首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mark Willman  Robert Jedicke 《Icarus》2008,195(2):663-673
We have obtained moderate S/N (∼85) spectra at a realized resolution of R∼100 for 11 members of the Iannini family, until recently the youngest known family at under 5 million years of age [Nesvorný, D., Bottke, W.F., Levison, H.F., Dones, L., 2003. Astrophys. J. 591, 486-497, 720-771]. The spectra were acquired using the Echellette Spectrograph and Imager in its low-resolution prism mode on the Keck II telescope. The family members belong to the S-complex of asteroids with perhaps some K class members. The Iannini family members' average spectral slope, defined as the slope of the best-fit line constrained to pivot about 1 at 550 nm, is (0.30±0.04)/μm, matching the (0.26±0.03)/μm reported by Jedicke et al. [Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezi?, ?., Juri?, M., 2004. Nature 429, 275-277] using SDSS [Ivezi?, ?., Juri?, M., Lupton, R.H., Tabachnik, S., Quinn, T., 2002. In: Tyson, J.A., Wolff, S. (Eds.), Survey and Other Telescope Technologies and Discoveries. In: Proc. SPIE, vol. 4836. SPIE, Bellingham, pp. 98-103] color photometry. Using our spectra for this family as well as new observations of Karin family members [Vernazza, P., Birlan, M., Rossi, A., Dotto, E., Nesvorný, D., Brunetto, R., Fornasier, S., Fulchignoni, M., Renner, S., 2006. Astron. Astrophys. 460, 945-951] and new classifications of some older families we have revised the space weathering rate of S-complex asteroids originally determined by Jedicke et al. [Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezi?, ?., Juri?, M., 2004. Nature 429, 275-277]. Following Jedicke et al. [Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezi?, ?., Juri?, M., 2004. Nature 429, 275-277] we parameterize the space weathering rate of the principal component color of the spectrum (PC1), which is correlated with the spectral slope, as PC1(t)=PC1(0)+ΔPC1[1−exp−α(t/τ)]. Our revised rate suggests that the characteristic time scale for space weathering is τ=570±220 Myr and that new S-complex clusters will have an initial color of PC1(0)=0.31±0.04. The revised time scale is in better agreement with lab measurements and our measurements support the use of space weathering as a dating method. Under the assumption that all the spectra should be identical, since the members all derive from the same parent body and are presumably covered with similar regolith, we combined them to obtain a high-S/N composite spectrum for the family. The combined spectrum is within the S-complex.  相似文献   

2.
We have extended our earlier work on space weathering of the youngest S-complex asteroid families to include results from asteroid clusters with ages <106 years and to newly identified asteroid pairs with ages <5 × 105 years. We have identified three S-complex asteroid clusters amongst the set of clusters with ages in the range 105-6 years—(1270) Datura, (21509) Lucascavin and (16598) 1992 YC2. The average color of the objects in these clusters agrees with the color predicted by the space weathering model of Willman et al. (Willman, M., Jedicke, R., Nesvorný, D., Moskovitz, N., Ivezi?, Z., Fevig, R. [2008]. Icarus 195, 663-673). SDSS five-filter photometry of the members of the very young asteroid pairs with ages <105 years was used to determine their taxonomic classification. Their types are consistent with the background population near each object. The average color of the S-complex pairs is PC1 = 0.49 ± 0.03, over 5σ redder than predicted by Willman et al. (Willman, M., Jedicke, R., Nesvorný, D., Moskovitz, N., Ivezi?, Z., Fevig, R. [2008]. Icarus 195, 663-673). This may indicate that the most likely pair formation mechanism is a gentle separation due to YORP spin-up leaving much of the aged and reddened surface undisturbed. If this is the case then our color measurement allows us to set an upper limit of ∼64% on the amount of surface disturbed in the separation process. Using pre-existing color data and our new results for the youngest S-complex asteroid clusters we have extended our space weather model to explicitly include the effects of regolith gardening and fit separate weathering and gardening characteristic time scales of τw = 960 ± 160 Myr and τg = 2000 ± 290 Myr respectively. The first principal component color for fresh S-complex material is PC1 = 0.37 ± 0.01 while the maximum amount of local reddening is ΔPC1 = 0.33 ± 0.06. Our first-ever determination of the gardening time is in stark contrast to our calculated gardening time of τg ∼ 270 Myr based on main belt impact rates and reasonable assumptions about crater and ejecta blanket sizes. A possible resolution for the discrepancy is through a ‘honeycomb’ mechanism in which the surface regolith structure absorbs small impactors without producing significant ejecta. This mechanism could also account for the paucity of small craters on (433) Eros.  相似文献   

3.
We investigate the morphology of size-frequency distributions (SFDs) resulting from impacts into 100-km-diameter parent asteroids, represented by a suite of 161 SPH/N-body simulations conducted to study asteroid satellite formation [Durda, D.D., Bottke, W.F., Enke, B.L., Merline, W.J., Asphaug, E., Richardson, D.C., Leinhardt, Z.M., 2004. Icarus 170, 243-257]. The spherical basalt projectiles range in diameter from 10 to 46 km (in equally spaced mass increments in logarithmic space, covering six discrete sizes), impact speeds range from 2.5 to 7 km/s (generally in 1 km/s increments), and impact angles range from 15° to 75° (nearly head-on to very oblique) in 15° increments. These modeled SFD morphologies match very well the observed SFDs of many known asteroid families. We use these modeled SFDs to scale to targets both larger and smaller than 100 km in order to gain insights into the circumstances of the impacts that formed these families. Some discrepancies occur for families with parent bodies smaller than a few tens of kilometers in diameter (e.g., 832 Karin), however, so due caution should be used in applying our results to such small families. We find that ∼20 observed main-belt asteroid families are produced by the catastrophic disruption of D>100 km parent bodies. Using these data as constraints, collisional modeling work [Bottke Jr., W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H.F., 2005b. Icarus 179, 63-94] suggests that the threshold specific energy, , needed to eject 50% of the target body's mass is very close to that predicted by Benz and Asphaug [Benz, W., Asphaug, E., 1999. Icarus 142, 5-20].  相似文献   

4.
James E. Richardson 《Icarus》2009,204(2):697-715
Recent advances in computing technology and our understanding of the processes involved in crater production, ejecta production, and crater erasure have permitted me to develop a highly-detailed Cratered Terrain Evolution Model (CTEM), which can be used to investigate a variety of questions in the study of impact dominated landscapes. In this work, I focus on the manner in which crater densities on impacted surfaces attain equilibrium conditions (commonly called crater ‘saturation’) for a variety of impactor population size-frequency distributions: from simple, straight-line power-laws, to complex, multi-sloped distributions. This modeling shows that crater density equilibrium generally occurs near observed relative-density (R) values of 0.1-0.3 (commonly called ‘empirical saturation’), but that when the impactor population has a variable power-law slope, crater density equilibrium values will also be variable, and will continue to reflect, or follow the shape of the production population long after the surface has been ‘saturated.’ In particular, I demonstrate that the overall level of crater density curves for heavily-cratered regions of the lunar surface are indicative of crater density equilibrium having been reached, while the shape of these curves strongly point to a Main Asteroid Belt (MAB) source for impactors in the near-Earth environment, as originally stipulated in Strom et al. [Strom, R.G., Malhotra, R., Ito, T., Yoshida, F., Kring, D.A., 2005. Science 309 (September), 1847-1850]. This modeling also validates the conclusion by Bottke et al. [Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H., 2005. Icarus 175 (May), 111-140] that the modern-day MAB continues to reflect its ancient size-frequency distribution, even though severely depleted in mass since that time.  相似文献   

5.
We present the first observational measurement of the orbit and size distribution of small Solar System objects whose orbits are wholly interior to the Earth's (Inner Earth Objects, IEOs, with aphelion <0.983 AU). We show that we are able to model the detections of near-Earth objects (NEO) by the Catalina Sky Survey (CSS) using a detailed parameterization of the CSS survey cadence and detection efficiencies as implemented within the Jedicke et al. [Jedicke, R., Morbidelli, A., Spahr, T., Petit, J.M., Bottke, W.F., 2003. Icarus 161, 17-33] survey simulator and utilizing the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] model of the NEO population's size and orbit distribution. We then show that the CSS detections of 4 IEOs are consistent with the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] IEO model. Observational selection effects for the IEOs discovered by the CSS were then determined using the survey simulator in order to calculate the corrected number and H distribution of the IEOs. The actual number of IEOs with H<18 (21) is 36±26 (530±240) and the slope of the H magnitude distribution (∝10αH) for the IEOs is . The slope is consistent with previous measurements for the NEO population of αNEO=0.35±0.02 [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] and αNEO=0.39±0.013 [Stuart, J.S., Binzel, R.P., 2004. Icarus 170, 295-311]. Based on the agreement between the predicted and observed IEO orbit and absolute magnitude distributions there is no indication of any non-gravitational effects (e.g. Yarkovsky, tidal disruption) affecting the known IEO population.  相似文献   

6.
A survey of 62 small near-Earth asteroids was conducted to determine the rotation state of these objects and to search for rapid rotation. Since results for 9 of the asteroids were previously published (Pravec, P., Hergenrother, C.W., Whiteley, R.J., Šarounová, L., Kušnirák, P., Wolf, M. [2000]. Icarus 147, 477-486; Pravec, P. et al. [2005] Icarus 173, 108-131; Whiteley, R.J., Tholen, D.J., Hergenrother, C.W. [2002a]. Icarus 157, 139-154; Hergenrother, C.W., Whiteley, R.J., Christensen, E.J. [2009]. Minor Planet Bull. 36, 16-18.), this paper will present results for the remaining 53 objects. Rotation periods significantly less than 2 h are indicative of intrinsic strength in the asteroids, while periods longer than 2 h are typically associated with gravitationally bound aggregates. Asteroids with absolute magnitude (H) values ranging from 20.4 to 27.4 were characterized. The slowest rotator with a definite period is 2004 BW18 with a period of 8.3 h, while 2000 DO8 and 2000 WH10 are the fastest with periods of 1.3 min. A minimum of two-thirds of asteroids with H > 20 are fast rotating and have periods significantly faster than 2.0 h. The percentage of rapid rotators increases with decreasing size and a minimum of 79% of H ? 24 objects are rapid rotators. Slowly-rotating objects, some with periods as long as 10-20 h, make up a small though significant fraction of the small asteroid population. There are three fast rotators with relatively large possible diameters (D): 2001 OE84 with 470 ? D ? 820 m (Pravec, P., Kušnirák, P., Šarounová, L., Harris, A.W., Binzel, R.P., Rivkin, A.S. [2002b]. Large coherent Asteroid 2001 OE84. In: Warmbein, B. (Eds.), Proceedings of Asteroids, Comets, Meteors - ACM 2002. Springer, Berlin, pp. 743-745), 2001 FE90 with 265 ? D ? 594 m (Hicks, M., Lawrence, K., Rhoades, H., Somers, J., McAuley, A., Barajas, T. [2009]. The Astronomer’s Telegrams, # 2116), and 2001 VF2 with a possible D of 145 ? D ? 665 m. Using the diameters derived from nominal absolute magnitudes and albedos, the remainder of the fast rotating population is completely consistent with D ? 200 m. Even when taking into account the largest possible uncertainties in the determination of diameters, the remainder must all have D ? 400 m. With the exceptions of 2001 OE84, this result agrees with previous upper diameter limits for fast rotators in Pravec and Harris (Pravec, P., Harris, A.W. [2000]. Icarus 148, 589-593) and Whiteley et al. (Whiteley, R.J, Tholen, D.J., Hergenrother, C.W. [2002a]. Icarus 157, 139-154.  相似文献   

7.
We report new radar observations of E-class Asteroid 64 Angelina and M-class Asteroid 69 Hesperia obtained with the Arecibo Observatory S-band radar (2480 MHz, 12.6 cm). Our measurements of Angelina’s radar bandwidth are consistent with reported diameters and poles. We find Angelina’s circular polarization ratio to be 0.8 ± 0.1, tied with 434 Hungaria for the highest value observed for main-belt asteroids and consistent with the high values observed for all E-class asteroids (Benner, L.A.M., Ostro, S.J., Magri, C., Nolan, M.C., Howell, E.S., Giorgini, J.D., Jurgens, R.F., Margot, J.L., Taylor, P.A., Busch, M.W., Shepard, M.K. [2008]. Icarus 198, 294-304; Shepard, M.K., Kressler, K.M., Clark, B.E., Ockert-Bell, M.E., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J. [2008b]. Icarus 195, 220-225). Our radar observations of 69 Hesperia, combined with lightcurve-based shape models, lead to a diameter estimate, Deff = 110 ± 15 km, approximately 20% smaller than the reported IRAS value. We estimate Hesperia to have a radar albedo of , consistent with a high-metal content. We therefore add 69 Hesperia to the Mm-class (high metal M) (Shepard, M.K., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J., Harris, A.W., Warner, B.D., Stephens, R.D., Mueller, M. [2010]. Icarus 208, 221-237), bringing the total number of Mm-class objects to eight; this is 40% of all M-class asteroids observed by radar to date.  相似文献   

8.
We recorded 101 new rotation lightcurves of five Koronis family members, and then combined the new observations with previous data to determine the objects' sidereal rotation periods, spin vector orientations, and model shape solutions. The observing program was tailored specifically for spin vector analyses by determining single-apparition Lumme–Bowell solar phase coefficients, and by measuring synodic rotation periods precisely enough to unambiguously count the rotations between two consecutive oppositions, which is a prerequisite for identifying the correct sidereal period. The new data make possible first pole and shape determinations for (263) Dresda, (462) Eriphyla, and (1289) Kutaïssi, and they improve the models for (277) Elvira and (534) Nassovia, two objects previously studied by Slivan et al. [Slivan, S.M., Binzel, R.P., Crespo da Silva, L.D., Kaasalainen, M., Lyndaker, M.M., Kr?o, M., 2003. Icarus 162, 285–307]. Our results increase the number of Koronis family spin vectors reported in the literature to fourteen, a sample which now includes the seven largest family members. The spin properties of Eriphyla (rotation period , spin vector obliquity ε=51°) and Kutaïssi (P=3.62 h, ε=165°) are consistent with the markedly nonrandom distribution reported by Slivan [Slivan, S.M., 2002. Nature 419, 49–51], and explained by Vokrouhlický et al. [Vokrouhlický, D., Nesvorný, D., Bottke, W.F., 2003. Nature 425, 147–151] as the result of the effects of thermal “YORP” torques combined with solar and planetary gravitational torques. Dresda (P=16.81 h, ε=16°) is the first prograde Koronis member whose spin obliquity and spin rate significantly differ from the clustered spin properties previously found for other prograde Koronis members; nevertheless, its spin vector is consistent with several of the spin evolution possibilities that were identified in the YORP modeling.  相似文献   

9.
Though optimized to discover and track fast moving Near-Earth Objects (NEOs), the Near-Earth Asteroid Tracking (NEAT) survey dataset can be mined to obtain information on the comet population observed serendipitously during the asteroid survey. We have completed analysis of over 400 CCD images of comets obtained during the autonomous operations of two 1.2-m telescopes: the first on the summit of Haleakala on the Hawaiian island of Maui and the second on Palomar Mountain in southern California. Photometric calibrations of each frame were derived using background catalog stars and the near-nucleus comet photometry measured. We measured dust production and normalized magnitudes for the coma and nucleus in order to explore cometary activity and comet size-frequency distributions. Our data over an approximately two-year time frame (2001 August-2003 February) include 52 comets: 12 periodic, 19 numbered, and 21 non-periodic, obtained over a wide range of viewing geometries and helio/geocentric distances. Nuclear magnitudes were estimated for a subset of comets observed. We found that for low-activity comets (Afρ<100 cm) our model gave reasonable estimates for nuclear size and magnitude. The slope of the cumulative luminosity function of our sample of low-activity comets was 0.33 ± 0.04, consistent with the slope we measured for the Jupiter-family cometary nuclei collected by Fernández et al. [Fernández, J.A., Tancredi, G., Rickman, H., Licandro, J., 1999. Astron. Astrophys. 392, 327-340] of 0.38 ± 0.02. Our slopes of the cumulative size distribution α=1.50±0.08 agree well with the slopes measured by Whitman et al. [Whitman, K., Morbidelli, A., Jedicke, R., 2006. Icarus 183, 101-114], Meech et al. [Meech, K.J., Hainaut, O.R., Marsden, B.G., 2004. Icarus 170, 463-491], Lowry et al. [Lowry, S.C., Fitzsimmons, A., Collander-Brown, S., 2003. Astron. Astrophys. 397, 329-343], and Weissman and Lowry [Weissman, P.R., Lowry, S.C., 2003. Lunar Planet. Sci. 34. Abstract 34].  相似文献   

10.
The Alice ultraviolet spectrograph onboard the New Horizons spacecraft observed two occultations of the bright star χ Ophiucus by Jupiter’s atmosphere on February 22 and 23, 2007 during the approach phase of the Jupiter flyby. The ingress occultation probed the atmosphere at 32°N latitude near the dawn terminator, while egress probed 18°N latitude near the dusk terminator. A detailed analysis of both the ingress and egress occultations, including the effects of molecular hydrogen, methane, acetylene, ethylene, and ethane absorptions in the far ultraviolet (FUV), constrains the eddy diffusion coefficient at the homopause level to be  cm2 s−1, consistent with Voyager measurements and other analyses (Festou, M.C., Atreya, S.K., Donahue, T.M., Sandel, B.R., Shemansky, D.E., Broadfoot, A.L. [1981]. J. Geophys. Res. 86, 5717-5725; Vervack Jr., R.J., Sandel, B.R., Gladstone, G.R., McConnell, J.C., Parkinson, C.D. [1995]. Icarus 114, 163-173; Yelle, R.V., Young, L.A., Vervack Jr., R.J., Young, R., Pfister, L., Sandel, B.R. [1996]. J. Geophys. Res. 101 (E1), 2149-2162). However, the actual derived pressure level of the methane homopause for both occultations differs from that derived by [Festou et al., 1981] and [Yelle et al., 1996] from the Voyager ultraviolet occultations, suggesting possible changes in the strength of atmospheric mixing with time. We find that at 32°N latitude, the methane concentration is  cm−3 at 70,397 km, the methane concentration is  cm−3 at 70,383 km, the acetylene concentration is  cm−3 at 70,364 km, and the ethane concentration is  cm−3 at 70,360 km. At 18°N latitude, the methane concentration is  cm−3 at 71,345 km, the methane concentration is  cm−3 at 71,332 km, the acetylene concentration is cm−3 at 71,318 km, and the ethane concentration is  cm−3 at 71,315 km. We also find that the H2 occultation light curve is best reproduced if the atmosphere remains cold in the microbar region such that the base of the thermosphere is located at a lower pressure level than that determined by in situ instruments aboard the Galileo probe (Seiff, A., Kirk, D.B., Knight, T.C.D., Young, R.E., Mihalov, J.D., Young, L.A., Milos, F.S., Schubert, G., Blanchard, R.C., Atkinson, D. [1998]. J. Geophys. Res. 103 (E10), 22857-22889) - the Sieff et al. temperature profile leads to too much absorption from H2 at high altitudes. However, this result is highly model dependent and non-unique. The observations and analysis help constrain photochemical models of Jupiter’s atmosphere.  相似文献   

11.
E. Nogueira  R. Gomes 《Icarus》2011,214(1):113-130
The origin of Neptune’s large, circular but retrograde satellite Triton has remained largely unexplained. There is an apparent consensus that its origin lies in it being captured, but until recently no successful capture mechanism has been found. Agnor and Hamilton (Agnor, C.B., Hamilton, D.P. [2006]. Nature 441, 192-194) demonstrated that the disruption of a trans-neptunian binary object which had Triton as a member, and which underwent a very close encounter with Neptune, was an effective mechanism to capture Triton while its former partner continued on a hyperbolic orbit. The subsequent evolution of Triton’s post-capture orbit to its current one could have proceeded through gravitational tides (Correia, A.C.M. [2009]. Astrophys. J. 704, L1-L4), during which time Triton was most likely semi-molten (McKinnon, W.B. [1984]. Nature 311, 355-358). However, to date, no study has been performed that considered both the capture and the subsequent tidal evolution. Thus it is attempted here with the use of numerical simulations. The study by Agnor and Hamilton (Agnor, C.B., Hamilton, D.P. [2006]. Nature 441, 192-194) is repeated in the framework of the Nice model (Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435, 459-461) to determine the post-capture orbit of Triton. After capture Triton is then subjected to tidal evolution using the model of Mignard (Mignard, F. [1979]. Moon Planets 20, 301-315; Mignard, F. [1980]. Moon Planets 23, 185-201). The perturbations from the Sun and the figure of Neptune are included. The perturbations from the Sun acting on Triton just after its capture cause it to spend a long time in its high-eccentricity phase, usually of the order of 10 Myr, while the typical time to circularise to its current orbit is some 200 Myr, consistent with earlier studies. The current orbit of Triton is consistent with an origin through binary capture and tidal evolution, even though the model prefers Triton to be closer to Neptune than it is today. The probability of capturing Triton in this manner is approximately 0.7%. Since the capture of Triton was at most a 50% event - since only Neptune has one, but Uranus does not - we deduce that in the primordial trans-neptunian disc there were some 100 binaries with at least one Triton-sized member. Morbidelli et al. (Morbidelli, A., Levison, H.F., Bottke, W.F., Dones, L., Nesvorný, D. [2009]. Icarus 202, 310-315) concludes there were some 1000 Triton-sized bodies in the trans-neptunian proto-planetary disc, so the primordial binary fraction with at least one Triton-sized member is 10%. This value is consistent with theoretical predictions, but at the low end. If Triton was captured at the same time as Neptune’s irregular satellites, the far majority of these, including Nereid, would be lost. This suggests either that Triton was captured on an orbit with a small semi-major axisa ? 50RN (a rare event), or that it was captured before the dynamical instability of the Nice model, or that some other mechanism was at play. The issue of keeping the irregular satellites remains unresolved.  相似文献   

12.
Following the work of Rivkin et al. (Rivkin, A.S., Thomas, C.A., Trilling, D.E., Enga, M., Grier, J.A. [2011]. Icarus 211, 1294–1297) and Thomas et al. (Thomas, C.A., Rivkin, A.S, Trilling, D.E., Enga, M., Grier, J.A. [2011a]. Icarus 212, 158–166), we investigate space weathering trends in the Koronis family using the larger sample size of the Sloan Digital Sky Survey Moving Object Catalog. We confirm the trend in spectral slope seen in our earlier work and extend our results by investigating the trend in band depth (i ? z color index) to show that Koronis family asteroids smaller than 4 km show the transition from fresh Q-type to weathered S-type surfaces.  相似文献   

13.
Numerical simulations, based on the core-nucleated accretion model, are presented for the formation of Jupiter at 5.2 AU in three primordial disks with three different assumed values of the surface density of solid particles. The grain opacities in the envelope of the protoplanet are computed using a detailed model that includes settling and coagulation of grains and that incorporates a recalculation of the grain size distribution at each point in time and space. We generally find lower opacities than the 2% of interstellar values used in previous calculations (Hubickyj, O., Bodenheimer, P., Lissauer, J.J. [2005]. Icarus 179, 415-431; Lissauer, J.J., Hubickyj, O., D’Angelo, G., Bodenheimer, P. [2009]. Icarus 199, 338-350). These lower opacities result in more rapid heat loss from and more rapid contraction of the protoplanetary envelope. For a given surface density of solids, the new calculations result in a substantial speedup in formation time as compared with those previous calculations. Formation times are calculated to be 1.0, 1.9, and 4.0 Myr, and solid core masses are found to be 16.8, 8.9, and 4.7 M, for solid surface densities, σ, of 10, 6, and 4 g cm−2, respectively. For σ = 10 and σ = 6 g cm−2, respectively, these formation times are reduced by more than 50% and more than 80% compared with those in a previously published calculation with the old approximation to the opacity.  相似文献   

14.
We report an improved measurement of the rotational axis orientation of Asteroid (4) Vesta. By analyzing and combining all previous measurements using a limb-fitting technique from ground/HST data collected from 1983 to 2006, we derive a pole solution of (RA = 304.5°, Dec = 41.5°). Images of Vesta acquired with the Wide Field Camera 3 onboard the Hubble Space Telescope (HST) in February 2010 are combined with images from the Wide Field Planetary Camera 2 on HST obtained in 1994, 1996, and 2007 at similar spatial resolution and wavelengths to perform new measurements. Control point stereogrammetry returns a pole solution of (305.1°, 43.4°). An alternate method tracks surface features and fits their projected paths with ellipses to determine a great circle containing the pole for each HST observation. Combined, the four great circles yield a pole solution of (309.3°, 41.9°). These three solutions obtained with almost independent methods are within 3.5° of each other, suggesting a robust solution. Combining the results from all three techniques, we propose an improved value of the rotational axis of Vesta as RA = 305.8° ± 3.1°, Dec = 41.4° ± 1.5° (1-σ error). This new solution changes from (301°, 41°) reported by Thomas et al. (Thomas, P.C., Binzel, R.P., Gaffey, M.J., Zellner, B.H., Storrs, A.D., Wells, E. [1997a]. Icarus 128, 88-94) by 3.6°, and from (306°, 38°) reported by Drummond and Christou (Drummond, J.D., Christou, J. [2008]. Icarus 197, 480-496) by 3.4°. It changes the obliquity of Vesta by up to ∼3°, but increases the Sun-centered RA of Vesta at equinox by ∼8°, and postpones the date of equinox by ∼35 days. The change of the pole position is less than the resolution of all previous images of Vesta, and should not change the main science conclusions of previous research about Vesta.  相似文献   

15.
Comets in the near-Earth object population   总被引:1,自引:0,他引:1  
Francesca DeMeo 《Icarus》2008,194(2):436-449
Because the lifespan of near-Earth objects (NEOs) is shorter than the age of the Solar System, these objects originate elsewhere. Their most likely sources are the main asteroid belt and comets. Through physical observations we seek to identify potential dormant or extinct comets among “asteroids” catalogued as NEOs and thereby determine the fraction of “comet candidates” within the total NEO population. Both discovery statistics and dynamical models indicate that candidate cometary objects in near-Earth space are predominantly found among those having a jovian Tisserand parameter Tj<3. Therefore, we seek to identify comet candidates among asteroid-like NEOs using three criteria: Tj<3, spectral parameters (C, D, T, or P taxonomic types), and/or low (<0.075) albedos. We present new observations for 20 NEOs having Tj<3, consisting of visible spectra, near-infrared spectra, and/or albedo measurements obtained using the NASA Infrared Telescope Facility, the Kitt Peak National Observatory 4 m, and the Magellan Observatory 6.5-m. Four of our “asteroid” targets have been subsequently confirmed as low activity comets. Thus our sample includes spectra of the nuclei of Comets 2002 EX12 = 169P (NEAT), 2001 WF2 = 182P (LONEOS), 2003 WY25 = D/1891 W1 (Blanplain), and Halley Family Comet 2006 HR30 = P/2006 HR30 (Siding Spring). From the available literature, we tabulate physical properties for 55 NEOs having Tj<3, and after accounting for possible bias effects, we estimate that 54±10% of NEOs in Tj<3 orbits have “comet-like” spectra or albedos. Bias corrected discovery statistics [Stuart, J.S., Binzel, R.P., 2004. Icarus 170, 295-311] estimate 30±5% of the entire NEO population resides in orbits having Tj<3. Combining these two factors suggests that 16±5% of the total discovered “asteroid-like” NEO population has “comet-like” dynamical and physical properties. Outer main-belt asteroids typically have similar taxonomic and albedo properties as our “comet candidates.” Using the model of Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] to evaluate source region probabilities, we conclude that 8±5% of the total asteroid-like NEO population have the requisite orbital properties, physical properties, and dynamical likelihood to have originated as comets from the outer Solar System.  相似文献   

16.
The first of a new class of objects now known as main belt comets (MBCs) or “activated asteroids” was identified in 1996. The seven known members of this class have orbital characteristics of main belt asteroids yet exhibit dust ejection like comets. In order to constrain their physical and orbital properties we searched the Thousand Asteroid Light Curve Survey (TALCS; Masiero, J.R., Jedicke, R., Durech, J., Gwyn, S., Denneau, L., Larsen, J. [2009]. Icarus 204, 145-171) for additional candidates using two diagnostics: tail and coma detection. This was the most sensitive MBC survey effort to date, extending the search from MBCs with H ∼ 18 (D ∼ 1 km) to MBCs as small as H ∼ 21 (D ∼ 150 m).We fit each of the 924 objects detected by TALCS to a PSF model incorporating both a coma and nuclear component to measure the fractional contribution of the coma to the total surface brightness. We determined the significance of the coma detection using the same algorithm on a sample of null detections of comparable magnitude and rate of motion. We did not identify any MBC candidates with this technique to a sensitivity limit on the order of cometary mass loss rate of about 0.1 kg/s.Our tail detection algorithm relied on identifying statistically significant flux in a segmented annulus around the candidate object. We show that the technique can detect tail activity throughout the asteroid belt to the level of the currently known MBCs. Although we did not identify any MBC candidates with this technique, we find a statistically significant detection of faint activity in the entire ensemble of TALCS asteroids. This suggests that many main belt asteroids are active at very low levels.Our null detection of MBCs allows us to set 90% upper confidence limits on the number distribution of MBCs as a function of absolute magnitude, semi-major axis, eccentricity, and inclination. There are ?400,000 MBCs in the main belt brighter than HV = 21 (∼150-m in diameter) and the MBC:MBA ratio is ?1:400.We further comment on the ability of observations to meaningfully constrain the snow line’s location. Under some reasonable and simple assumptions we claim 85% confidence that the contemporary snow line lies beyond 2.5 AU.  相似文献   

17.
18.
P.G.J. Irwin  N.A. Teanby 《Icarus》2010,208(2):913-926
Long-slit spectroscopy observations of Uranus by the United Kingdom InfraRed Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus’ vertical and latitudinal cloud structure through the planet’s Northern Spring Equinox in December 2007.These spectra were analysed and presented by Irwin et al. (Irwin, P.G.J., Teanby, N.A., Davis, G.R. [2009]. Icarus 203, 287-302), but since publication, a new set of methane absorption data has become available (Karkoschka, E., Tomasko, M. [2010]. Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data. Icarus 205, 674-694.), which appears to be more reliable at the cold temperatures and high pressures of Uranus’ deep atmosphere. We have fitted k-coefficients to these new methane absorption data and we find that although the latitudinal variation and inter-annual changes reported by Irwin et al. (2009) stand, the new k-data place the main cloud deck at lower pressures (2-3 bars) than derived previously in the H-band of ∼3-4 bars and ∼3 bars compared with ∼6 bars in the J-band. Indeed, we find that using the new k-data it is possible to reproduce satisfactorily the entire observed centre-of-disc Uranus spectrum from 1 to 1.75 μm with a single cloud at 2-3 bars provided that we make the particles more back-scattering at wavelengths less than 1.2 μm by, for example, increasing the assumed single-scattering albedo from 0.75 (assumed in the J and H-bands) to near 1.0. In addition, we find that using a deep methane mole fraction of 4% in combination with the associated warm ‘F’ temperature profile of Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001), the retrieved cloud deck using the new (Karkoschka and Tomasko, 2010) methane absorption data moves to between 1 and 2 bars.The same methane absorption data and retrieval algorithm were applied to observations of Neptune made during the same programme and we find that we can again fit the entire 1-1.75 μm centre-of-disc spectrum with a single cloud model, providing that we make the stratospheric haze particles (of much greater opacity than for Uranus) conservatively scattering (i.e. ω = 1) and we also make the deeper cloud particles, again at around the 2 bar level more reflective for wavelengths less than 1.2 μm. Hence, apart from the increased opacity of stratospheric hazes in Neptune’s atmosphere, the deeper cloud structure and cloud composition of Uranus and Neptune would appear to be very similar.  相似文献   

19.
We estimate the total number and the slope of the size-frequency distribution (SFD) of dormant Jupiter family comets (JFCs) by fitting a one-parameter model to the known population. We first select 61 near-Earth objects (NEOs) that are likely to be dormant JFCs because their orbits are dynamically coupled to Jupiter [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J., Levison, H.F., Michel, P., Metcalfe, T.S., 2002a. Icarus 156, 399-433]. Then, from the numerical simulations of Levison and Duncan [1997. Icarus 127, 13-32], we construct an orbit distribution model for JFCs in the NEO orbital element space. We assume an orbit-independent SFD for all JFCs, the slope of which is our unique free parameter. Finally, we compute observational biases for dormant JFCs using a calibrated NEO survey simulator [Jedicke, R., Morbidelli, A., Spahr, T., Petit, J., Bottke, W.F., 2003. Icarus 161, 17-33]. By fitting the biased model to the data, we estimate that there are ∼75 dormant JFCs with H<18 in the NEO region and that the slope of their cumulative SFD is −1.5±0.3. Our slope for the SFD of dormant JFCs is very close to that of active JFCs as determined by Weissman and Lowry [2003. Lunar Planet. Sci. 34. Abstract 2003]. Thus, we argue that when JFCs fade they are likely to become dormant rather than to disrupt and that the fate of faded comets is size-independent. Our results imply that the size distribution of the JFC progenitors—the scattered disk trans-neptunian population—either (i) has a similar and shallow SFD or (i) is slightly steeper and physical processes acting on the comets in a size-dependent manner creates the shallower active comet SFD. Our measured slope, typical of collisionally evolved populations with a size-dependent impact strength [Benz, W., Asphaug, E., 1999. Icarus 142, 5-20], suggests that scattered disk bodies reached collisional equilibrium inside the protoplanetary disk prior to their removal from the planetary region.  相似文献   

20.
We observed near-Earth asteroid (NEA) 2100 Ra-Shalom over a six-year period, obtaining rotationally resolved spectra in the visible, near-infrared, thermal-infrared, and radar wavelengths. We find that Ra-Shalom has an effective diameter of Deff=2.3±0.2 km, rotation period P=19.793±0.001 h, visual albedo pv=0.13±0.03, radar albedo , and polarization ratio μc=0.25±0.04. We used our radar observations to generate a three-dimensional shape model which shows several structural features of interest. Based on our thermal observations, Ra-Shalom has a high thermal inertia of ∼103 J m−2 s−0.5 K−1, consistent with a coarse or rocky surface and the inferences of others [Harris, A.W., Davies, J.K., Green, S.F., 1998. Icarus 135, 441-450; Delbo, M., Harris, A.W., Binzel, R.P., Pravec, P., Davies, J.K., 2003. Icarus 166, 116-130]. Our spectral data indicate that Ra-Shalom is a K-class asteroid and we find excellent agreement between our spectra and laboratory spectra of the CV3 meteorite Grosnaja. Our spectra show rotation-dependent variations consistent with global variations in grain size. Our radar observations show rotation-dependent variations in radar albedo consistent with global variations in the thickness of a relatively thin regolith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号