首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Close to 2000 laboratory measurements of the microwave opacity and refractivity of gaseous NH3 in an H2/He atmosphere have been conducted in the 1.1-20 cm wavelength range (1.5-27 GHz) at pressures from 30 mbar to 12 bar and at temperatures from 184 to 450 K. The mole fraction of NH3 ranged from 0.06 to 6% with some additional measurements of pure NH3. The high accuracy of these results have enabled development of a new model for the opacity of NH3 in a H2/He atmosphere under jovian conditions. The model employs the Ben-Reuven lineshape applied to the published inversion line center frequencies and intensities of NH3 (JPL Catalog—[Pickett, H.M., Poynter, R.L., Cohen, E.A., Delitsky, M.L., Pearson, J.C., Müller, H.S.P., 1998. J. Quant. Spectrosc. Radiat. Trans. 60, 883-890]) with empirically-fitted line parameters for H2 and He broadening, and for the self-broadening of some previously unmeasured ammonia inversion lines. The new model for ammonia opacity will provide reliable results for temperatures from 150 to 500 K, at pressures up to 50 bar and at frequencies up to 40 GHz. These results directly impact the retrieval of jovian atmospheric constituent abundances from the Galileo Probe radio signal absorption measurements, from microwave emission measurements conducted with Earth-based radio telescopes and with the future NASA Juno mission, and studies of Saturn's atmosphere conducted with the Cassini Radio Science Experiment and the Cassini RADAR 2.1 cm passive radiometer.  相似文献   

2.
The vertical profile of H2SO4 vapor is calculated using current atmospheric and thermodynamic data. The atmospheric data include the H2O profiles observed at 70-112 km by the SOIR solar occultations, the SPICAV-UV profiles of the haze extinction at 220 nm, the VeRa temperature profiles, and a typical profile of eddy diffusion. The thermodynamic data are the saturated vapor pressures of H2O and H2SO4 and chemical potentials of these species in sulfuric acid solutions. The calculated concentration of sulfuric acid in the cloud droplets varies from 85% at 70 km to a minimum of 70% at 90 km and then gradually increasing to 90-100% at 110 km. The H2SO4 vapor mixing ratio is ∼10−12 at 70 and 110 km with a deep minimum of 3 × 10−18 at 88 km. The H2O-H2SO4 system matches the local thermodynamic equilibrium conditions up to 87 km. The column photolysis rate of H2SO4 is 1.6 × 105 cm−2 s−1 at 70 km and 23 cm−2 s−1 at 90 km. The calculated abundance of H2SO4 vapor at 90-110 km and its photolysis rate are smaller than those presented in the recent model by Zhang et al. (Zhang, X., Liang, M.C., Montmessin, F., Bertaux, J.L., Parkinson, C., Yung, Y.L. [2010]. Nat. Geosci. 3, 834-837) by factors of 106 and 109, respectively. Assumptions of 100% sulfuric acid, local thermodynamic equilibrium, too warm atmosphere, supersaturation of H2SO4 (impossible for a source of SOX), and cross sections for H2SO4·H2O (impossible above the pure H2SO4) are the main reasons of this huge difference. Significant differences and contradictions between the SPICAV-UV, SOIR, and ground-based submillimeter observations of SOX at 70-110 km are briefly discussed and some weaknesses are outlined. The possible source of high altitude SOX on Venus remains unclear and probably does not exist.  相似文献   

3.
P.G.J. Irwin  N.A. Teanby 《Icarus》2010,208(2):913-926
Long-slit spectroscopy observations of Uranus by the United Kingdom InfraRed Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus’ vertical and latitudinal cloud structure through the planet’s Northern Spring Equinox in December 2007.These spectra were analysed and presented by Irwin et al. (Irwin, P.G.J., Teanby, N.A., Davis, G.R. [2009]. Icarus 203, 287-302), but since publication, a new set of methane absorption data has become available (Karkoschka, E., Tomasko, M. [2010]. Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data. Icarus 205, 674-694.), which appears to be more reliable at the cold temperatures and high pressures of Uranus’ deep atmosphere. We have fitted k-coefficients to these new methane absorption data and we find that although the latitudinal variation and inter-annual changes reported by Irwin et al. (2009) stand, the new k-data place the main cloud deck at lower pressures (2-3 bars) than derived previously in the H-band of ∼3-4 bars and ∼3 bars compared with ∼6 bars in the J-band. Indeed, we find that using the new k-data it is possible to reproduce satisfactorily the entire observed centre-of-disc Uranus spectrum from 1 to 1.75 μm with a single cloud at 2-3 bars provided that we make the particles more back-scattering at wavelengths less than 1.2 μm by, for example, increasing the assumed single-scattering albedo from 0.75 (assumed in the J and H-bands) to near 1.0. In addition, we find that using a deep methane mole fraction of 4% in combination with the associated warm ‘F’ temperature profile of Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001), the retrieved cloud deck using the new (Karkoschka and Tomasko, 2010) methane absorption data moves to between 1 and 2 bars.The same methane absorption data and retrieval algorithm were applied to observations of Neptune made during the same programme and we find that we can again fit the entire 1-1.75 μm centre-of-disc spectrum with a single cloud model, providing that we make the stratospheric haze particles (of much greater opacity than for Uranus) conservatively scattering (i.e. ω = 1) and we also make the deeper cloud particles, again at around the 2 bar level more reflective for wavelengths less than 1.2 μm. Hence, apart from the increased opacity of stratospheric hazes in Neptune’s atmosphere, the deeper cloud structure and cloud composition of Uranus and Neptune would appear to be very similar.  相似文献   

4.
We have developed a one-dimensional thermochemical kinetics and diffusion model for Jupiter’s atmosphere that accurately describes the transition from the thermochemical regime in the deep troposphere (where chemical equilibrium is established) to the quenched regime in the upper troposphere (where chemical equilibrium is disrupted). The model is used to calculate chemical abundances of tropospheric constituents and to identify important chemical pathways for CO-CH4 interconversion in hydrogen-dominated atmospheres. In particular, the observed mole fraction and chemical behavior of CO is used to indirectly constrain the jovian water inventory. Our model can reproduce the observed tropospheric CO abundance provided that the water mole fraction lies in the range (0.25-6.0) × 10−3 in Jupiter’s deep troposphere, corresponding to an enrichment of 0.3-7.3 times the protosolar abundance (assumed to be H2O/H2 = 9.61 × 10−4). Our results suggest that Jupiter’s oxygen enrichment is roughly similar to that for carbon, nitrogen, and other heavy elements, and we conclude that formation scenarios that require very large (>8× solar) enrichments in water can be ruled out. We also evaluate and refine the simple time-constant arguments currently used to predict the quenched CO abundance on Jupiter, other giant planets, and brown dwarfs.  相似文献   

5.
We present observations of Uranus taken with the near-infrared camera NIRC2 on the 10-m W.M. Keck II telescope, the Wide Field Planetary Camera 2 (WFPC2) and the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) from July 2007 through November 2009. In this paper we focus on a bright southern feature, referred to as the “Berg.” In Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Hammel, H.B., Ahue, A.W., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M. [2009]. Icarus 203, 265-286), we reported that this feature, which oscillated between latitudes of −32° and −36° for several decades, suddenly started on a northward track in 2005. In this paper we show the complete record of observations of this feature’s track towards the equator, including its demise. After an initially slow linear drift, the feature’s drift rate accelerated at latitudes ∣θ∣ < 25°. By late 2009 the feature, very faint by then, was spotted at a latitude of −5° before disappearing from view. During its northward track, the feature’s morphology changed dramatically, and several small bright unresolved features were occasionally visible poleward of the main “streak.” These small features were sometimes visible at a wavelength of 2.2 μm, indicative that the clouds reached altitudes of ∼0.6 bar. The main part of the Berg, which is generally a long sometimes multipart streak, is estimated to be much deeper in the atmosphere, near 3.5 bars in 2004, but rising to 1.8-2.5 bars in 2007 after it began its northward drift. Through comparisons with Neptune’s Great Dark Spot and simulations of the latter, we discuss why the Berg may be tied to a vortex, an anticyclone deeper in the atmosphere that is visible only through orographic companion clouds.  相似文献   

6.
A reanalysis of the Mars Atmospheric Water Detector (MAWD, Viking 1 and 2 Orbiters) Planetary Data System (PDS) data set (Jakosky, B.M., Farmer, C.B. [1982]. J. Geophys. Res. 87 (B4), 2999-3019) is presented taking into account a new spectroscopic database and improved atmospheric model assumptions. Starting from HITRAN 2004 edition and later (Rothman, L.S., and 29 colleagues [2005]. J. Quant. Spectrosc. Radiat. Trans. 96, 139-204), the number of lines in the 1.38-μm band has been significantly increased, and their parameters have been modified. The implication of this new spectroscopic data and atmospheric model based on Martian Climate Database (MCD, Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S.R., Read, P.L., Huot, J.-P. [1999]. J. Geophys. Res. 104 (E10), 24155-24176) gives a significant impact on the H2O retrieval: the total H2O abundance after the reanalysis has decreased twofold in all seasons and most of geographic locations. Overall decrease is associated with larger cumulative strength of the band in HITRAN 2004; low saturation height of water profiles imposed by MCD significantly contributes to decrease of summer polar maximum. Revised MAWD data are compared with later H2O measurements on Mars Global Surveyor (MGS) and Mars-Express (MEX). A good agreement with SPICAM/MEX near-IR (1.38-μm band) measurements is found. However, both sets of near-IR measurements are systematically below TES/MGS results obtained in thermal infrared, with a factor of 1.5-2.0. This difference might be associated with remaining ambiguity of the near IR spectral data, and of line broadening in CO2 in both spectral ranges. The reanalyzed MAWD data are in much better agreement with later measurements suggesting more homogeneous, and significantly dryer water cycle on Mars, with no signature of change between the Viking epoch (MY12-14) and MGS-Mars-Express measurements (MY24-29).  相似文献   

7.
The interval from Ls = 330° in Mars Year (MY) 26 until Ls = 84° in MY 27 has been used to compare and validate measurements from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Express Planetary Fourier Spectrometer (PFS). We studied differences between atmospheric temperatures observed by the two instruments. The best agreement between atmospheric temperatures was found at 50 Pa between 40°S and 40°N latitude, where differences were within ±5 K. For other atmospheric levels, differences as large as ∼25 K were observed between the two instruments at some locations. The largest temperature differences occurred mainly over the Hellas Planitia, Argyre Planitia, Tharsis and Valles Marineris regions.On this basis we report on the variability of the martian atmosphere during the 5.5 martian years of Mars climatology obtained by combining the two data sets from TES and PFS. Atmospheric temperatures at 50 Pa responded to the global-scale dust storms of MY 25 and in MY 28 raising temperatures from ∼220 K to ∼250 K during the daytime. An atmospheric temperature of ∼140 K at 50 Pa was observed poleward of 70°N during northern winter and poleward of 60°S during southern winter each year in both the PFS and TES results. Water vapor observed by the two spectrometers showed consistent seasonal and latitudinal variations.  相似文献   

8.
Over 1000 laboratory measurements of the 2-4 mm-wavelength opacity of ammonia have been made under simulated jovian atmospheric conditions using a high-precision laboratory system developed at Georgia Tech. These laboratory measurements of the opacity of ammonia were made of various gas mixtures of hydrogen (∼77.5-85.5%), helium (∼12.5-13.5%), and ammonia (1-10%) at pressures between 1 and 3 bars and temperatures between 200 and 300 K. Laboratory measurements were also made of the opacity of pure ammonia at pressures between 0.05 and 1 bar and temperatures between 200 and 300 K. Using these millimeter-wavelength measurements and close to 2000 cm-wavelength measurements made by Hanley et al. (2009), a new consistent model has been developed to accurately characterize the absorption spectra of ammonia in a hydrogen/helium atmosphere in the 1 mm to 30 cm wavelength range. This model can be used in the 1-30 cm wavelength range at pressures up to 20 bars and temperatures from 200 to 500 K and in the 1 mm to 1 cm wavelength range at pressures up to 3 bars and temperatures from 200 to 300 K. These measurements and the accompanying model will enable better interpretation of the centimeter- and millimeter-wavelength emission spectra of the jovian planets.  相似文献   

9.
F. Altieri  L. Zasova  G. Bellucci  B. Gondet 《Icarus》2009,204(2):499-511
We present a method to derive the 2D maps of the O2 (a1Δg) airglow emission at 1.27 μm from the OMEGA/MEx nadir observations. The OMEGA imaging capabilities allow monitoring the 2D distribution, daily and seasonal variation of the O2 emission intensities with a detection limit of 4 MR. The highest values, of the order of ∼31 MR, are found on the south pole for 11 h < LT < 13 h, during the early spring (186° < Ls < 192°) of martian year (MY) 27, according to the Mars Year numbering scheme of Clancy et al. [Clancy, R.T., Wolff, M.J., Christensen, P.R., 2003. Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res. 108. doi: 10.1029/2003JE002058]. In the polar regions the day-by-day variability, associated with polar vortex turbulences, is obtained of the order of 30-50% as predicted by the model [Lefévre, F., Lebonnois, S., Montmessin, F., Forget, F., 2004. Three-dimensional modeling of ozone on Mars. J. Geophys. Res. 109, E07004. doi: 10.1029/2004JE002268] and found by SPICAM [Perrier, S., Bertaux, J.-L., Lebonnois, S., Korablev, O., Fedorova, A., 2006. Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. J. Geophys. Res. 111, E09S06. doi: 10.1029/2006JE002681]. In the considered set of data a maximum of the O2 emission is observed between 11 h and 15 h LT in the latitude range 70-85° during early spring on both hemispheres, while for the southern autumn-winter season a maximum is found between 50° and 60° in the southern hemisphere for MY28. Increase of intensity of the O2 emission observed from Ls 130° to 160° at southern high latitudes may be explained by increase of solar illumination conditions in the maps acquired during the considered period.Atmospheric waves crossing the terminator on the southern polar regions are observed for the first time during the MY28 early spring. The spatial scale of the waves ranges from 100 to 130 km, and the intensity fluctuations are of the order of 4MR.This study confirms the high potentiality of O2 (a1Δg) day glow as a passive tracer of the martian atmosphere dynamics at high latitudes.  相似文献   

10.
Chemistry on the icy surface of Europa is heavily influenced by the incident energetic particle flux from the jovian magnetosphere. The majority (>75%) of this energy is in the form of high energy electrons (extending to >10 MeV). We have simulated the electron irradiation environment of Europa with a vacuum system containing a high-energy electron gun for irradiation of ice samples formed on a gold mirror cooled with a cryostat. Pure water films of ∼2.6 μm thickness were grown at 100 K and then either cooled (to 80 K), warmed (to 120 K) or left at 100 K and subsequently irradiated with 10 keV electrons. The production of hydrogen peroxide (H2O2) was monitored by observation of the 2850 cm−1 (3.5 μm) band. Equilibrium concentrations of H2O2, in units of percent by number H2O2 relative to water, were found to be 0.043% (80 K), 0.029% (100 K), and 0.0063% (120 K). These values are 33%, 22%, and 5%, respectively, that of the reported surface concentration on the leading hemisphere of Europa (Carlson, R.W., Anderson, M.S., Johnson, R.E., Smythe, W.D., Hendrix, A.R., Barth, C.A., et al. [1999]. Science 283(5410), 2062-2064) and less than the equilibrium concentrations formed by ion irradiation. In addition to the ice film temperature, the current of electrons was varied between different experiments to determine the production and destruction of H2O2 as a function of both electron flux and ice temperature. Variation in current was found to have little effect on the results other than accelerating arrival at radiolytic equilibrium.  相似文献   

11.
L.A. Sromovsky  P.M. Fry 《Icarus》2010,210(1):230-257
The Cassini flyby of Jupiter in 2000 provided spatially resolved spectra of Jupiter’s atmosphere using the Visual and Infrared Mapping Spectrometer (VIMS). A prominent characteristic of these spectra is the presence of a strong absorption at wavelengths from about 2.9 μm to 3.1 μm, previously noticed in a 3-μm spectrum obtained by the Infrared Space Observatory (ISO) in 1996. While Brooke et al. (Brooke, T.Y., Knacke, R.F., Encrenaz, T., Drossart, P., Crisp, D., Feuchtgruber, H. [1998]. Icarus 136, 1-13) were able to fit the ISO spectrum very well using ammonia ice as the sole source of particulate absorption, Sromovsky and Fry (Sromovsky, L.A., Fry, P.M. [2010]. Icarus 210, 211-229), using significantly revised NH3 gas absorption models, showed that ammonium hydrosulfide (NH4SH) provided a better fit to the ISO spectrum than NH3, but that the best fit was obtained when both NH3 and NH4SH were present in the clouds. Although the large FOV of the ISO instrument precluded identification of the spatial distribution of these two components, the VIMS spectra at low and intermediate phase angles show that 3-μm absorption is present in zones and belts, in every region investigated, and both low- and high-opacity samples are best fit with a combination of NH4SH and NH3 particles at all locations. The best fits are obtained with a layer of small ammonia-coated particles (r ∼ 0.3 μm) overlying but often close to an optically thicker but still modest layer of much larger NH4SH particles (r ∼ 10 μm), with a deeper optically thicker layer, which might also be composed of NH4SH. Although these fits put NH3 ice at pressures less than 500 mb, this is not inconsistent with the lack of prominent NH3 features in Jupiter’s longwave spectrum because the reflectivity of the core particles strongly suppresses the NH3 absorption features, at both near-IR and thermal wavelengths. Unlike Jupiter, Saturn lacks the broad 3-μm absorption feature, but does exhibit a small absorption near 2.965 μm, which resembles a similar jovian feature and suggests that both planets contain upper tropospheric clouds of sub-micron particles containing ammonia as a minor fraction.  相似文献   

12.
Long-term MGS drag density observations at 390 km reveal variations of the density with season LS (by a factor of 2) and solar activity index F10.7 (by a factor of 3 for F10.7 = 40-100). According to Forbes et al. (Forbes, J.M., Lemoine, F.G., Bruinsma, S.L., Smith, M.D., Zhang, X. [2008]. Geophys. Res. Lett. 35, L01201, doi:10.1029/2007GL031904), the variation with F10.7 reflects variations of the exospheric temperature from 192 to 284 K. However, the derived temperature range corresponds to variation of the density at 390 km by a factor of 8, far above the observed factor of 3. The recent thermospheric GCMs agree with the derived temperatures but do not prove their adequacy to the MGS densities at 390 km. A model used by Forbes et al. neglects effects of eddy diffusion, chemistry and escape on species densities above 138 km. We have made a 1D-model of neutral and ion composition at 80-400 km that treats selfconsistently chemistry and transport of species with F10.7, T, and [CO2]80 km as input parameters. Applying this model to the MGS densities at 390 km, we find variation of T from 240 to 280 K for F10.7 = 40 and 100, respectively. The results are compared with other observations and models. Temperatures from some observations and the latest models disagree with the MGS densities at low and mean solar activity. Linear fits to the exospheric temperatures are T = 122 + 2.17F10.7 for the observations, T = 131 + 1.46F10.7 for the latest models, and T = 233 + 0.54F10.7 for the MGS densities at 390 km. Maybe the observed MGS densities are overestimated near solar minimum when they are low and difficult to measure. Seasonal variations of Mars’ thermosphere corrected for the varying heliocentric distance are mostly due to the density variations in the lower and middle atmosphere and weakly affect thermospheric temperature. Nonthermal escape processes for H, D, H2, HD, and He are calculated for the solar minimum and maximum conditions.Another problem considered here refers to Mars global photochemistry in the lower and middle atmosphere. The models gave too low abundances of CO, smaller by an order of magnitude than those observed. Our current work shows that modifications in the boundary conditions proposed by Zahnle et al. (Zahnle, K., Haberle, R.M., Catling, D.C., Kasting, J.F. [2008]. J. Geophys. Res. 113, E11004, doi:10.1029/2008JE003160) are reasonable but do not help to solve the problem.  相似文献   

13.
Mm-wave spectra of HDO in the Venus mesosphere (65-100 km) were obtained over the period March 1998 to June 2004. Each spectrum is a measurement of the hemispheric-average H2O vapor mixing ratio in the Venus mesosphere. Observations were conducted for wide ranges of Venus solar elongations (46° W to 47° E), and fractional disk illuminations (f=0% to 99%), yielding water vapor abundances on 17 dates and over a full range of local solar time (LST) at the sub-Earth point on Venus. Our mesopheric H2O values are more numerous and far more precise than the earliest mm-derived H2O measurements [Encrenaz, Th., Lellouch, E., Paubert, G., Gulkis, S., 1991. First detection of HDO in the atmosphere of Venus at radio wavelengths: An estimate of the H2O vertical distribution. Astron. Astrophys. 246, L63-L66; Encrenaz, Th., Lellouch, E., Cernicharo, J., Paubert, G., Gulkis, S., Spilker, T., 1995. The thermal profile and water abundance in the Venus mesosphere from H2O and HDO millimeter observations. Icarus 117, 162-172], allowing an analysis of variability that was previously impossible. Measured 65-100 km H2O ranged from 0.0±0.06 to 3.5±0.3 ppmv, with significantly different variability than found in previous infrared (lower altitude, cloudtop) studies. Strong global variability on a 1-2 month timescale is clear and unambiguous. A limited number of excellent s/n measurements tentatively indicate the 1-2 month variability manifests most rapidly as change in the lower mesosphere, and more slowly as change in the upper mesosphere. Neither long term (1998-2004) nor diurnal variability in 65-100 km H2O is evident. While six-year and/or diurnal variabilities are not ruled out, they are weaker than the 1-2 month timescale variation. These conclusions are supported by initial (2004) sub-mm measurements.  相似文献   

14.
Despite several spacecraft encounters and numerous groundbased investigations, we still do not know much about Jupiter's deep atmosphere; in fact, the Galileo probe results were so different than anyone had anticipated, that we understand even less about this planet's atmosphere now than before the Galileo mission. We formulate four basic questions in Section 1.3, which, if solved, would help to better understand the chemistry and dynamics in Jupiter's atmosphere. We believe that three out of the four questions (explanation of NH3 altitude profile, characterization of hot spots, altitude below which the atmosphere is uniformly mixed) may be solved from passive sounding of Jupiter's deep (∼ tens of bars) atmosphere via a radio telescope orbiting the planet. Question nr. 4 (the water abundance in Jupiter's deep atmosphere) has been singled out by the Solar System Exploration Decadal Survey as a key question, since the water abundance in Jupiter's deep atmosphere is tied in with planet formation models. In this paper we investigate the sensitivity of microwave retrievals to the composition of Jupiter's deep atmosphere, in particular the water abundance. Based upon present uncertainties in the ammonia abundance and other known and unknown absorbers, including uncertainties in clouds (density and index of refraction), and uncertainties in the thermal structure and lineshape profiles, we conclude that the retrieval of water at depth from microwave spectra (disk-averaged and locally) will be highly uncertain. We show that, if the H2O lineshape profile would be accurately known (laboratory data are needed!), an atmosphere with a near-solar H2O abundance can likely be distinguished from one with an abundance of 10-20×solar O based upon the difference in their microwave spectra at wavelengths ?50 cm. This would be sufficient to distinguish between some proposed scenarios by which Jupiter acquired its inventory of volatile elements heavier than helium. If, in addition, limb-darkening measurements are obtained (again, the H2O lineshape profile should be known), tighter constraints on the H2O abundance can be obtained (see also Janssen et al., 2004, this issue).  相似文献   

15.
16.
We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the ‘cold’ surface areas in the North polar region (Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor abundances above the residual polar cap also exhibit noticeable interannual variability. In some years abundances above the cap are lower than the abundances outside of the cap, consistent with previous observations, while in the other years the abundances above the cap are higher or similar to abundances outside of the cap. We speculate that the differences may be due to weaker off-cap transport in the latter case, keeping more vapor closer to the source at the surface of the residual cap. Despite the large observed variability in water vapor column abundances in the Northern polar region during spring and summer, the latitudinal distribution of the vapor mass in the atmosphere is very similar during the summer season. If the variability in vapor abundances is caused by the variability of vapor sources across the residual cap then this would mean that they annually contribute relatively little vapor mass to significantly affect the vapor mass budget. Alternatively this may suggest that the vapor variability is caused by the variability of the polar atmospheric circulation. The new water vapor retrievals should be useful in tuning the Global Circulation Models of the martian water cycle.  相似文献   

17.
Observations of the 1.10- and 1.18-μm nightside windows by the SPICAV-IR instrument aboard Venus Express were analyzed to characterize the various sources of gaseous opacity and determine the H2O mole fraction in the lower atmosphere of Venus. We showed that the line profile model of Afanasenko and Rodin (Afanasenko, T.S., Rodin, A.V. [2007]. Astron. Lett. 33, 203–210) underestimates the CO2 absorption in the high-wavelength wing of the 1.18-μm window and we derived an empirical lineshape that matches this wing well. An additional continuum opacity is required to reproduce the variation of the 1.10- and 1.18-μm radiances with surface elevation as observed by the VIRTIS-M instrument aboard Venus Express. A constant absorption coefficient of 0.7 ± 0.2 × 10−9 cm−1 am−2 best reproduces the observed variation. We compared spectra calculated with different CO2 and H2O line lists. We found that the CDSD line list lacks the 5ν1 + ν3 series of CO2 bands, which provide significant opacity in Venus’ deep atmosphere, and we have constructed a composite line list that best reproduces the observations. We also showed for the first time that HDO brings significant absorption at 1140–1190 nm. Using the best representation of the atmospheric opacity we could reach, we retrieved a water vapor mole fraction of ppmv, pertaining to the altitude range 5–25 km. Combined with previous measurements in the 1.74- and 2.3-μm windows, this result provides strong evidence for a uniform H2O profile below 40 km, in agreement with chemical models.  相似文献   

18.
Sascha Kempf  Uwe Beckmann 《Icarus》2010,206(2):446-457
Pre-Cassini models of Saturn’s E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn’s icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust.Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles’ ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus’ surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105-106 years.  相似文献   

19.
An investigation of the activity of Comet C/1995 O1 (Hale-Bopp) with a thermophysical nucleus model that does not rely on the existence of amorphous ice is presented. Our approach incorporates recent observations allowing to constrain important parameters that control cometary activity. The model accounts for heat conduction, heat advection, gas diffusion, sublimation, and condensation in a porous ice-dust matrix with moving boundaries. Erosion due to surface sublimation of water ice leads to a moving boundary. The movement of the boundary is modeled by applying a temperature remapping technique which allows us to account for the loss in the internal energy of the eroded surface material. These kind of problems are commonly referred to as Stefan problems. The model takes into account the diurnal rotation of the nucleus and seasonal effects due to the strong obliquity of Hale-Bopp as reported by Jorda et al. (Jorda, L., Rembor, K., Lecacheux, J., Colom, P., Colas, F., Frappa, E., Lara, L.M. [1997]. Earth Moon Planets 77, 167-180). Only bulk sublimation of water and CO ice are considered without further assumptions such as amorphous ices with certain amount of occluded CO gas. Confined and localized activity patterns are investigated following the reports of Lederer and Campins (Lederer, S.M., Campins, H. [2002]. Earth Moon Planets 90, 381-389) about the chemical heterogeneity of Hale-Bopp and of Bockelée-Morvan et al. (Bockelée-Morvan, D., Henry, F., Biver, N., Boissier, J., Colom, P., Crovisier, J., Despois, D., Moreno, R., Wink, J. [2009]. Astron. Astrophys. 505, 825-843) about a strong CO source at a latitude of 20°. The best fit to the observations of Biver et al. (Biver, N. et al. [2002]. Earth Moon Planets 90, 5-14) is obtained with a low thermal conductivity of 0.01 W m−1 K−1. This is in agreement with recent results of the Deep Impact mission to 9P/Tempel 1 (Groussin, O., A’Hearn, M.F., Li, J.-Y., Thomas, P.C., Sunshine, J.M., Lisse, C.M., Meech, K.J., Farnham, T.L., Feaga, L.M., Delamere, W.A. [2007]. Icarus 187, 16-25) and with previous thermal simulations (Kührt, E. [1999]. Space Sci. Rev. 90, 75-82). The water production curve matches the production rates well from −4 AU pre-perihelion to the outgoing leg while the model does not reproduce so well the water production beyond 4 AU pre-perihelion. The CO production curve is a good fit to the measurements of Biver et al. (2002) over the whole measured heliocentric range from −7 AU pre- to 15 AU post-perihelion.  相似文献   

20.
We present here the annual behavior of atmospheric water vapor on Mars, as observed by the OMEGA spectrometer on board Mars Express during its first martian year. We consider all the different features of the cycle of water vapor: temporal evolution, both at a seasonal and at a diurnal scale; longitudinal distribution; and the vertical profile, through the variations in the saturation height. We put our results into the context of the current knowledge on the water cycle through a systematic comparison with the already published datasets. The seasonal behavior is in very good agreement with past and simultaneous retrievals both qualitatively and quantitatively, within the uncertainties. The average water vapor abundance during the year is ∼10 pr. μm, with an imbalance between northern and southern hemisphere, in favor of the first. The maximum of activity, up to 60 pr. μm, occurs at high northern latitudes during local summer and shows the dominance of the northern polar cap within the driving processes of the water cycle. A corresponding maximum at southern polar latitudes during the local summer is present, but less structured and intense. It reaches ∼25 pr. μm at its peak. Global circulation has some influence in shaping the water cycle, but it is less prominent than the results from previous instruments suggest. No significant correlation between water vapor column density and local hour is detected. We can constrain the amount of water vapor exchanged between the surface and the atmosphere to few pr. μm. This is consistent with recent results by OMEGA and PFS-LW. The action of the regolith layer on the global water cycle seems to be minor, but it cannot be precisely constrained. The distribution of water vapor on the planet, after removing the topography, shows the already known two-maxima system, over Tharsis and Arabia Terra. However, the Arabia Terra increase is quite fragmented compared with previous observations. A deep zone of minimum separates the two regions. The saturation height of water vapor is mainly governed by the variations of insolation during the year. It is confined within 5-15 km from the surface at aphelion, while in the perihelion season it stretches up to 55 km of altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号