首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A.V. Pathare  M.R. Balme  M.C. Towner 《Icarus》2010,209(2):851-853
Competing hypotheses for the diameter dependence of terrestrial and martian dust devil frequency are assessed using new field observations from two sites in the southwestern United States. We show that at diameters less than 12 m, our observed dust devil size-frequency distributions are better fit by an exponential function than by a power law formulation, and discuss the implications for larger dust devils on Earth and Mars.  相似文献   

2.
A total of 205 dust devils were detected in 23 High Resolution Stereo Camera (HRSC) images taken between January 2004 and July 2006 with the ESA Mars Express orbiter, in which average dust devil heights were ∼660 m and average diameters were ∼230 m. For the first time, dust devil velocities were directly measured from orbit, and range from 1 to 59 m/s. The observed dust devil directions of motion are consistent with data derived from a General Circulation Model (GCM). In some respects HRSC dust devil properties agree favorably with data from the NASA Mars Exploration Rover Spirit dust devil analyses. The spatial distribution of the active dust devils detected by HRSC supports the conjecture that the ascending branch of the Hadley circulation is responsible for the increase in dust devil activity, especially observed during southern summer between 50° and 60° S latitude. Combining the dust-lifting rate of 19 kg/km2/sol derived from the Spirit observations with the fewer in number but larger in size dust devils from various other locations observed by HRSC, we suggest that dust devils make a significant contribution to the dust entrainment into the atmosphere and to the martian dust cycle.  相似文献   

3.
Data from the Pathfinder and Phoenix landers on Mars show transient pressure drops (~1–4 per day) attributed to nearby encounters with dust devils or dust-free vortices. The distribution of pressure drop amplitudes is consistent with a truncated power law distribution with a slope of ?2, similar to that suggested previously for the optical diameters of dust devils. Comparable data from terrestrial field observations are very sparse: the only published dataset is half a century old and lists only 19 pressure drops. That dataset is too small to permit a robust comparison with Mars and likely suffers from a low detection efficiency at small dust devil sizes. Observed pressure drops in these fixed-station Mars datasets (30–300 μbar) are 10× lower than those typically observed on Earth (0.3–3 mbar): some higher drops have been reported for large terrestrial devils sampled by pursuing vehicles. The needed terrestrial data for comparison with Mars in-situ data (soon to be augmented, we hope, by the Mars Science Laboratory mission) is noted. Prospects for obtaining such data via field campaigns using new data acquisition technology, and with microbarographs for nuclear test monitoring, are discussed.  相似文献   

4.
Dust devils – convective vortices made visible by the dust and debris they entrain – are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites.We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements.Daily (10:00–16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10–20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction.The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.  相似文献   

5.
Physical characteristics of naturally formed convective vortices in the Phoenix Mars lander environment have been investigated on a relatively hot summer Martian arctic day. For this, the NCAR LES has been adapted and developed to conduct three micro-scale simulations of the Martian Convective Boundary Layer (CBL), in situations with and without geostrophic wind, and atmospheric radiative flux divergence. Time series analysis of the vortices’ properties is discussed. The study confirms the decrease of vortex populations in windy conditions and also illustrates that intense but small vortices are expected to be observed in higher geostrophic wind situations. This may lead to more dust migration rather than dust devil formation on windy days. The background (geostrophic) wind causes the vortices to become less cyclostrophically balanced.  相似文献   

6.
T.J. Ringrose  M.C. Towner 《Icarus》2003,163(1):78-87
Dust devil data from Mars is limited by a lack of data relating to diurnal dust devil behaviour. Previous work looking at the Viking Lander meteorological data highlighted seasonal changes in temporal occurrence of dust devils and gave an indication of typical dust devil diameter, size, and internal dynamics. The meteorological data from Viking Lander 2 for sols 1 to 60 have been revisited to provide detailed diurnal dust devil statistics. Results of our analysis show that the Viking Lander 2 experienced a possible 38 convective vortices in the first 60 sols of its mission with a higher occurrence in the morning compared to Earth, possibly as a result of turbulence generated by the Lander body. Dust devil events have been categorised by statistical confidence and intensity. Some initial analysis and discussion of the results is also presented. Assuming a similar dust loading to the vortices seen by Mars Pathfinder, it is estimated that the amount of dust lofted in the locality of the Lander is approximately 800 ± 10 kgsol−1km−2.  相似文献   

7.
D. Reiss  M. Zanetti  G. Neukum 《Icarus》2011,215(1):358-369
Active dust devils were observed in Syria Planum in Mars Observer Camera - Wide Angle (MOC-WA) and High Resolution Stereo Camera (HRSC) imagery acquired on the same day with a time delay of ∼26 min. The unique operating technique of the HRSC allowed the measurement of the traverse velocities and directions of motion. Large dust devils observed in the HRSC image could be retraced to their counterparts in the earlier acquired MOC-WA image. Minimum lifetimes of three large (avg. ∼700 m in diameter) dust devils are ∼26 min, as inferred from retracing. For one of these large dust devil (∼820 m in diameter) it was possible to calculate a minimum lifetime of ∼74 min based on the measured horizontal speed and the length of its associated dust devil track. The comparison of our minimum lifetimes with previous published results of minimum and average lifetimes of small (∼19 m in diameter, avg. min. lifetime of ∼2.83 min) and medium (∼185 m in diameter, avg. min. lifetime of ∼13 min) dust devils imply that larger dust devils on Mars are active for much longer periods of time than smaller ones, as it is the case for terrestrial dust devils. Knowledge of martian dust devil lifetimes is an important parameter for the calculation of dust lifting rates. Estimates of the contribution of large dust devils (>300-1000 m in diameter) indicate that they may contribute, at least regionally, to ∼50% of dust entrainment by dust devils into the atmosphere compared to the dust devils <300 m in diameter given that the size-frequency distribution follows a power-law. Although large dust devils occur relatively rarely and the sediment fluxes are probably lower compared to smaller dust devils, their contribution to the background dust opacity by dust devils on Mars could be at least regionally large due to their longer lifetimes and ability of dust lifting into high atmospheric layers.  相似文献   

8.
D. Reiss  J. Raack  H. Hiesinger 《Icarus》2011,211(1):917-920
We report on the first observations of bright dust devil tracks (BDDTs) on Earth, observed in the Turpan depression desert in northwestern China, where raindrop impacts on sand surfaces form aggregates of sand, silt and clay resulting in rough surface textures, which are destroyed by passages of dust devils leading to smooth surface textures within the tracks. The differences in photometric properties between the track and outside the tracks cause the albedo differences leading to the formation of BDDTs and similar processes might lead to BDDTs on Mars in areas with thick dust covers.  相似文献   

9.
We present a Mars General Circulation Model (GCM) numerical investigation of the physical processes (i.e., wind stress and dust devil dust lifting and atmospheric transport) responsible for temporal and spatial variability of suspended dust particle sizes. Measurements of spatial and temporal variations in airborne dust particles sizes in the martian atmosphere have been derived from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) spectral and emission phase function data [Wolff, M.J., Clancy, R.T., 2003. J. Geophys. Res. (Planets) 108 (E9), doi:10.1029/2003JE002057. 1-1; Clancy, R.T., Wolff, M.J., Christensen, P.R., 2003. J. Geophys. Res. (Planets) 108 (E9), doi:10.1029/2003JE002058. 2-1]. The range of dust particle sizes simulated by the NASA Ames GCM is qualitatively consistent with TES-derived observations of effective dust particle size variability. Model results suggest that the wind stress dust lifting scheme (which produces regionally confined dust lifting) is the process responsible for the majority of the dust particle size variability in the martian atmosphere. Additionally, model results suggest that atmospheric transport processes play an important role in the evolution of atmospheric dust particles sizes during substantial dust storms on Mars. Finally, we show that including the radiative effects of a spatially variable particle size distribution significantly influences thermal and dynamical fields during the dissipation phase of the simulated global dust storm.  相似文献   

10.
M.V. Kurgansky 《Icarus》2012,219(2):556-560
Theoretical predictions with regard to dust devil (apparent) angular size–frequency distribution are made and critically compared with Mars Exploration Rover (MER) Spirit optical observations. For an idealized horizontal viewing geometry one should expect that the number of dust devils having the apparent angular diameter greater than a given angle α is inversely proportional to α squared. The actual dependency for Spirit dust devils is in between the inverse-squared and simple inverse laws, and close to the latter one for small and moderate angles α. It is emphasized that such a comparison can be considered as a benchmark for completeness and adequateness of dust-devil optical observations and correctness of competing analytical formulations for dust devil size–frequency distribution.  相似文献   

11.
December 25th 2003 will see the Beagle 2 lander arrive at the surface of Mars in the Isidis region, allowing for the first time in situ measurements of ultraviolet (UV) flux directly from the surface of Mars through the use of a sensor designed as part of a miniaturised environmental package. The expected conditions the sensor will experience are studied here, and the detection signatures for phenomenon such as dust devils, H2O clouds ands near-surface fogs are presented. The beginning and end of mission surface fluxes show little variation, though the period towards mid-nominal mission does experience a maximum in total daily dose levels. Diurnal profiles are calculated highlighting the effects of increased scattering towards shorter wavelengths. A possible dust storm scenario is presented, and the effect upon component UV fluxes is shown to reverse the relative contributions of direct and diffuse components of the total UV flux. The presence of cloud formation above the landing site will be detectable though the observation of elevated diffuse/direct flux ratios. Near-surface morning fogs show a characteristic ‘dip’ in the morning profile when compared to clear mornings, allowing their detection on cloud-free mornings through post-event analysis of long term data. Predicted Phobos eclipses are investigated at each of the sensor centre wavelengths, and show greatest reduction in relative intensity at short wavelengths. Observations of near-miss eclipse events will also be possible, through monitoring of the diffuse UV flux. Dust devil encounters are shown to create a double minima lightcurve, with the depth of the minima dependent upon the total dust loading of the vortex. The effects of these changing conditions on DNA-weighted irradiances are investigated. Possible dust storms provide the greatest increase in biological protection, whereas expected cloud formations at the Beagle 2 site are found to offer negligible protection. Within just five minutes of landing >95% of any Bacillus subtilis-like bacteria present on the surface of the craft will have lost viability.  相似文献   

12.
The LIDAR instrument operating from the surface of Mars on the Phoenix Mission measured vertical profiles of atmospheric dust and water ice clouds at temperatures around −65 °C. An equivalent lidar system was utilized for measurements in the atmosphere of Earth where dust and cloud conditions are similar to Mars. Coordinated aircraft in situ sampling provided a verification of lidar measurement and analysis methods and also insight for interpretation of lidar derived optical parameters in terms of the dust and cloud microphysical properties. It was found that the vertical distribution of airborne dust above the Australian desert is quite similar to what is observed in the planetary boundary layer above Mars. Comparison with the in situ sampling is used to demonstrate how the lidar derived optical extinction coefficient is related to the dust particle size distribution. The lidar measurement placed a constraint on the model size distribution that has been used for Mars. Airborne lidar measurements were also conducted to study cirrus clouds that form in the Earth’s atmosphere at a similar temperature and humidity as the clouds observed with the lidar on Mars. Comparison with the in situ sampling provides a method to derive the cloud ice water content (IWC) from the Mars lidar measurements.  相似文献   

13.
P.C Thomas  P Gierasch  D.S Miller  B Cantor 《Icarus》2003,162(2):242-258
Variable surface albedo features on Mars are likely caused by the entrainment and deposition of dust by the wind. Most discrete markings are associated with topographic forms or with regional slopes that serve to alter the effective wind shear stress on the surface. Some of the largest variable features, here termed mesoscale linear streaks, are up to 400 km in length and repeatedly occur in one of the smoothest regions of Mars: Amazonis Planitia. Their orientations and apparent season of variability as observed by Viking and Mars Orbiter cameras indicate linear streak formation by enhanced surface wind stresses during regional or local dust storms and during the initial stages of global dust storms. They provide an example of the ability of large-scale winds, without significant local enhancement, to initiate dust motion on Mars. The sizes and spacing of the linear streaks may be controlled by boundary layer rolls. The repetitive formation of these streaks, over a span of more than 11 Mars years, gives one measure of the stability of Mars’ eolian processes.  相似文献   

14.
Motivated by questions raised by the magnetic properties experiments on the NASA Mars Pathfinder and Mars Exploration Rover (MER) missions, we have studied in detail the capture of airborne magnetic dust by permanent magnets using a computational fluid dynamics (CFD) model supported by laboratory simulations. The magnets studied are identical to the capture magnet and filter magnet on MER, though results are more generally applicable.The dust capture process is found to be dependent upon wind speed, dust magnetization, dust grain size and dust grain mass density. Here we develop an understanding of how these parameters affect dust capture rates and patterns on the magnets and set bounds for these parameters based on MER data and results from the numerical model. This results in a consistent picture of the dust as containing varying amounts of at least two separate components with different physical properties.  相似文献   

15.
Atmospheric water vapor abundances in Mars’ north polar region (NPR, from 60° to 90°N) are mapped as function of latitude and longitude for spring and summer seasons, and their spatial, seasonal, and interannual variability is discussed. Water vapor data are from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Viking Orbiter (VO) Mars Atmospheric Water Detector (MAWD). The data cover three complete northern spring-summer seasons in 1977-1978, 2000-2001 and 2002-2003, and shorter periods of spring-summer seasons during 1975, 1999 and 2004. Long term interannual variability in the averaged NPR abundances may exist, with Viking MAWD observations showing twice as much water vapor during summer as the MGS TES observations more than 10 martian years (MY) later. While the averaged abundances are very similar in TES observations for the same season in different years, the spatial distributions in the early summer season do vary significantly year over year. Spatial and temporal variabilities increase between Ls ∼ 80-140°, which may be related to vapor sublimation from the North Polar Residual Cap (NPRC), or to changes in circulation. Spatial variability is observed on scales of ∼100 km and temporal variability is observed on scales of <10 sols during summer. During late spring the TES water vapor spatial distribution is seen to correlate with the low topography/low albedo region of northern Acidalia Planitia (270-360°E), and with the dust spatial distribution across the NPR during late spring-early summer. Non-uniform vertical distribution of water vapor, a regolith source or atmospheric circulation ‘pooling’ of water vapor from the NPRC into the topographic depression may be behind the correlation with low topography/low albedo. Sublimation winds carrying water vapor off the NPRC and lifting surface dust in the areas surrounding the NPRC may explain the correlation between the water vapor and dust spatial distributions. Correlation between water vapor and dust in MAWD data are only observed over low topography/low albedo area. Maximum water vapor abundances are observed at Ls = 105-115° and outside of the NPRC at 75-80°N; the TES data, however, do not extend over the NPRC and thus, this conclusion may be biased. Some water vapor appears to be released in plumes or ‘outbursts’ in the MAWD and TES datasets during late spring and early summer. We propose that the sublimation rate of ice varies across the NPRC with varying surface winds, giving rise to the observed ‘outbursts’ at some seasons.  相似文献   

16.
S.M. Metzger  M.C. Towner 《Icarus》2011,214(2):766-772
In situ (mobile) sampling of 33 natural dust devil vortices reveals very high total suspended particle (TSP) mean values of 296 mg m−3 and fine dust loadings (PM10) mean values ranging from 15.1 to 43.8 mg m−3 (milligrams per cubic meter). Concurrent three-dimensional wind profiles show mean tangential rotation of 12.3 m s−1 and vertical uplift of 2.7 m s−1 driving mean vertical TSP flux of 1689 mg m−3 s−1 and fine particle flux of ∼1.0 to ∼50 mg m−3 s−1. Peak PM10 dust loading and flux within the dust column are three times greater than mean values, suggesting previous estimates of dust devil flux might be too high. We find that deflation rates caused by dust devil erosion are ∼2.5-50 μm per year in dust devil active zones on Earth. Similar values are expected for Mars, and may be more significant there where competing erosional mechanisms are less likely.  相似文献   

17.
Determining absolute surface ages for bodies in the Solar System is, at present, only possible for Earth and Moon with radiometric dating for both bodies and biologic proxies such as fossils for Earth. Relative ages through cratering statistics are recognized as one of the most reliable proxies for relative ages, calibrated by lunar geologic mapping and Apollo program sample returns. In this work, we have utilized the Mars Reconnaissance Orbiter’s ConTeXt Camera’s images which provide the highest resolution wide-scale coverage of Mars to systematically crater-age-date the calderas of 20 of Mars’ largest volcanoes in order to constrain the length of time over which these volcanoes - and major volcanic activity on the planet, by extension - were active. This constitutes the largest uniform and comprehensive research on these features to date, eliminating unknown uncertainties by multiple researchers analyzing different volcanoes with varied data and methods. We confirm previous results that Mars has had active volcanism throughout most of its history although it varied spatially and temporally, with the latest large-scale caldera activity ending approximately 150 ma in the Tharsis region. We find a transition from explosive to effusive eruption style occurring in the Hesperian, at approximately 3.5 Ga ago, though different regions of the planet transitioned at different times. Since we were statistically complete in our crater counts to sizes as small as ∼60 m in most cases, we also used our results to study the importance of secondary cratering and its effects on crater size-frequency distributions within the small regions of volcanic calderas. We found that there is no “golden rule” for the diameters secondaries become important in crater counts of martian surfaces, with one volcano showing a classic field of secondaries ∼2 crater diameters from the center of its primary but not affecting the size-frequency distribution, and another clearly showing an influence but from no obvious primary.  相似文献   

18.
Nathalia Alzate 《Icarus》2011,211(2):1274-1283
Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede’s purer ice crust. A transition to different characteristics occurs in Ganymede’s icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.  相似文献   

19.
We present an application of a multivariate analyses technique on data returned by the Planetary Fourier Spectrometer (PFS) instrument on board the ESA’s Mars Express (MEX) spacecraft in order to separate the atmospheric contribution from the observed radiation. We observe that Thermal/Far Infrared spectra returned from Mars, covering almost a whole martian year, can be represented by a linear model using a limited set of end-member spectra. We identify the end-members as the suspended mineral dust and water ice clouds, but no surface signature was found. We improve previous studies performed with data from the Thermal Emission Spectrometer (TES) thanks to the higher spectral resolution of PFS. This allows for distinguishing narrow gaseous bands present in the martian atmosphere. Furthermore, the comparison of results from PFS and TES with data collected in 1971 by the Mariner 9 Infrared Interferometer Spectrometer (IRIS) shows an atmospheric dust component with similar spectral behavior. This might indicate homogeneity of the dust source regions over a time period of more than 30 years.  相似文献   

20.
J.F. Bell III  T.M. Ansty 《Icarus》2007,191(2):581-602
We acquired high spectral and spatial resolution hyperspectral imaging spectrometer observations of Mars from near-UV to near-IR wavelengths (∼300 to 1020 nm) using the STIS instrument on the Hubble Space Telescope during the 1999, 2001, and 2003 oppositions. The data sets have been calibrated to radiance factor (I/F) and map-projected for comparison to each other and to other Mars remote sensing measurements. We searched for and (where detected) mapped a variety of iron-bearing mineral signatures within the data. The strong and smooth increase in I/F from the near-UV to the visible that gives Mars its distinctive reddish color indicates that poorly crystalline ferric oxides dominate the spectral properties of the high albedo regions (as well as many intermediate and low albedo regions), a result consistent with previous remote sensing studies of Mars at these wavelengths. In the near-IR, low albedo regions with a negative spectral slope and/or a distinctive ∼900 nm absorption feature are consistent with, but not unique indicators of, the presence of high-Ca pyroxene or possibly olivine. Mixed ferric-ferrous minerals could also be responsible for the ∼900 nm feature, especially in higher albedo regions with a stronger visible spectral slope. We searched for the presence of several known diagnostic absorption features from the hydrated ferric sulfate mineral jarosite, but did not find any unique evidence for its occurrence at the spatial scale of our observations. We identified a UV contrast reversal in some dark region spectra: at wavelengths shorter than about 340 nm these regions are actually brighter than classical bright regions. This contrast reversal may be indicative of extremely “clean” low albedo surfaces having very little ferric dust contamination. Ratios between the same regions observed during the planet-encircling dust storm of 2001 and during much clearer atmospheric conditions in 2003 provide a good direct estimate of the UV to visible spectral characteristics of airborne dust aerosols. These HST observations can help support the calibration of current and future Mars orbital UV to near-IR spectrometers, and they also provide a dramatic demonstration that even at the highest spatial resolution possible to achieve from the Earth, spectral variations on Mars at these wavelengths are subtle at best.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号