首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Humic acid protein complexation   总被引:1,自引:0,他引:1  
Interactions of purified Aldrich humic acid (PAHA) with lysozyme (LSZ) are investigated. In solution LSZ is moderately positively and PAHA negatively charged at the investigated pH values. The proton binding of PAHA and of LSZ is determined by potentiometric proton titrations at various KCl concentrations. It is also measured for two mixtures of PAHA-LSZ and compared with theoretically calculated proton binding assuming no mutual interaction. The charge adaptation due to PAHA-LSZ interaction is relatively small and only significant at low and high pH. Next to the proton binding, the mass ratio PAHA/LSZ at the iso-electric point (IEP) of the complex at given solution conditions is measured together with the pH using the Mütek particle charge detector. From the pH changes the charge adaptation due to the interaction can be found. Also these measurements show that the net charge adaptation is weak for PAHA-LSZ complexes at their IEP. PAHA/LSZ mass ratios in the complexes at the IEP are measured at pH 5 and 7. At pH 5 and 50 mmol/L KCl the charge of the complex is compensated for 30-40% by K+; at pH 7, where LSZ has a rather low positive charge, this is 45-55%. At pH 5 and 5 mmol/L KCl the PAHA/LSZ mass ratio at the IEP of the complex depends on the order of addition. When LSZ is added to PAHA about 25% K+ is included in the complex, but no K+ is incorporated when PAHA is added to LSZ. The flocculation behavior of the complexes is also different. After LSZ addition to PAHA slow precipitation occurs (6-24 h) in the IEP, but after addition of PAHA to LSZ no precipitation can be seen after 12 h. Clearly, PAHA/LSZ complexation and the colloidal stability of PAHA-LSZ aggregates depend on the order of addition. Some implications of the observed behavior are discussed.  相似文献   

2.
The interaction of the lanthanides (Ln) with humic substances (HS) was investigated with a novel chemical speciation tool, Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). By using an EDTA-ligand competition method, a bi-modal species distribution of LnEDTA and LnHS is attained, separated by CE, and detected online by sector field ICP-MS. We quantified the binding of all 14 rare earth elements (REEs), Sc and Y with Suwannee river fulvic acid, Leonardite coal humic acid, and Elliot soil humic acid under environmental conditions (pH 6-9, 0.001-0.1 mol L−1 NaNO3, 1-1000 nmol L−1 Ln, 10-20 mg L−1 HS). Conditional binding constants for REE-HS interaction (Kc) ranged from 8.9 < log Kc < 16.5 under all experimental conditions, and display a lanthanide contraction effect, ΔLKc: a gradual increase in Kc from La to Lu by 2-3 orders of magnitude as a function of decreasing ionic radius. HS polyelectrolyte effects cause Kc to increase with increasing pH and decreasing ionic strength. ΔLKc increases significantly with increasing pH, and likely with decreasing ionic strength. Based on a strong correlation between ΔLKc values and denticity for organic acids, we suggest that HS form a range of tri- to tetra-dentate complexes under environmental conditions. These results confirm HS to be a strong complexing agent for Ln, and show rigorous experimental evidence for potential REE fractionation by HS complexation.  相似文献   

3.
Strontium-90 is a beta emitting radionuclide produced during nuclear fission, and is a problem contaminant at many nuclear facilities. Transport of 90Sr in groundwaters is primarily controlled by sorption reactions with aquifer sediments. The extent of sorption is controlled by the geochemistry of the groundwater and sediment mineralogy. Here, batch sorption experiments were used to examine the sorption behaviour of 90Sr in sediment–water systems representative of the UK Sellafield nuclear site based on groundwater and contaminant fluid compositions. In experiments with low ionic strength groundwaters (<0.01 mol L−1), pH variation is the main control on sorption. The sorption edge for 90Sr was observed between pH 4 and 6 with maximum sorption occurring (Kd ∼ 103 L kg−1) at pH 6–8. At ionic strengths above 10 mmol L−1, and at pH values between 6 and 8, cation exchange processes reduced 90Sr uptake to the sediment. This exchange process explains the lower 90Sr sorption (Kd ∼ 40 L kg−1) in the presence of artificial Magnox tank liquor (IS = 29 mmol L−1). Strontium K-edge EXAFS spectra collected from sediments incubated with Sr2+ in either HCO3-buffered groundwater or artificial Magnox tank liquor, revealed a coordination environment of ∼9 O atoms at 2.58–2.61 Å after 10 days. This is equivalent to the Sr2+ hydration sphere for the aqueous ion and indicates that Sr occurs primarily in outer sphere sorption complexes. No change was observed in the Sr sorption environment with EXAFS analysis after 365 days incubation. Sequential extractions performed on sediments after 365 days also found that ∼80% of solid associated 90Sr was exchangeable with 1 M MgCl2 in all experiments. These results suggest that over long periods, 90Sr in contaminated sediments will remain primarily in weakly bound surface complexes. Therefore, if groundwater ionic strength increases (e.g. by saline intrusion related to sea level rise or by design during site remediation) then substantial remobilisation of 90Sr is to be expected.  相似文献   

4.
The soluble and insoluble hydrolysis products of palladium were investigated in aqueous solutions of 0.6 mol kg−1 NaCl at 298.2 K. Potentiometric titrations of millimolal palladium(II) solutions were used to monitor hydrolysis reactions of the mononuclear PdCl3OH2− and species. Spectrophotometric titrations were also used to corroborate the speciation change and to extract the correlative molar absorption coefficients for the PdCl3OH2− species in the 210-320 nm range. Longer-term potentiometric titrations systematically yielded precipitates which matured over a period of 6 weeks and resulted in a more extensive release of protons to the solution. Precipitation experiments in the 3-11 pH range showed the dominant precipitating phase to be Pd(OH)1.72Cl0.28. EXAFS measurements yielded an average of 3.50 O and 0.50 Cl atoms per Pd atom with a Pd-O distance of 2.012 Å and a Pd-Cl distance of 2.185 Å. Speciation modeling of proton and palladium mass balance data of experiments for palladium concentrations ranging from 0.047 to 10.0  mmol kg−1 required the presence of polynuclear complexes containing 3-9 palladium atoms. The existence of such complexes is moreover supported by previous investigations of palladium hydroxide chains of the type [Pd(OH)1.72Cl0.28]n, that are coiled and/or aggregated into nanometer-sized (15-40 Å) spheroids.  相似文献   

5.
This study combines sediment geochemical analysis, in situ benthic lander deployments and numerical modeling to quantify the biogeochemical cycles of carbon and sulfur and the associated rates of Gibbs energy production at a novel methane seep. The benthic ecosystem is dominated by a dense population of tube-building ampharetid polychaetes and conspicuous microbial mats were unusually absent. A 1D numerical reaction-transport model, which allows for the explicit growth of sulfide and methane oxidizing microorganisms, was tuned to the geochemical data using a fluid advection velocity of 14 cm yr−1. The fluids provide a deep source of dissolved hydrogen sulfide and methane to the sediment with fluxes equal to 4.1 and 18.2 mmol m−2 d−1, respectively. Chemosynthetic biomass production in the subsurface sediment is estimated to be 2.8 mmol m−2 d−1 of C biomass. However, carbon and oxygen budgets indicate that chemosynthetic organisms living directly above or on the surface sediment have the potential to produce 12.3 mmol m−2 d−1 of C biomass. This autochthonous carbon source meets the ampharetid respiratory carbon demand of 23.2 mmol m−2 d−1 to within a factor of 2. By contrast, the contribution of photosynthetically-fixed carbon sources to ampharetid nutrition is minor (3.3 mmol m−2 d−1 of C). The data strongly suggest that mixing of labile autochthonous microbial detritus below the oxic layer sustains high measured rates of sulfate reduction in the uppermost 2 cm of the sulfidic sediment (100-200 nmol cm−3 d−1). Similar rates have been reported in the literature for other seeps, from which we conclude that autochthonous organic matter is an important substrate for sulfate reducing bacteria in these sediment layers. A system-scale energy budget based on the chemosynthetic reaction pathways reveals that up to 8.3 kJ m−2 d−1 or 96 mW m−2 of catabolic (Gibbs) energy is dissipated at the seep through oxidation reactions. The microorganisms mediating sulfide oxidation and anaerobic oxidation of methane (AOM) produce 95% and 2% of this energy flux, respectively. The low power output by AOM is due to strong bioenergetic constraints imposed on the reaction rate by the composition of the chemical environment. These constraints provide a high potential for dissolved methane efflux from the sediment (12.0 mmol m−2 d−1) and indicates a much lower efficiency of (dissolved) methane sequestration by AOM at seeps than considered previously. Nonetheless, AOM is able to consume a third of the ascending methane flux (5.9 mmol m−2 d−1 of CH4) with a high efficiency of energy expenditure (35 mmol CH4 kJ−1). It is further proposed that bioenergetic limitation of AOM provides an explanation for the non-zero sulfate concentrations below the AOM zone observed here and in other active and passive margin sediments.  相似文献   

6.
Wetlands are significant sources and sinks for arsenic (As), yet the geochemical conditions and processes causing a release of dissolved arsenic and its association with the solid phase of wetland soils are poorly known. Here we present experiments in which arsenic speciation was determined in peatland mesocosms in high spatiotemporal resolution over 10 months. The experiment included a drought/rewetting treatment, a permanently wet, and a defoliated treatment. Soil water content was determined by the TDR technique, and arsenic, iron and sulfate turnover from mass balancing stocks and fluxes in the peat, and solid phase contents by sequential extractions. Arsenic content ranged from 5 to 25 mg kg−1 and dissolved concentrations from 10 to 300 μg L−1, mainly in form of As(III), and secondarily of As(V) and dimethylated arsenic (DMA). Total arsenic was mainly associated with amorphous iron hydroxides (R2 > 0.95, α < 0.01) and deeper into the peat with an unidentified residual fraction. Arsenic release was linked to ferrous iron release and primarily occurred in the intensely rooted uppermost soil. Volumetric air contents of 2-13 % during drought eliminated DMA from the porewater and suppressed its release after rewetting for >30 d. Dissolved As(III) was oxidized and immobilized as As(V) at rates of up to 0.015 mmol m−3 d−1. Rewetting mobilized As(III) at rates of up to 0.018 mmol m−3 d−1 within days. Concurrently, Fe(II) was released at depth integrated rates of up 20 mmol m−3 d−1. The redox half systems of arsenic, iron, and sulfur were in persistent disequilibrium, with H2S being a thermodynamically viable reductant for As(V) to As(III). The study suggests that rewetting can lead to a rapid release of arsenic in iron-rich peatlands and that methylation is of lesser importance than co-release with iron reduction, which was largely driven by root activity.  相似文献   

7.
The surface chemistry of fluorapatite in aqueous solution was investigated using electrokinetic techniques, potentiometric titrations, solubility measurements, and attenuated total reflection infrared spectroscopy. All methods indicate the formation of Ca/F depleted, P enriched altered layer via exchange reactions between H+ and Ca2+, and OH and F at the fluorapatite (FAP) surface. Observations suggest that this leached layer has a di-calcium phosphate (CaHPO4) composition and that it controls the apparent solubility of FAP. Electrokinetic measurements yield an iso-electric point value of 1 ± 0.5 consistent with a negatively charged FAP surface at pH > 1. In contrast, surface titrations give an apparent pH of point of zero charge of ∼7.7, consistent with a positively charged surface at pH < 7.7. These differences are shown to stem from proton consumption by both proton exchange and dissolution reactions at the FAP surface. After taking account for these effects, FAP surface charge is shown to be negative to at least pH 4 by surface titration analysis.  相似文献   

8.
The occurrence of mining areas in the vicinities of salt marshes may affect their ecological functions and facilitate the transfer of pollutants into the food chain. The mobilisation of metals in salt marsh soils is controlled by abiotic (pH, redox potential) and biotic (influence of rhizosphere) factors. The effect of the rhizosphere of two plant species (Sarcocornia fruticosa and Phragmites australis) and different flooding regimes on potentially harmful metals and As mobilisation from salt marsh soil polluted by mining activities were investigated (total concentrations: 536 mg kg−1 As, 37 mg kg−1 Cd, 6746 mg kg−1 Pb, 15,320 mg kg−1 Zn). The results show that the changes in redox conditions (from 300 mV to −100 mV) and pH after flooding and rewetting periods may mobilise the contaminant elements into soil solution (e.g., 100 μg L−1 Cd, 30 μg L−1 Pb, 7 mg L−1 Zn), where they are available for plants or may be leached from the soil. Drying periods generated peaks of concentrations in the soil solution (up to 120 μg L−1 Cd and 50 μg L−1 Pb). The risk assessment of As and metal-polluted salt marshes should take into account flood dynamics in order to prevent metal(loid) mobilisation.  相似文献   

9.
The relationship between Cu speciation in solution and mortality and tissue Cu concentrations in Eisenia fetida was investigated. E. fetida were exposed to solutions containing 0.009, 0.049 and 0.125 mg Cu L−1and 0, 0.15, 0.35 and 50 mg EDTA L−1. Mortalities of 100, 60, 50 and 25% were recorded in the 0.125 mg Cu L−1 solutions containing 0, 0.15, 0.35 and 50 mg EDTA L−1, respectively. Similarly tissue body burden decreased with increasing EDTA concentration. Complexation capacity of the solution increased with EDTA concentration. In the 0.125 mg Cu L−1 solution labile Cu concentration decreased with increasing EDTA concentration. These trends are attributed to complexation of free Cu ions with EDTA molecules, and the non-bioavailable nature of the resultant Cu–EDTA complex.  相似文献   

10.
Passive treatment systems for mine drainage use no energy other than gravity, but they require greater area than active treatment systems. Researchers are considering “hybrid” systems that have passive and active components for increased efficiency, especially where space limitations render passive-only technology ineffective. Flow-through reactor field experiments were conducted at two large net-alkaline anthracite mine discharges in central Pennsylvania. Assuming an Fe removal rate of 20 g m−2 day−1 and Fe loading from field data, 3.6 × 103 and 3.0 × 104 m2 oxidation ponds would be required for the passive treatment of Site 21 and Packer 5 discharges, respectively. However, only a small area is available at each site. This paper demonstrates aeration to drive off CO2, increase pH, and increase Fe(II) oxidation rates, enabling treatment within a small area compared to passive treatment methods, and introduces a geochemical model to accurately predict these rates as well as semi-passive treatment system sizing parameters. Both net-alkaline discharges were suboxic with a pH of ≈5.7, Fe(II) concentration of ≈16 mg L−1, and low Mn and Al concentrations. Flow rates were ≈4000 L min−1 at Site 21 and 15,000 L min−1 at Packer 5. Three-h aeration experiments with flow rates scaled to a 14-L reactor resulted in pH increases from 5.7 to greater than 7, temperature increases from 12 to 22 °C, dissolved O2 increases to saturation with respect to the atmosphere, and Fe(II) concentration decreases from 16 to <0.05 mg L−1. A 17,000-L pilot-scale reactor at Site 21 produced similar results although aeration was not as complete as in the smaller reactor. Two non-aerated experiments at Site 21 with 13 and 25-h run times resulted in pH changes of ?0.2 and Fe(II) concentration decreases of less than 3 mg L−1.  相似文献   

11.
The western Tianshan range is a major Cenozoic orogenic belt in central Asia exposing predominantly Paleozoic rocks including granite. Ongoing deformation is reflected by very rugged topography with peaks over 7000 m high. Active tectonic deformation is tied to an E–W trending fracture and fault system that sections the mountain chain into geologically diverse blocks that extend parallel to the orogen. In the Muzhaerte valley upwelling hot water follows such a fault system in the Muza granite. About 20 L min−1 Na–SO4–Cl water with a temperature of 55 °C having a total mineralization of about 1 g L−1 discharge from the hot spring. The water is used in a local spa that is frequented by the people of the upper Ili river area. Its waters are used for balneological purposes and the spa serves as a therapeutic institution. The major element composition of the hot water is dominated by Na and by SO4 and Cl, Ca is a minor component. Dissolved silica (1.04 mmol L−1) corresponds to a quartz-saturation temperature of 116 °C and a corresponding depth of the source of the water of about 4600 m. This temperature is consistent with Na/K and Na/Li geothermometry. The water is saturated with respect to fluorite and contains 7.5 mg L−1 F as a consequence of the low Ca-concentration. The water is undersaturated with respect to the primary minerals of the reservoir granite at reservoir temperature causing continued irreversible dissolution of granite. The waters are oversaturated with respect to Ca–zeolite minerals (such as stilbite and mesolite), and it is expected that zeolites precipitate in the fracture pore space and in alteration zones replacing primary granite.  相似文献   

12.
An understanding of the biogeochemical behaviour of metals in mine spoil materials is a prerequisite to rehabilitate Ni mining sites. The objective of this study was to characterize the fate of metals in different Ni ore spoil materials as influenced by hydrological conditions and fertilisation practices. In tropical ultramafic complexes, the different stages of lateritic weathering lead to two types of ores, and therefore, to two spoil types. They are mainly either a clay-rich saprolite, so-called “garnierite”, enriched in phyllosilicates, or a limonitic material, enriched in Fe oxides. Lysimeter columns were designed to monitor leaching waters through both spoil materials. The garnieritic spoil released higher concentrations of Mg (mean = 2.25 mg L−1), Ni (0.39 mg L−1) and Cr (1.19 mg L−1) than the limonitic spoil (Mg = 0.5 mg L−1; Ni = 0.03 mg L−1 and Cr = 0.25 mg L−1). Chromium was mainly in an anionic form in leaching solutions. As exchangeable pools of Cr(VI) in limonite (980 mg kg−1 of KH2PO4-extractable Cr) are considerable its release in water may still occur in the case of a pH increase. In mixed spoil, metal concentrations were almost as low as in the limonitic one. The effect of mineral-N fertilisation was a strong release of cations (Ni, Mg) into the leachate. Phosphate amendment did not affect the soil solution composition under experimental conditions.  相似文献   

13.
The shallow aquifer beneath the Western Snake River Plain (Idaho, USA) exhibits widespread elevated arsenic concentrations (up to 120 μg L−1). While semi-arid, crop irrigation has increased annual recharge to the aquifer from approximately 1 cm prior to a current rate of >50 cm year−1. The highest aqueous arsenic concentrations are found in proximity to the water table (all values >50 μg L−1 within 50 m) and concentrations decline with depth. Despite strong vertical redox stratification within the aquifer, spatial distribution of aqueous species indicates that redox processes are not primary drivers of arsenic mobilization. Arsenic release and transport occur under oxidizing conditions; groundwater wells containing dissolved arsenic at >50 μg L−1 exhibit elevated concentrations of O2 (average 4 mg L−1) and NO3 (average 8 mg L−1) and low concentrations of dissolved Fe (<20 μg L−1). Sequential extractions and spectroscopic analysis of surficial soils and sediments indicate solid phase arsenic is primarily arsenate and is present at elevated concentrations (4–45 mg kg−1, average: 17 mg kg−1) relative to global sedimentary abundances. The highest concentrations of easily mobilized arsenic (up to 7 mg kg−1) are associated with surficial soils and sediments visibly stained with iron oxides. Batch leaching experiments on these materials using irrigation waters produce pore water arsenic concentrations approximating those observed in the shallow aquifer (up to 152 μg L−1). While As:Cl aqueous phase relationships suggest minor evaporative enrichment, this appears to be a relic of the pre-irrigation environment. Collectively, these data indicate that infiltrating irrigation waters leach arsenic from surficial sediments to the underlying aquifer.  相似文献   

14.
Hydrochemical patterns resulting from differing bedrock geochemistry were ascertained by concurrent streamwater sampling in three small catchments, each underlain by geochemically contrasting silicate rock types in the western Czech Republic, Central Europe in 2001–2010. The catchments are situated 5–7 km apart in the Slavkov Forest and are occupied by Norway spruce (Picea abies) plantations. They have similar altitude, area, topography, mean annual air temperature, and atmospheric deposition fluxes. The amount of base cations oxides (Ca + Mg + Na + K) is markedly different among the three studied rocks (leucogranite 8%, amphibolite 22%, serpentinite 36%). The leucogranite contains a very small amount of MgO, while the serpentinite contains extremely large amounts of MgO. The amphibolite contains an intermediate amount of MgO and elevated CaO. The Lysina, on leucogranite, exhibited very small concentrations of Mg (median 0.4 mg L−1) in streamwater; Pluh?v Bor, on serpentinite, contained extremely high concentrations of streamwater Mg (18 mg L−1). Streamwater in the Na Zeleném catchment, on amphibolite, contained an intermediate amount of Mg and an elevated Ca. Very low pH (4.2), negative alkalinity (−60 μeq L−1) and high inorganic monomeric Al concentrations (0.3 mg L−1) were found in the stream draining leucogranite. Serpentinite streamwater exhibited the highest pH (7.6), alkalinity (+940 μeq L−1) and Ni concentrations (100 μg L−1). Aquatic chemistry reflected the composition of the underlying rocks within the studied catchments. Contrasting streamwater compositions of the studied catchments were generated according to the MAGIC model simulations mainly by differences in chemical weathering rates of base cations (65 meq m−2 a−1 at Lysina, 198 meq m−2 a−1 at Na Zeleném, and 241 meq m−2 a−1 at Pluh?v Bor).  相似文献   

15.
Complete hydrochemical data are rarely reported for coal-mine discharges (CMD). This report summarizes major and trace-element concentrations and loadings for CMD at 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania. Clean-sampling and low-level analytical methods were used in 1999 to collect data that could be useful to determine potential environmental effects, remediation strategies, and quantities of valuable constituents. A subset of 10 sites was resampled in 2003 to analyze both the CMD and associated ochreous precipitates; the hydrochemical data were similar in 2003 and 1999. In 1999, the flow at the 140 CMD sites ranged from 0.028 to 2210 L s−1, with a median of 18.4 L s−1. The pH ranged from 2.7 to 7.3; concentrations (range in mg/L) of dissolved (0.45-μm pore-size filter) SO4 (34–2000), Fe (0.046–512), Mn (0.019–74), and Al (0.007–108) varied widely. Predominant metalloid elements were Si (2.7–31.3 mg L−1), B (<1–260 μg L−1), Ge (<0.01–0.57 μg L−1), and As (<0.03–64 μg L−1). The most abundant trace metals, in order of median concentrations (range in μg/L), were Zn (0.6–10,000), Ni (2.6–3200), Co (0.27–3100), Ti (0.65–28), Cu (0.4–190), Cr (<0.5–72), Pb (<0.05–11) and Cd (<0.01–16). Gold was detected at concentrations greater than 0.0005 μg L−1 in 97% of the samples, with a maximum of 0.0175 μg L−1. No samples had detectable concentrations of Hg, Os or Pt, and less than half of the samples had detectable Pd, Ag, Ru, Ta, Nb, Re or Sn. Predominant rare-earth elements, in order of median concentrations (range in μg/L), were Y (0.11–530), Ce (0.01–370), Sc (1.0–36), Nd (0.006–260), La (0.005–140), Gd (0.005–110), Dy (0.002–99) and Sm (<0.005–79). Although dissolved Fe was not correlated with pH, concentrations of Al, Mn, most trace metals, and rare earths were negatively correlated with pH, consistent with solubility or sorption controls. In contrast, As was positively correlated with pH.  相似文献   

16.
Solubility experiments were performed on nanocrystalline scorodite and amorphous ferric arsenate. Nanocrystalline scorodite occurs as stubby prismatic crystals measuring about 50 nm and having a specific surface area of 39.88 ± 0.07 m2/g whereas ferric arsenate is amorphous and occurs as aggregated clusters measuring about 50–100 nm with a specific surface area of 17.95 ± 0.19 m2/g. Similar to its crystalline counterpart, nanocrystalline scorodite has a solubility of about 0.25 mg/L at around pH 3–4 but has increased solubilities at low and high pH (i.e. <2 and >6). Nanocrystalline scorodite dissolves incongruently at about pH > 2.5 whereas ferric arsenate dissolution is incongruent at all the pH ranges tested (pH 2–5). It appears that the solubility of scorodite is not influenced by particle size. The dissolution rate of nanocrystalline scorodite is 2.64 × 10−10 mol m−2 s−1 at pH 1 and 3.25 × 10−11 mol m−2 s−1 at pH 2. These rates are 3–4 orders of magnitude slower than the oxidative dissolution of pyrite and 5 orders of magnitude slower than that of arsenopyrite. Ferric arsenate dissolution rates range from 6.14 × 10−9 mol m−2 s−1 at pH 2 to 1.66 × 10−9 mol m−2 s−1 at pH 5. Among the common As minerals, scorodite has the lowest solubility and dissolution rate. Whereas ferric arsenate is not a suitable compound for As control in mine effluents, nanocrystalline scorodite that can be easily precipitated at ambient pressure and temperature conditions would be satisfactory in meeting the regulatory guidelines at pH 3–4.  相似文献   

17.
Kinetics of arsenopyrite oxidative dissolution by oxygen   总被引:1,自引:0,他引:1  
We used a mixed flow reactor system to determine the rate and infer a mechanism for arsenopyrite (FeAsS) oxidation by dissolved oxygen (DO) at 25 °C and circumneutral pH. Results indicate that under circumneutral pH (6.3-6.7), the rate of arsenopyrite oxidation, 10−10.14±0.03 mol m−2 s−1, is essentially independent of DO over the geologically significant range of 0.3-17 mg L−1. Arsenic and sulfur are released from arsenopyrite in an approximate 1:1 molar ratio, suggesting that oxidative dissolution by oxygen under circumneutral pH is congruent. Slower rates of iron release from the reactor indicate that some of the iron is lost from the effluent by oxidation to Fe(III) which subsequently hydrolyzes and precipitates. Using the electrochemical cell model for understanding sulfide oxidation, our results suggest that the rate-determining step in arsenopyrite oxidation is the reduction of water at the anodic site rather than the transfer of electrons from the cathodic site to oxygen as has been suggested for other sulfide minerals such as pyrite.  相似文献   

18.
19.
Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L−1 within the Sacramento River to 39.9 mg L−1 at the outfall from an island drain (median 3.0 mg L−1), while lignin concentrations ranged from 3.0 μg L−1 within the Sacramento River to 111 μg L−1 at the outfall from an island drain (median 11.6 μg L−1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC)−1 at an island drain to 0.84 mg (100 mg OC)−1 for a wetland (median 0.36 mg (100 mg OC)−1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of localized landscape features, and is also the first to indicate a significant negative correlation between lignin and DOC bioavailability within environmental samples. Based upon observed trends: (1) Delta features exhibit significant spatial variability in organic chemical composition, and (2) localized Delta features appear to exert strong controls on terrigenous DOC as it passes through the Delta and is exported into the Pacific Ocean.  相似文献   

20.
The speciation of aqueous dissolved sulfur was determined in hydrothermal waters in Iceland. The waters sampled included hot springs, acid-sulfate pools and mud pots, sub-boiling well discharges and two-phase wells. The water temperatures ranged from 4 to 210 °C, the pHT was between 2.20 and 9.30 at the discharge temperature and the SO4 and Cl concentrations were 0.020-52.7 and <0.01-10.0 mmol kg−1, respectively. The analyses were carried out on-site within ∼10 min of sampling using ion chromatography (IC) for sulfate (SO42−), thiosulfate (S2O32−) and polythionates (SxO62−) and titration and/or colorimetry for total dissolved sulfide (S2−). Sulfite (SO32−) could also be determined in a few cases using IC. Alternatively, for few samples in remote locations the sulfur oxyanions were stabilized on a resin on site following elution and analysis by IC in the laboratory. Dissolved sulfate and with few exceptions also S2− were detected in all samples with concentrations of 0.02-52.7 mmol kg−1 and <1-4100 μmol kg−1, respectively. Thiosulfate was detected in 49 samples of the 73 analyzed with concentrations in the range of <1-394 μmol kg−1 (S-equivalents). Sulfite was detected in few samples with concentrations in the range of <1-3 μmol kg−1. Thiosulfate and SO32− were not detected in <100 °C well waters and S2O32− was observed only at low concentrations (<1-8 μmol kg−1) in ∼200 °C well waters. In alkaline and neutral pH hot springs, S2O32− was present in significant concentrations sometimes corresponding to up to 23% of total dissolved sulfur (STOT). In steam-heated acid-sulfate waters, S2O32− was not a significant sulfur species. The results demonstrate that S2O32− and SO32− do not occur in the deeper parts of <150 °C hydrothermal systems and only in trace concentrations in ∼200-300 °C systems. Upon ascent to the surface and mixing with oxygenated ground and surface waters and/or dissolution of atmospheric O2, S2− is degassed and oxidized to SO32− and S2O32− and eventually to SO42− at pH >8. In near-neutral hydrothermal waters the oxidation of S2− and the interaction of S2− and S0 resulting in the formation of Sx2− are considered important. At lower pH values the reactions seemed to proceed relatively rapidly to SO42− and the sulfur chemistry of acid-sulfate pools was dominated by SO42−, which corresponded to >99% of STOT. The results suggest that the aqueous speciation of sulfur in natural hydrothermal waters is dynamic and both kinetically and source-controlled and cannot be estimated from thermodynamic speciation calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号