Mo, Pb, Re, Sb, and Te are found predominantly in discrete accessory minerals such as electrum (Au–Ag alloy), hessite (Ag2Te), michenerite (PdBiTe), and rhenium sulfides. The enrichment of Os, Ru, Ni, and Co in pyrrhotite, pentlandite, and pyrite and Ag, Au, Cd, Sn, Te, and Zn in chalcopyrite can be explained by fractional crystallization of MSS from a sulfide liquid followed by exsolution of the sulfides. The early crystallization of the PGE sulfarsenides from the sulfide melt depleted the MSS in Ir and Rh. The bulk of Pd in pentlandite cannot be explained by sulfide fractionation alone because Pd should have partitioned into the residual Cu-rich liquid and be in chalcopyrite or in PGM around chalcopyrite. The variation of Pd among different pentlandite textures provides evidence that Pd diffuses into pentlandite during its exsolution from MSS. The source of Pd was from the small quantity of Pd that partitioned originally into the MSS and a larger quantity of Pd in the nearby Cu-rich portion (intermediate solid solution and/or Pd-bearing PGM). The source of Pd became depleted during the diffusion process, thus later-forming pentlandite (rims of coarse-granular, veinlets, and exsolution flames) contains less Pd than early-forming pentlandite (cores of coarse-granular).  相似文献   

13.
In this paper we present textural and mineral chemistry data for a PGM inclusion assemblage and whole-rock platinum-group element (PGE) concentrations of chromitite from Harold’s Grave, which occurrs in a dunite pod in a mantle tectonite at Unst in the Shetland Ophiolite Complex (SOC), Scotland. The study utilized a number of analytical techniques, including acid digestion and isotope dilution (ID) ICP-MS, hydroseparation and electron microprobe analysis. The chromitite contains a pronounced enrichment of refractory PGE (IPGE: Os, Ir and Ru) over less refractory PGE (PPGE: Rh, Pt and Pd), typical of mantle hosted ‘ophiolitic’ chromitites. A ‘primary’ magmatic PGM assemblage is represented by euhedrally shaped (up to 60 μm in size) single and composite inclusions in chromite. Polyphase PGM grains are dominated by laurite and osmian iridium, with subordinate laurite + osmian iridium + iridian osmium and rare laurite + Ir-Rh alloy + Rh-rich sulphide (possibly prassoite). The compositional variability of associated laurite and Os-rich alloys at Harold’s Grave fit the predicted compositions of experiment W-1200-0.37 of Andrews and Brenan (Can Mineral 40: 1705–1716, 2002) providing unequivocal information on conditions of their genesis, with the upper thermal stability of laurite in equilibrium with Os-rich alloys estimated at 1200–1250 °C and f(S2) of 10?0.39–10?0.07.  相似文献   

14.
Summary Occurrences of platinum-group minerals (PGM) from chromitites of the Great Serpentinite Belt of New South Wales are reported for the first time in this study. On the basis of their major components, these minerals are classified into various groups, including sulphides, sulpharsenides, arsenides, antimonides, amalgams, and alloys of Os-Ir-Ru-(Fe Ni), Pd Cu Sn, Ni-Fe-Pt-Pd, Pd-Pb-Cu, and Rh-Sn-Cu. They are present: (i) as inclusions within chromite, (ii) in interstitial silicates, (iii) in ferritchromite and (iv) along fractures in chromite. Ir-subgroup (Ir, Os, Ru) minerals (IPGM) dominate podiform chromitites hosted by upper mantle serpentinised harzburgite, whereas Pdsubgroup (Pd, Pt, Rh) minerals (PPGM) characterise banded chromitites in cumulates of the overlying magmatic series. A highly brecciated podiform chromitite, however, is distinguished by abundant disseminated PPGM containing Sb ± Cu. Primary magmatic PGM in podiform chromitite comprise IPGM sulphides, sulpharsenides, and alloys, whereas hydrothermal PGM are characterised by PPGM alloys with Hg, Sb, and Cu. Dominantly hydrothermal PGM in the banded chromitites formed by remobilisation of primary magmatic PGM during serpentinisation. The contrast in PGM association is related to the crystallisation of the host chromitites; IPGM crystallised early from the parental magma along with podiform chromitite, but PPGM formed later at lower temperatures during crystallisation of banded chromitite.[
Platingruppen-Minerale in den Chromititen aus dem Great Serpentinite Belt, NSW, Australien
Zusammenfassung In dieser Studie wird zum ersten Mal über das Vorkommen von PlatingruppenMineralen (PGM) in Chromititen der Great Serpentinite Belt berichtet. Die auftretenden Mineralphasen umfassen Sulfide, Sulfarsenide, Arsenide, Antimonide, Amalgam und Legierungen von Os-Ir-(Fe-Ni), Pd-Cu-Sn, Ni-Fe-Pt-Pd, Pd-Pb-Cu and Rh-Sn-Cu. Sie treten als i) Einschlüsse im Chromit, ii) in Silikaten der Grundmasse, iii) Im Ferritchromit und iv) in Frakturen des Chromit auf. Mineralphasen der Ir-Untergruppe (IPGM = Ir, Os, Ru) dominieren in podiformen Chromititen, die in serpentinisierten Harzburgiten des oberen Mantels auftreten. Minerale der Pd-Untergruppe (PPGM = Pd, Pt, Rh) charakterisieren gebänderte Chromitite, die innerhalb der über der Mantelsequenz liegenden Kumulatabfolge vorkommen. Ein deutlich brekzierter podiformer Chromitit unterscheidet sich von den übrigen podiformen Chromititen durch häufiges Auftreten von disseminierten PPGM, die auch Sb ± Cu führen. Primär magmatisch gebildete PGM in podiformen Chromititen umfassen IPGM in Form von Sulfide, Sulfarsenide und Legierungen, während PPGM als Legierungen mit Hg, Sb und Cu hydrothermale Phasen darstellen. Die hydrothermalen PGM in den gebänderten Chromititen wurden überwiegend durch Remobilisation aus primär magmatischen PGM während der Serpentinisierung gebildet. Der markante Unterschied in den während der Serpentinisierung gebildet. Der markante nterschied in den PGM-Assoziationen steht mit der Kristallisation des jeweiligen Chromitit in Verbindung: Während IPGM früh aus dem Magma zusammen mit den podiformen Chromititen kristallisierten, wurden PPGM später unter niedrigeren Temperaturen während der Kristallisation der gebänderten Chromitite gebildet.[
  相似文献   

15.
New data on the composition, assemblages, and formation conditions of platinum-group minerals (PGM) identified in platinum-group element (PGE) occurrences of the Monchetundra intrusion (2495 +- 13 to 2435 ± 11 Ma) are described. This intrusion is a part of the Paleoproterozoic pluton of the Monche-Chuna-Volch’i and Losevy tundras located in the Pechenga-Imandra-Varzuga Rift System. The rhythmically layered host rocks comprise multiple megarhythms juxtaposed to mylonite zones and magmatic breccia and injected by younger intrusive rocks in the process of intense and long magmatic and fluid activity in the Monchetundra Fault Zone. The primary PGM and later assemblages that formed as a result of replacement of the former have been identified in low-sulfide PGE occurrences. More than 50 minerals and unnamed PGE phases including alloys, Pt and Pd sulfides and bismuthotellurides, PGE sulfarsenides, and minerals of the Pd-As-Sb, Pd-Ni-As, and Pd-Ag-Te systems have been established. The unnamed PGE phases—Ni6Pd2As3, Pd6AgTe4, Cu3Pt, Pd2NiTe2, and (Pd, Cu)9Pb(Te, S)4—are described. The primary PGM were altered due to the effect of several mineral-forming processes that resulted in the formation of micro- and nanograins of Pt and Pd alloys, sulfides, and oxides, as well as in the complex distribution of PGE, Au, and Ag mineral assemblages. New types of complex Pt and Pd oxides with variable Cu and Fe contents were identified in the altered ores. Pt and Pd oxides as products of replacement of secondary Pt-Pd-Cu-Fe alloys occur as zonal and fibrous nanoscale Pt-Pd-Cu-Fe-(±S)-O aggregates.  相似文献   

16.
Lavas in Alexandra Land Island of the Franz Josef Land Archipelago bear Au-Cu-Pd-type mineralization. The found mineral species belong to the Cu-Au-Pd and Pd-Cu-(Te + Sb + S + As) systems being, respectively, (i) cuproauride (Au(Cu, Pd)) and auricupride (Au(Cu,Pd)3) and (ii) phases similar to skaergaardite (PdCu), nielsenite (PdCu3), and numerous S-Te-Sb-Pd-Cu phases of various compositions. The morphology of PGM existing as tiny grains and films along the boundaries of plagioclase and clinopyroxene and in cracks, their crystallization at low temperatures predicted by experimental data, and the presence of native copper with sulfur impurity are signatures of postmagmatic origin. The Alexandra Land tholeiitic basalts and dolerites were, most likely, produced by the hotspot which may be the source of PGE-bearing intrusions in eastern Greenland that contain PGM similar to those discussed in the paper.  相似文献   

17.
We report highly unusual platinum-group mineral (PGM) assemblages from geologically distinct chromitites (banded and podiform) of the Kraubath massif, the largest dismembered mantle relict in the Eastern Alps. The banded chromitite has a pronounced enrichment of Pt and Pd relative to the more refractory platinum-group elements (PGEs) of the IPGE group (Os, Ir, Ru), similar to crustal sections of ophiolites. On the contrary, the podiform chromitite displays a negatively sloping chondrite-normalised PGE pattern typical of ophiolitic podiform chromitite. The chemical composition of chromite varies from Cr# 73-77 in the banded type to 81-86 in the podiform chromitite. Thirteen different PGMs and one gold-rich mineral are first observed in the banded chromitite. The dominant PGM is sperrylite (53% of all PGMs), which occurs in polyphase assemblages with an unnamed Pt-base metal (BM) alloy and Pd-rich minerals such as stibiopalladinite, mayakite, mertieite II, unnamed Pd-Rh-As and Pd(Pt)-(As,Sb) minerals. This banded type also contains PGE sulphides (about 7%) represented by a wide compositional range of the laurite-erlichmanite series and irarsite (8%). Os-Ir alloy, geversite, an unnamed Pt-Pd-Bi-Cu phase and tetrauricupride are present in minor amounts. By contrast, the podiform chromitite, which yielded 21 different PGMs, is dominated by laurite (43% of all PGMs) which occurs in complex polyphase assemblages with PGE alloys (Ir-Os, Os-Ir, Pt-Fe), PGE sulphides (kashinite, bowieite, cuproiridsite, cuprorhodsite, unnamed (Fe,Cu)(Ir,Rh)2S4, braggite, unnamed BM-Ir and BM-Rh sulphides) and Pd telluride (keithconnite). A variety of PGE sulpharsenides (33%) including irarsite, hollingworthite, platarsite, ruarsite and a number of intermediate species have been identified, whereas sperrylite and stibiopalladinite are subordinate (2%). The occurrence of such a wide variety of PGMs from only two, 2.5-kg chromitite samples is highly unusual for an ophiolitic environment. Our novel sample treatment allowed to identify primary PGM assemblages containing all six PGEs in both laurite-dominated podiform chromitite as well as in uncommon sperrylite-dominated banded chromitite. We suggest that the geologically, geochemically and mineralogically distinct banded chromitite from Kraubath characterises the transition zone of an ophiolite, closely above the mantle section hosting podiform chromitite, rather than being representative of the crustal cumulate pile.  相似文献   

18.
1 Introduction The association of massive Fe-Ni-Cu sulfides andchromite is a very unusual feature of podiformchromitites occurring in mantle tectonites of ophioliticcomplexes. It has only been described in theSoutheastern Desert, Egypt, where sulfides a…  相似文献   

19.
The Pindos ophiolite complex, located in the northwestern part of continental Greece, hosts various chromite deposits of both metallurgical (high-Cr) and refractory (high-Al) type. The Pefki chromitites are banded and sub-concordant to the surrounding serpentinized dunites. The Cr# [Cr/(Cr?+?Al)] of magnesiochromite varies between 0.75 and 0.79. The total PGE grade ranges from 105.9 up to 300.0?ppb. IPGE are higher than PPGE, typical of mantle hosted ophiolitic chromitites. The PGM assemblage in chromitites comprises anduoite, ruarsite, laurite, irarsite, sperrylite, hollingworthite, Os-Ru-Ir alloys including osmium and rutheniridosmine, Ru-bearing oxides, braggite, paolovite, platarsite, cooperite, vysotskite, and palladodymite. Iridarsenite and omeiite were also observed as exsolutions in other PGM. Rare electrum and native Ag are recovered in concentrates. This PGM assemblage is of great petrogenetic importance because it is significantly different from that commonly observed in podiform mantle-hosted and banded crustal-hosted ophiolitic chromitites. PGE chalcogenides of As and S are primary, and possibly crystallized directly from a progressively enriched in As boninitic melt before or during magnesiochromite precipitation. The presence of Ru-bearing oxides implies simultaneous desulfurization and dearsenication processes. Chemically zoned laurite and composite paolovite-electrum intergrowths are indicative of the relatively high mobility of certain PGE at low temperatures under locally oxidizing conditions. The PGM assemblage and chemistry, in conjunction with geological and petrologic data of the studied chromitites, indicate that it is characteristic of chromitites found within or close to the petrologic Moho. Furthermore, the strikingly different PGM assemblages between the high-Cr chromitites within the Pindos massif is suggestive of non-homogeneous group of ores.  相似文献   

20.
Zusammenfassung Kleine Chromititkörper wurden in Phlogopit-reichen Peridotiten des Finero-Komplexes (Ivrea Zone, Italien) entdeckt. Chromit enthdlt winzige (< 20 m) Einschlüsse von Platingruppen-Mineralen (PGM), sowie von Buntmetalsulfïden (BMS) and -legierungen (BMA); these führen Platin gruppen-Elemente (PGE) in Form von solid solutions.Als PGM wurden Laurit, gedigen Ir und Ir-Cu-Rh-Sulfide unterschiedlicher Zusammensetzung bestimmt.Die PGE-führenden BMS sind rhodiumführender Pentlandit und Millerit, iridium-führender Digenit und unbekannte Ir-reiche Ni-Fe-Cu Sulfide mit einem Metall/Schwefelverhältnis von etwa 1. Die BMA bestehen aus: Cu-Rh-Fe, Cu-Pt-Ag, Cu-Pb-Rh und Pb-Rh.Im Vergleich mit anderen untersuchten Vorkommen, in denen Ru-Os-Ir Legierungen und Laurit dominieren, zeigt die PGE-Mineralogie der Finero-Chromitite eine höhere Schwefelfugazität bei der Bildung an. Außerdem sind Cu und Rh in dieser Mineralgesellschaft weit verbreitet und auch Mikrosondenuntersuchungen belegen das Verhandensein von Ag und Pb in vielen der PGE-führenden Phasen.Dies ist für Chromit-bildende Systeme ungewöhnlich und wird mit der Aktivität einer alkali-reichen fluiden Phase, die auch für die Kristallisation des weitverbreiteten Phlogopits im Finero-Komplex verantwortlich ist, in Zusammenhang gebracht.
Platinum-group mineral inclusions in chromitites of the Finero mafic-ultramafic complex (Ivrea-Zone, Italy)
Summary Small scale chromitites have been recently discovered in the phlogopite-rich peridotite of the Finero complex (Ivrea Zone, Italy). The chromite contains minute (<20 um) inclusions of platinum-group minerals (PGM), and base-metal sulfides (BMS) and alloys (BMA) which frequently bear platinum-group elements (PGE) in solid solution. The PGM are laurite, native Ir and Ir-Cu-Rh sulfides with variable compositions. The PGE-bearing BMS are rhodian pentlandite, rhodian millerite, iridian digenite, and unknown Ir-rich Ni-Fe-Cu sulfides with Metal/Sulfur ratio close to 1. The BMA's consist of the associations: Cu-Rh-Fe, Cu-Pt-Ag, Cu-Pb-Rh and Pb-Rh.Compared with other investigated occurrences dominated by Ru-Os-Ir alloys and laurite, the PGE-mineralogy of the Finero chromitites indicates a higher sulfur fugacity of formation. In addition, there is an overall abundance of Cu and Rh in the assemblage, and microprobe analyses revealed the presence of appreciable amounts of Ag and Pb in many of the PGE-bearing phases. These features are unusual for the chromite-forming system and are ascribed to the activity of the alkali-rich fluid phase responsible for the crystallization of abundant phlogopite in the Finero body.


With 7 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号