首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David Parry Rubincam   《Icarus》2007,192(2):460-468
Photon thrust from shape alone can produce quasi-secular changes in an asteroid's orbital elements. An asteroid in an elliptical orbit with a north–south shape asymmetry can steadily alter its elements over timescales longer than one orbital trip about the Sun. This thrust, called here orbital YORP (YORP = Yarkovsky–O'Keefe–Radzievskii–Paddack), operates even in the absence of thermal inertia, which the Yarkovsky effects require. However, unlike the Yarkovsky effects, which produce secular orbital changes over millions or billions of years, the change in an asteroid's orbital elements from orbital YORP operates only over the precession timescale of the orbit or of the asteroid's spin axis; this is generally only thousands or tens of thousands of years. Thus while the orbital YORP timescale is too short for an asteroid to secularly journey very far, it is long enough to warrant investigation with respect to 99942 Apophis, which might conceivably impact the Earth in 2036. A near-maximal orbital YORP effect is found by assuming Apophis is without thermal inertia and is shaped like a hemisphere, with its spin axis lying in the orbital plane. With these assumptions orbital YORP can change its along-track position by up to ±245 km, which is comparable to Yarkovsky effects. Though Apophis' shape, thermal properties, and spin axis orientation are currently unknown, the practical upper and lower limits are liable to be much less than the ±245 km extremes. Even so, the uncertainty in position is still likely to be much larger than the 0.5 km “keyhole” Apophis must pass through during its close approach in 2029 in order to strike the Earth in 2036.  相似文献   

2.
D. Vokrouhlický  D. ?apek 《Icarus》2005,179(1):128-138
We consider the possibility of detecting the Yarkovsky orbital perturbation acting on binary systems among the near-Earth asteroids. This task is significantly more difficult than for solitary asteroids because the Yarkovsky force affects both the heliocentric orbit of the system's center of mass and the relative orbit of the two components. Nevertheless, we argue these are sufficiently well decoupled so that the major Yarkovsky perturbation is in the simpler heliocentric motion and is observable with the current means of radar astrometry. Over the long term, the Yarkovsky perturbation in the relative motion of the two components is also detectable for the best observed systems. However, here we consider a simplified version of the problem by ignoring mutual non-spherical gravitational perturbations between the two asteroids. With the orbital plane constant in space and the components' rotation poles fixed (and assumed perpendicular to the orbital plane), we do not examine the coupling between Yarkovsky and gravitational effects. While radar observations remain an essential element of Yarkovsky detections, lightcurve observations, with their ability to track occultation and eclipse phenomena, are also very important in the case of binaries. The nearest possible future detection of the Yarkovsky effect for a binary system occurs for (66063) 1998 RO1 in September 2006. Farther out, even more statistically significant detections are possible for several other systems including 2000 DP107, (66391) 1999 KW4 and 1996 FG3.  相似文献   

3.
The nearest in time close approach of potentially hazardous asteroid (99942) Apophis with the Earth will take place on April 13, 2029, when the minimum distance of the asteroid from the Earth’s center will be as small as 38 000 km. Such a close approach will result in substantial transformation of the asteroid’s orbit. The value of the perturbations depends on the minimum distance between the bodies during the approach. Among possible transformations of the orbit are those which result in new dangerous approaches and even in probable Apophis collisions with the Earth starting from 2036. At present, at least four solutions are known for the Apophis orbit which were obtained using all radar and most of available optical observations. The procedures of assigning weights to conditional equations and the models of the asteroid’s motion have differed to some extent when finding these solutions. Of considerable interest is the comparison of the found orbital parameters with the estimates of their accuracy, since small distinctions in their values result in considerable distinctions in the forecast of Apophis’ motion after 2029 and beyond. It is shown in the paper that the estimates of the probability of an Apophis collision with the Earth in 2036 differ by some orders of magnitude, according to various solutions. The influence of factors which were disregarded in the models of motion even more increases the uncertainty in forecasting the motion after 2029. More accurate forecasting can be achieved as a result of additional optical and, to a greater extent, a series of radar observations in 2013 and then in 2020–2021, and/or as a result of processing radio signals of the transmitter delivered to the Apophis surface or to the orbit of its artificial satellite, as it was proposed in a number of papers.  相似文献   

4.
Currently, there is some positive probability of a collision of the asteroid Apophis with the Earth in 2036. In this study, the problem of preventing the collision by correcting the asteroid’s orbit is examined. The characteristics of the impulsive correction are investigated, as well as the ways of its implementation by kinetic and nuclear impacts. Impulsive and weak effects are compared. Weak effects leading to slow changes in the asteroid’s orbit are considered to be more usable because of the potentially higher accuracy of this correction. The characteristics of the gravitational effect of the asteroid by a special spacecraft (SC) kept by its control jet engines at a certain point near the asteroid and gravitationally perturbing the motion of Apophis are analyzed. The change in the perigee radius of the Apophis orbit in 2036 and the SC mass consumption are examined as functions of the effect duration, the SC mass, its distance to the asteroid, the start time of the correction, and the velocity of the SC engine exhaust jet.  相似文献   

5.
We estimate the effect of trajectory measurement errors on the orbital parameters of asteroid Apophis determined from improvements. For this purpose, based on all of the optical and radar observations available to date, we have computed a nominal orbit of the asteroid. The scatter ellipsoid of the initial conditions of motion has been obtained by two methods. In the first, universally accepted method, the scatter ellipsoid is calculated by assuming a linear dependence of the errors in the parameters being determined on observational errors. In the second method, the scatter region of the orbital parameters around the nominal-orbit parameters is determined by the Monte Carlo method. We show that the region determined by the latter method at the initial epoch differs only slightly from the scatter ellipsoid for the linear approximation. We estimate the sizes of the projections of the corresponding regions onto the target plane at the time of the closest encounter of the asteroid with the Earth in 2029. The projections are approximated by ellipses. Our computations have shown that the ellipse has the following sizes: 389.6 km for the semimajor axis and 16.4 km for the semiminor axis in the linear case and 330.0 and 11.1 km, respectively, in the nonlinear case.  相似文献   

6.
In November 2004 radar delay measurements of near-Earth asteroid (3908) Nyx obtained at the Arecibo radio telescope turned out to be \(7.5\sigma \) away from the orbital prediction. We prove that this discrepancy was caused by a poor astrometric treatment and an incomplete dynamical model, which did not account for nongravitational perturbations. To improve the astrometric treatment, we remove known star catalog biases, apply suitable weights to the observations, and use an aggressive outlier rejection scheme. The main issue related to the dynamical model is having not accounted for the Yarkovsky effect. Including the Yarkovsky perturbation in the model makes the orbital prediction and the radar measurements statistically consistent by both reducing the offset and increasing the prediction uncertainty to a more realistic level. This analysis shows the sensitivity of high precision predictions to the astrometric treatment and the Yarkovsky effect. By using the full observational dataset we obtain a \(5\sigma \) detection of the Yarkovsky effect acting on Nyx corresponding to an orbital drift \(da/dt = (142 \pm 29)\)  m/year. In turn, we derive constraints on thermal inertia and bulk density. In particular, we find that the bulk density of Nyx is around 1 g/cm \(^3\) , possibly less. To make sure that our results are not corrupted by an asteroid impact or a close approach with a perturbing asteroid not included in our dynamical model, we show that the astrometry provides no convincing evidence of an impulsive variation of Nyx’s velocity while crossing the main belt region.  相似文献   

7.
311P/PANSTARRS是一颗活动小行星, 具有小行星和彗星的双重特征, 是中国``天问二号''的探测目标之一. 311P/PANSTARRS直径较小, 约为400 m, 非引力效应可能会对其长期动力学演化产生较大的影响. 通过假定不同表面组分, 研究了Yarkovsky效应对311P/PANSTARRS轨道演化的影响, 讨论了密近交汇、 非破坏性碰撞和YORP (Yarkovsky-O''Keefe-Radzievskii-Paddack)效应等非引力效应, 计算了小行星与大行星密近交汇及碰撞概率, 估计了311P/PANSTARRS达到自转周期分裂极限的时标. 模拟结果显示与纯引力模型相比, Yarkovsky效应可能会加快311P/PANSTARRS离开当前共振区域, 大约在10Myr以后311P/PANSTARRS会离开当前所在共振带, 在表面覆盖风化层的情况下有机会通过v6长期共振成为越火小行星; 在考虑YORP效应的情况下, 311P/PANSTARRS在2 Myr时标内可达到自转周期分裂极限; 在考虑Yarkovsky效应及YORP效应等因素的情况下, 311P/PANSTARRS在10 Myr时标内仍可保持其动力学稳定性, 且YORP效应不会显著影响其半长径偏移量.  相似文献   

8.
The possibilities of deflecting an asteroid from its collision course with the Earth by changing its velocity with an impact are considered. Using the asteroid Apophis as an example, the time dependence of the positions and sizes of the keyholes leading to collision is studied. It has been found that the possibility of deflecting this asteroid usually exists, and the impact can be accomplished in principle, given the capabilities of modern space technology. A change in the velocity should be performed before the encounter of 2029 in order to use the gravitational maneuver effect. The possible accuracy of determining Apophis’ orbit and the keyholes that lead to collision and are associated with the resonance returns are considered.  相似文献   

9.
The paper considers how a spacecraft can be put into orbit around a small asteroid to function as its artificial moon. We study the general behavior of perturbations that affect the current coordinates of an orbiting spacecraft and estimate the perturbations caused by the main perturbing factors, i.e., (1) the irregular shape of an asteroid and (2) celestial bodies of the Solar System. With specific orbital parameters, a long-term targeted operation of a spacecraft can be actualized in a mission to the asteroid Apophis where the spacecraft will carry a radio beacon transponder.  相似文献   

10.
The Apophis asteroid attracted the attention of scientists immediately after its discovery in 2004, because the initially determined orbit of this asteroid assumes a possible collision with Earth in April 2029. The size of Apophis is about several hundred meters, and its collision with Earth might result in a large regional or even global catastrophe. At present, the trajectory of Apophis has been calculated more accurately, and a collision in 2029 has ruled out; the asteroid will pass Earth at a distance of about 37 000 km from its center. However, close approaches or collisions are possible after 2029, including the most probable in 2036. The risk of collision in 2036 is well known and actively examined by the scientists. In this study, we consider the peculiarities of the asteroid motion associated with its approach in 2029 and with a possible close approach in 2036. The trajectories scatter during the approaches and the loss of accuracy is associated with these scatterings. As a result, the trajectory of Apophis may become nondeterministic after 2036; that is, it cannot now be determined unambiguously. Although such events are very unlikely, it is interesting to examine a variety of alternative variants of Apophis’ close approaches and collisions with Earth immediately after 2036. The effects of small variations in the asteroid velocity at different moments in time after its impact with a certain mass are discussed.  相似文献   

11.
The orbital parameters of small asteroids change with time, as a consequence of the so-called Yarkovsky effect. This leads to a steady removal of objects from the Main Belt, which takes place when the objects reach one of the major resonant regions in the orbital elements space. The process may influence the evolution of the inventory and size distribution of Main Belt asteroids, but it has not been taken into account by classical models of the collisional evolution of the asteroid population. In this paper we discuss the role of the Yarkovsky effect in producing the current observed size distribution. We show that adding Yarkovsky effect to purely collisional mechanisms may increase the removal of objects at sizes around 1 km by a factor of about 2 with respect to a purely collisional scenario. Moreover, waves in the size distribution may also be produced. However, taking also into account current uncertainties in the efficiency of purely collisional mechanisms, the role of the Yarkovsky effect seems not dominant, and cannot be unambiguously determined.  相似文献   

12.
The probability of an asteroid colliding with a planet can be estimated by the Monte Carlo method, in particular, through the statistical simulation of the possible initial conditions for the motion of an asteroid based on the probability density distribution set by the respective covariance matrix to be further projected with the orbital model onto the supposed time point of the collision. Hence, the collision probability is calculated as the ratio between the number of projected (virtual) asteroids striking the planet and their total number. The main problem is that different elements of the initial conditions (orbit or state vector) are correlated and, therefore, cannot be simulated independently. These correlations are reflected in the nondiagonal covariance matrix of the solution. The matrix is diagonalized by an orthogonal transformation. In the uncertainty domain constructed from the diagonal matrix elements, the initial values for each of the six orbital elements are simulated independently from the other elements, but with the accounting for their normal distribution. The program for calculating the normal distribution is based on the central limit theorem. Each sample of the initial values for the six orbital elements is transferred to the initial reference frame using an inverse transformation. Then, numerical integration is used to track the asteroid’s motion along the respective orbit to predict a possible impact event. Asteroids 99942 Apophis and 2007 WD5 are used as examples to show that disregarding the correlations when diagonalizing the covariance matrix to set the initial conditions may seriously distort the collision probability estimates. The paper gives the probabilities of the collisions of Apophis with the Earth and asteroid 2007 WD5 with Mars calculated by the author from observation sets showing nonzero collision probabilities. The author’s estimates are compared to those calculated by NASA.  相似文献   

13.
The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit–attitude coupling of the spacecraft. This gravitational orbit–attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.  相似文献   

14.
The Yarkovsky effect, which causes a slow drifting of the orbital elements (mainly the semimajor axis) of km-sized asteroids and meteors, is the weak non-gravitational force experienced by these bodies due to the emission of thermal photons. This effect is believed to play a role in the delivery of near-Earth asteroids (NEAs) from the main belt, in the spreading of the orbital elements of asteroid families, and in the orbital evolution of potentially hazardous asteroids.Here we present preliminary results of simulationing indicating that the perturbations induced by the Yarkovsky effect on the positions of some tens of NEAs can be observed by means of the high-precision astrometric observations that will be provided by the ESA mission Gaia.  相似文献   

15.
Asteroid families are the remnants of catastrophic collisions, and their fundamental physical properties provide us the information of their parent bodies and thereafter dynamical evolutions. Especially, the orbit and spin characteristics can reveal the influences of the Yarkovsky effect and the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect on the evolution of the asteroid family, respectively. Based on the Asteroid Lightcurve Database (LCDB), the spin rate distribution of the Flora asteroid family is studied, and a tendency that the spin rates of the small Flora family members concentrate primarily in the range of 3–5 d?1 is found. The analysis on the spin states of the Flora family asteroids tells that most of these asteroid family members are in the prograde spinning state. However, for the Flora family members with an orbital semi-major axis smaller than 2.2 au, the ratio between the number of prograde spinning members and that of retrograde ones is close to that of the near-Earth asteroids, namely 1 : 3. Furthermore, for those prograde spinning Flora family asteroids with an orbital semi-major axis larger than 2.2 au, a portion of them exhibit the aggregation in the distribution of orbital semi-major axis against the absolute magnitude, and in which nine members show the features similar to the Slivan state.  相似文献   

16.
In October 2009, a new set of optical observations of Apophis, a potentially hazardous asteroid, was published. These data have significantly expanded the interval of observations and their total number. In the article we compare the results of refinement of Apophis’ orbit made at the Jet Propulsion Laboratory (JPL, United States), the University of Pisa (Italy), and the Institute of Applied Astronomy (IAA) of the Russian Academy of Sciences with consideration for new observations. New orbits lead to a significant decrease in the probability of Apophis’ collision with the Earth in 2036. As a result of processing a large number of observations of asteroids approaching the Earth and main belt asteroids less than 40 km in size, with a large number of optical and, in many cases, radar observations in different oppositions, one of the authors revealed that additional acceleration affects their motion. This acceleration can be represented by the transversal component A 2 in the orbital coordinate system. The presence of this acceleration can be interpreted as the Yarkovsky effect. The statistical properties of distribution of A 2 for asteroids, for which it is determined quite reliably, evidence in favor of this interpretation. The value of additional acceleration for bodies the size of Apophis falls in the range ±10−13 AU/day2. In this paper we have calculated the probability of Apophis colliding with the Earth in 2036 at different values of the transversal component of additional acceleration A 2. For the resulting points, a plot of the probability of the collision against the A 2 value has been constructed. At A 2 = −8.748 × 10−14 AU/day2 (and zero values of the radial A 1 and normal A 3 components) the nominal solution for Apophis’ orbit on April 13, 2029, is only 90 m from the middle of a “keyhole” 600 m in width, which leads to a collision of Apophis with the Earth in 2036. Since the scattering ellipse in the target plane in 2029 significantly overlaps the keyhole, the probability of collision at the given additional acceleration value is 0.0022. This result has been verified by the Monte Carlo method. Tests of 10000 random sets of orbital elements, which were found taking into account their correlation, have shown that 22 cases have resulted in virtual asteroids colliding with Earth in 2036. A plot of the probability of the collision against the value of A 2 has been constructed.  相似文献   

17.
V. Carruba  J.A. Burns  W. Bottke 《Icarus》2003,162(2):308-327
Asteroid families are groupings of minor planets identified by clustering in their proper orbital elements; these objects have spectral signatures consistent with an origin in the break-up of a common parent body. From the current values of proper semimajor axes a of family members one might hope to estimate the ejection velocities with which the fragments left the putative break-up event (assuming that the pieces were ejected isotropically). However, the ejection velocities so inferred are consistently higher than N-body and hydro-code simulations, as well as laboratory experiments, suggest. To explain this discrepancy between today’s orbital distribution of asteroid family members and their supposed launch velocities, we study whether asteroid family members might have been ejected from the collision at low speeds and then slowly drifted to their current positions, via one or more dynamical processes. Studies show that the proper a of asteroid family members can be altered by two mechanisms: (i) close encounters with massive asteroids, and (ii) the Yarkovsky non-gravitational effect. Because the Yarkovsky effect for kilometer-sized bodies decreases with asteroid diameter D, it is unlikely to have appreciably moved large asteroids (say those with D > 15 km) over the typical family age (1-2 Gyr).For this reason, we numerically studied the mobility of family members produced by close encounters with main-belt, non-family asteroids that were thought massive enough to significantly change their orbits over long timescales. Our goal was to learn the degree to which perturbations might modify the proper a values of all family members, including those too large to be influenced by the Yarkovsky effect. Our initial simulations demonstrated immediately that very few asteroids were massive enough to significantly alter relative orbits among family members. Thus, to maximize gravitational perturbations in our 500-Myr integrations, we investigated the effect of close encounters on two families, Gefion and Adeona, that have high encounter probabilities with 1 Ceres, by far the largest asteroid in the main belt. Our results show that members of these families spreads in a of less than 5% since their formation. Thus gravitational interactions cannot account for the large inferred escape velocities.The effect of close encounters with massive asteroids is, however, not entirely negligible. For about 10% of the simulated bodies, close encounters increased the “inferred” ejection velocities from sub-100 m/s to values greater than 100 m/s, beyond what hydro-code and N-body simulations suggest are the maximum possible initial ejection velocity for members of Adeona and Gefion with D > 15 km. Thus this mechanism of mobility may be responsible for the unusually high inferred ejection speeds of a few of the largest members of these two families.To understand the orbital evolution of the entire family, including smaller members, we also performed simulations to account for the drift of smaller asteroids caused by the Yarkovsky effect. Our two sets of simulations suggest that the two families we investigated are relatively young compared to larger families like Koronis and Themis, which have estimated ages of about 2 Byr. The Adeona and Gefion families seems to be no more than 600 and 850 Myr old, respectively.  相似文献   

18.
F. Roig  D. Nesvorný  R. Gil-Hutton 《Icarus》2008,194(1):125-136
V-type asteroids are bodies whose surfaces are constituted of basalt. In the Main Asteroid Belt, most of these asteroids are assumed to come from the basaltic crust of Asteroid (4) Vesta. This idea is mainly supported by (i) the fact that almost all the known V-type asteroids are in the same region of the belt as (4) Vesta, i.e., the inner belt (semi-major axis 2.1<a<2.5 AU), (ii) the existence of a dynamical asteroid family associated to (4) Vesta, and (iii) the observational evidence of at least one large craterization event on Vesta's surface. One V-type asteroid that is difficult to fit in this scenario is (1459) Magnya, located in the outer asteroid belt, i.e., too far away from (4) Vesta as to have a real possibility of coming from it. The recent discovery of the first V-type asteroid in the middle belt (2.5<a<2.8 AU), (21238) 1995WV7 [Binzel, R.P., Masi, G., Foglia, S., 2006. Bull. Am. Astron. Soc. 38, 627; Hammergren, M., Gyuk, G., Puckett, A., 2006. ArXiv e-print, astro-ph/0609420], located at ∼2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ∼2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by a semi-major axis drift due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining N-body numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability that an asteroid of a given diameter D evolves from the Vesta family and crosses over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability (∼1%) of having evolved through this mechanism due to its large size (D∼5 km), because the Yarkovsky effect is not sufficiently efficient for such large asteroids. However, the mechanism might explain the orbits of smaller bodies like (40521) 1999RL95 (D∼3 km) with ∼70-100% probability, provided that we assume that the Vesta family formed ?3.5 Gy ago. We estimate the debiased population of V-type asteroids that might exist in the same region as (21238) and (40521) (2.5<a?2.62 AU) and conclude that about 10 to 30% of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 70-90% must have a different origin.  相似文献   

19.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

20.
At present, approximately 1500 asteroids are known to evolve inside or sticked to the exterior 1:2 resonance with Mars at a ? 2.418 AU, being (142) Polana the largest member of this group. The effect of the forced secular modes superposed to the resonance gives rise to a complex dynamical evolution. Chaotic diffusion, collisions, close encounters with massive asteroids and mainly orbital migration due to the Yarkovsky effect generate continuous captures to and losses from the resonance, with a fraction of asteroids remaining captured over long time scales and generating a concentration in the semimajor axis distribution that exceeds by 20% the population of background asteroids. The Yarkovsky effect induces different dynamics according to the asteroid size, producing an excess of small asteroids inside the resonance. The evolution in the resonance generates a signature on the orbits, mainly in eccentricity, that depends on the time the asteroid remains captured inside the resonance and on the magnitude of the Yarkovsky effect. The greater the asteroids, the larger the time they remain captured in the resonance, allowing greater diffusion in eccentricity and inclination. The resonance generates a discontinuity and mixing in the space of proper elements producing misidentification of dynamical family members, mainly for Vesta and Nysa-Polana families. The half-life of resonant asteroids large enough for not being affected by the Yarkovsky effect is about 1 Gyr. From the point of view of taxonomic classes, the resonant population does not differ from the background population and the excess of small asteroids is confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号