首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hale crater, a 125 × 150 km impact crater located near the intersection of Uzboi Vallis and the northern rim of Argyre basin at 35.7°S, 323.6°E, is surrounded by channels that radiate from, incise, and transport material within Hale’s ejecta. The spatial and temporal relationship between the channels and Hale’s ejecta strongly suggests the impact event created or modified the channels and emplaced fluidized debris flow lobes over an extensive area (>200,000 km2). We estimate ∼1010 m3 of liquid water was required to form some of Hale’s smaller channels, a volume we propose was supplied by subsurface ice melted and mobilized by the Hale-forming impact. If 10% of the subsurface volume was ice, based on a conservative porosity estimate for the upper martian crust, 1012 m3 of liquid water could have been present in the ejecta. We determine a crater-retention age of 1 Ga inside the primary cavity, providing a minimum age for Hale and a time at which we propose the subsurface was volatile-rich. Hale crater demonstrates the important role impacts may play in supplying liquid water to the martian surface: they are capable of producing fluvially-modified terrains that may be analogous to some landforms of Noachian Mars.  相似文献   

2.
Clark R. Chapman 《Icarus》1974,22(3):272-291
Computerized cratering-obliteration models are developed for use in interpreting planetary surface histories in terms of the diameter-frequency relations for craters classified by morphology. An application is made to a portion of the lunar uplands, revealing several episodes of blanketing, presumably due to the formation of some of the major basins.Application to Martian craters leads to the following picture of Martian cratering and obliteration history. During a probable period of intense early bombardment, craters were degraded by two processes: a depositional-type process connected with the declining cratering rate, and a process tending to flatten the largest craters (e.g., isostatic adjustment). During late stages of the early bombardment, or subsequent to it, there occurred a major relative episode of obliteration (probably atmosphere related), but it ceased concurrently with the massive (presumably volcanic) resurfacing of the cratered plains. Subsequent resurfacing episodes have occurred in the smooth plain terrains, but obliteration processes have been virtually absent in the low-latitude cratered terrains.Recent global Martian cratering interpretations of Hartmann and Soderblom are compared. Absolute cratering chronologies are only so good as knowledge of the absolute cratering flux on Mars. The crater data of Arvidson, Mutch, and Jones do not confirm the basis, whereby Soderblom requires the dominant Martian crater obliteration process to be coincident in time with the early bombardment. If the asteroidal-cometary impact flux on Mars has averaged five times the lunar flux during post-lunar-mare epochs, then the obliterative episode lasted about half a billion years and occurred about 1.5 × 109 yr ago.  相似文献   

3.
Geological analysis of Mars imagery supports the hypothesis that the planet has been the site of recent (<?10 Ma) volcanic and tectonic processes and glacier flow, and makes most likely previous suggestions of continuing endogenic and exogenic activity. Tectonic structures which deform very slightly cratered (at MOC scales) surfaces of Tharsis Montes and surrounding regions seem to attest to active tectonism (both extensional and transcurrent) on Mars. Exogenic processes in this region, such as a glacial origin for the aureole deposits on the northwestern flanks of the Tharsis Montes shield volcanoes, are supported by new data. The very recent age of these structures could be the first direct confirmation that drastic changes in obliquity are modulating the martian climate, such that an increase in obliquity would result in equatorial glaciers taking the place of the receding polar ice caps. If this and other concurring research is extended and confirmed, the ‘alive Mars’ which would emerge would constitute a most appealing place for exobiology and comparative planetology.  相似文献   

4.
Topographic models of Neptune's small inner satellites Larissa and Proteus were derived from the shapes of limbs and terminators in Voyager images, modified locally to accomodate large craters and ridges. The models are presented here in tabular and graphic form, including the first map of Larissa and the first detailed relief map of Proteus. The shape of Larissa is approximated by a triaxial ellipsoid with axes of 208, 192 and 178 km, but is only weakly constrained by the single available view. The volume is estimated to be 3.5 ± 1.0 × 106 km3. The surface is heavily cratered and may be crossed by one or two poorly seen linear ridges. Proteus is approximated by a triaxial ellipsoid with axes of 424, 390 and 396 km (the latter being the rotation axis dimension). The volume is estimated to be 3.4 ± 0.4 × 107 km3. Its surface appears to be very heavily cratered and extensive evidence for linear fractures is observed despite very low image quality.  相似文献   

5.
Topographic models of Saturn's F-Ring shepherd satellites Prometheus and Pandora were derived from the shapes of limbs and terminators in Voyager images, modified locally to accommodate large craters and ridges. The models are presented here in tabular and graphic form, including the first published maps of the satellites. The shape of Prometheus is approximated by a triaxial ellipsoid with axes of 145, 85 and 60 km. The volume is estimated to be 3.9 ± 1.0 × 105 km3, significantly smaller than previous estimates. A system of prominent ridges and valleys cross the north polar region. Prometheus appears to be less heavily cratered than the other small satellites near the edge of the rings, though this may be an artifact of the low resolution of available images. Pandora is approximated by a triaxial ellipsoid with axes of 114, 84 and 62 km. The volume is estimated to be 3.1 ± 1.0 × 105 km3. Its surface appears to be very heavily cratered.  相似文献   

6.
Hydrostatic (closed-system) pingos are small, elongate to circular, ice-cored mounds that are perennial features of some periglacial landscapes. The growth and development of hydrostatic pingos is contingent upon the presence of surface water, freezing processes and of deep, continuous, ice-cemented permafrost. Other cold-climate landforms such as small-sized, polygonal patterned ground also may occur in the areas where pingos are found. On Mars, landscapes comprising small, elongate to circular mounds and other possible periglacial features have been identified in various areas, including Utopia Planitia, where water is thought to have played an important role in landscape evolution. Despite the importance of the martian mounds as possible markers of water, most accounts of them in the planetary science literature have been brief and/or based upon Viking imagery. We use a high-resolution Mars Orbiter Camera image (EO300299) and superposed Mars Orbiter Laser Altimeter data tracks to describe and characterise a crater-floor landscape in northwest Utopia Planitia (64.8° N/292.7° W). The landscape comprises an assemblage of landforms that is consistent with the past presence of water and of periglacial processes. This geomorphological assemblage may have formed as recently as the last episode of high obliquity. A similar assemblage of landforms is found in the Tuktoyaktuk peninsula of northern Canada and other terrestrial cold-climate landscapes. We point to the similarity of the two assemblages and suggest that the small, roughly circular mounds on the floor of the impact crater in northwest Utopia Planitia are hydrostatic pingos. Like the hydrostatic pingos of the Tuktoyaktuk peninsula, the origin of the crater-floor mounds could be tied to the loss of ponded, local water, permafrost aggradation and the evolution of a sub-surface ice core.  相似文献   

7.
All landforms on Titan that are unambiguously identifiable can be explained by exogenic processes (aeolian, fluvial, impact cratering, and mass wasting). Previous suggestions of endogenically produced cryovolcanic constructs and flows have, without exception, lacked conclusive diagnostic evidence. The modification of sparse recognizable impact craters (themselves exogenic) can be explained by aeolian and fluvial erosion. Tectonic activity could be driven by global thermal evolution or external forcing, rather than by active interior processes. A lack of cryovolcanism would be consistent with geophysical inferences of a relatively quiescent interior: incomplete differentiation, only minor tidal heating, and possibly a lack of internal convection today. Titan might be most akin to Callisto with weather: an endogenically relatively inactive world with a cool interior. We do not aim to disprove the existence of any and all endogenic activity at Titan, nor to provide definitive alternative hypotheses for all landforms, but instead to inject a necessary level of caution into the discussion. The hypothesis of Titan as a predominantly exogenic world can be tested through additional Cassini observations and analyses of putative cryovolcanic features, geophysical and thermal modeling of Titan’s interior evolution, modeling of icy satellite landscape evolution that is shaped by exogenic processes alone, and consideration of possible means for supplying Titan’s atmospheric constituents that do not rely on cryovolcanism.  相似文献   

8.
Martian cratering 8: Isochron refinement and the chronology of Mars   总被引:2,自引:0,他引:2  
William K. Hartmann 《Icarus》2005,174(2):294-320
This paper reviews and refines the technique of dating martian surfaces by using impact-crater isochrons (defined as size distributions of impact craters on undisturbed martian surfaces of specified ages). In the 1970s, this system identified not only abundant ancient martian volcanic surfaces, but also extensive lava plains with ages of a few 108 y-old; this dating was initially controversial but confirmed in the 1980s and 90s by martian meteorites. The present update utilizes updated estimates of the Mars/Moon cratering ratio (the most important calibration factor), improves treatment of gravity and impact velocity scaling effects, combines aspects of the crater size distribution data from earlier work by both Neukum and Hartmann, and for the first time applies a correction for loss of small meteoroids in the martian atmosphere from Popova et al. (2003, Meteorit. Planet. Sci. 38, 905-925). The updated isochrons are not radically different from the previous “2002 iteration” but fit observed data better and give somewhat older model ages for features dated from small craters (diameter D<100 m). Crater counts from young lava flows in various areas give good fits to the new isochrons over as much as 3 orders of magnitude in D, confirming the general isochron shape and giving crater retention ages in the range of some 106 to some 108 y, interpreted as lava flow ages. More complex, older units are also discussed. Uncertainties are greatest if only small craters (D?100 m) are used. Suggestions by other workers of gross uncertainties, due to local secondary craters and deposition/exhumation, are discussed; they do not refute our conclusions of significant volcanic, fluvial, and other geologic activity in the last few percent of martian geologic time or the importance of cratering as a tool for studying processes such as exhumation. Indeed, crater count data suggest certain very recent episodes of deposition, exhumation, and ice flow, possibly associated with obliquity cycles of ∼107 y timescale. Evidence from ancient surfaces suggests higher rates of volcanism, fluvial activity, glaciation, and other processes in Noachian/Hesperian time than in Amazonian time.  相似文献   

9.
The Amazonian period of Mars has been described as static, cold, and dry. Recent analysis of high-resolution imagery of equatorial and mid-latitude regions has revealed an array of young landforms produced in association with ice and liquid water; because near-surface ice in these regions is currently unstable, these ice-and-water-related landforms suggest one or more episodes of martian climate change during the Amazonian. Here we report on the origin and evolution of valley systems within a degraded crater in Noachis Terra, Asimov Crater. The valleys have produced a unique environment in which to study the geomorphic signals of Amazonian climate change. New high-resolution images reveal Hesperian-aged layered basalt with distinctive columnar jointing capping interior crater fill and providing debris, via mass wasting, for the surrounding annular valleys. The occurrence of steep slopes (>20°), relatively narrow (sheltered) valleys, and a source of debris have provided favorable conditions for the preservation of shallow-ice deposits. Detailed mapping reveals morphological evidence for viscous ice flow, in the form of several lobate debris tongues (LDT). Superimposed on LDT are a series of fresh-appearing gullies, with typical alcove, channel, and fan morphologies. The shift from ice-rich viscous-flow formation to gully erosion is best explained as a shift in martian climate, from one compatible with excess snowfall and flow of ice-rich deposits, to one consistent with minor snow and gully formation. Available dating suggests that the climate transition occurred >8 Ma, prior to the formation of other small-scale ice-rich flow features identified elsewhere on Mars that have been interpreted to have formed during the most recent phases of high obliquity. Taken together, these older deposits suggest that multiple climatic shifts have occurred over the last tens of millions of years of martian history.  相似文献   

10.
Analysis of visible to near infrared reflectance data from the MRO CRISM hyperspectral imager has revealed the presence of an ovoid-shaped landform, approximately 3 by 5 km in size, within the layered terrains surrounding the Mawrth Vallis outflow channel. This feature has spectral absorption features consistent with the presence of the ferric sulfate mineral jarosite, specifically a K-bearing jarosite (KFe3(SO4)2(OH)6). Terrestrial jarosite is formed through the oxidation of iron sulfides in acidic environments or from basaltic precursor minerals with the addition of sulfur. Previously identified phyllosilicates in the Mawrth Vallis layered terrains include a basal sequence of layers containing Fe-Mg smectites and an upper set of layers of hydrated silica and aluminous phyllosilicates. In terms of its fine scale morphology revealed by MRO HiRISE imagery, the jarosite-bearing unit has fracture patterns very similar to that observed in Fe-Mg smectite-bearing layers, but unlike that observed in the Al-bearing phyllosilicate unit. The ovoid-shaped landform is situated in an east-west bowl-shaped depression superposed on a north sloping surface. Spectra of the ovoid-shaped jarosite-bearing landform also display an anomalously high 600 nm shoulder, which may be consistent with the presence of goethite and a 1.92 μm absorption which could indicate the presence of ferrihydrite. Goethite, jarosite, and ferrihydrite can be co-precipitated and/or form through transformation of schwertmannite, both processes generally occurring under low pH conditions (pH 2-4). To date, this location appears to be unique in the Mawrth Vallis region and could represent precipitation of jarosite in acidic, sulfur-rich ponded water during the waning stages of drying.  相似文献   

11.
Self-organised patterns of stone stripes, polygons, circles and clastic solifluction lobes form by the sorting of clasts from fine-grained sediments in freeze-thaw cycles. We present new High Resolution Imaging Science Experiment (HiRISE) images of Mars which demonstrate that the slopes of high-latitude craters, including Heimdal crater - just 25 km east of the Phoenix Landing Site - are patterned by all of these landforms. The order of magnitude improvement in imaging data resolution afforded by HiRISE over previous datasets allows not only the reliable identification of these periglacial landforms but also shows that high-latitude fluviatile gullies both pre- and post-date periglacial patterned ground in several high-latitude settings on Mars. Because thaw is inherent to the sorting processes that create these periglacial landforms, and from the association of this landform assemblage with fluviatile gullies, we infer the action of liquid water in a fluvio-periglacial context. We conclude that these observations are evidence of the protracted, widespread action of thaw liquids on and within the martian regolith. Moreover, the size frequency statistics of superposed impact craters demonstrate that this freeze-thaw environment is, at least in Heimdal crater, less than a few million years old. Although the current martian climate does not favour prolonged thaw of water ice, observations of possible liquid droplets on the strut of the Phoenix Lander may imply significant freezing point depression of liquids sourced in the regolith, probably driven by the presence of perchlorates in the soil. Because perchlorates have eutectic temperatures below 240 K and can remain liquid at temperatures far below the freezing point of water we speculate that freeze-thaw involving perchlorate brines provides an alternative “low-temperature” hypothesis to the freeze-thaw of more pure water ice and might drive significant geomorphological work in some areas of Mars. Considering the proximity of Heimdal crater to the Phoenix Landing Site, the presence of such hydrated minerals might therefore explain the landforms described here. If this is the case then the geographical distribution of martian freeze-thaw landforms might reflect relatively high temperatures (but still below 273 K) and the locally elevated concentration of salts in the regolith.  相似文献   

12.
The Antarctic Dry Valleys (ADV) are generally classified as a hyper-arid, cold-polar desert. The region has long been considered an important terrestrial analog for Mars because of its generally cold and dry climate and because it contains a suite of landforms at macro-, meso-, and microscales that closely resemble those occurring on the martian surface. The extreme hyperaridity of both Mars and the ADV has focused attention on the importance of salts and brines on soil development, phase transitions from liquid water to water ice, and ultimately, on process geomorphology and landscape evolution at a range of scales on both planets. The ADV can be subdivided into three microclimate zones: a coastal thaw zone, an inland mixed zone, and a stable upland zone; zones are defined on the basis of summertime measurements of atmospheric temperature, soil moisture, and relative humidity. Subtle variations in these climate parameters result in considerable differences in the distribution and morphology of: (1) macroscale features (e.g., slopes and gullies); (2) mesoscale features (e.g., polygons, including ice-wedge, sand-wedge, and sublimation-type polygons, as well as viscous-flow features, including solifluction lobes, gelifluction lobes, and debris-covered glaciers); and (3) microscale features (e.g., rock-weathering processes/features, including salt weathering, wind erosion, and surface pitting). Equilibrium landforms are those features that formed in balance with environmental conditions within fixed microclimate zones. Some equilibrium landforms, such as sublimation polygons, indicate the presence of extensive near-surface ice; identification of similar landforms on Mars may also provide a basis for detecting the location of shallow ice. Landforms that today appear in disequilibrium with local microclimate conditions in the ADV signify past and/or ongoing shifts in climate zonation; understanding these shifts is assisting in the documentation of the climate record for the ADV. A similar type of landform analysis can be applied to the surface of Mars where analogous microclimates and equilibrium landforms occur (1) in a variety of local environments, (2) in different latitudinal bands, and (3) in units of different ages. Documenting the nature and evolution of the ADV microclimate zones and their associated geomorphic processes is helping to provide a quantitative framework for assessing the evolution of climate on Mars.  相似文献   

13.
Emplacement of the youngest flood lava on Mars: A short, turbulent story   总被引:1,自引:0,他引:1  
Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision.  相似文献   

14.
The origin of the ancient martian crustal dichotomy and the massive magmatic province of Tharsis remains an open problem. Here, we explore numerically a hypothesis for the origin of these two features involving both exogenic and endogenic processes. We propose a giant impact event during the late stage of planetary formation as the source of the southern highland crust. In a second stage, the extraction of excess heat by vigorous mantle convection on the impacted hemisphere leads to massive magmatism, forming a distinct Tharsis-like volcanic region. By coupling short-term and long-term numerical simulations, we are able to investigate both the early formation as well as the 4.5 Gyr evolution of the martian crust. We demonstrate numerically that this exogenic-endogenic hypothesis is in agreement with observational data from Mars.  相似文献   

15.
By correlating the 1:25,000,000 geologic map of Mars of Scott and Carr (1977) with 4- to 10-km-diameter crater density data from Mariner 9 images, the average crater density for 23 of the equatorial geologic-geomorphic units on Mars was computed. The correlation of these two data sets was accomplished by digitizing both the crater density data and geologic map at the same scale and by comparing them in a computer. This technique assigns the crater density value found in the corresponding location on the geologic data set to a discrete computer file assigned each of the 23 geologic units. By averaging the crater density values accumulated in each file, an “average” crater density for each geologic unit was obtained. Condit believes these average crater density values are accurate indicators of the relative age of the geologic units considered. The statistical validity of these average values is strongest for the geologic units of the largest areal extent. The relative ages as obtained from the average crater density values for the seven largest geologic units, from youngest to oldest, are: Tharsis volcanic material, 21 ± 4 craters/106km2; smooth plains material, 57 ± 14 craters/106km2; rolling plains material, 66 ± 16 craters/106km2; plains materials, 80 ± 17 craters/106km2; ridged plains material, 128 ± 25 craters/106km2; hilly and cratered material, 137 ± 38 craters/106km2; and cratered plateau material, 138 ± 27 craters/106km2.  相似文献   

16.
Resolution of Voyager 1 and 2 images of the mid-sized, icy saturnian satellites was generally not much better than 1 km per line pair, except for a few, isolated higher resolution images. Therefore, analyses of impact crater distributions were generally limited to diameters (D) of tens of kilometers. Even with the limitation, however, these analyses demonstrated that studying impact crater distributions could expand understanding of the geology of the saturnian satellites and impact cratering in the outer Solar System. Thus to gain further insight into Saturn’s mid-sized satellites and impact cratering in the outer Solar System, we have compiled cratering records of these satellites using higher resolution CassiniISS images. Images from Cassini of the satellites range in resolution from tens m/pixel to hundreds m/pixel. These high-resolution images provide a look at the impact cratering records of these satellites never seen before, expanding the observable craters down to diameters of hundreds of meters. The diameters and locations of all observable craters are recorded for regions of Mimas, Tethys, Dione, Rhea, Iapetus, and Phoebe. These impact crater data are then analyzed and compared using cumulative, differential and relative (R) size-frequency distributions. Results indicate that the heavily cratered terrains on Rhea and Iapetus have similar distributions implying one common impactor population bombarded these two satellites. The distributions for Mimas and Dione, however, are different from Rhea and Iapetus, but are similar to one another, possibly implying another impactor population common to those two satellites. The difference between these two populations is a relative increase of craters with diameters between 10 and 30 km and a relative deficiency of craters with diameters between 30 and 80 km for Mimas and Dione compared with Rhea and Iapetus. This may support the result from Voyager images of two distinct impactor populations. One population was suggested to have a greater number of large impactors, most likely heliocentric comets (Saturn Population I in the Voyager literature), and the other a relative deficiency of large impactors and a greater number of small impactors, most likely planetocentric debris (Saturn Population II). Meanwhile, Tethys’ impact crater size-frequency distribution, which has some similarity to the distributions of Mimas, Dione, Rhea, and Iapetus, may be transitional between the two populations. Furthermore, when the impact crater distributions from these older cratered terrains are compared to younger ones like Dione’s smooth plains, the distributions have some similarities and differences. Therefore, it is uncertain whether the size-frequency distribution of the impactor population(s) changed over time. Finally, we find that Phoebe has a unique impact crater distribution. Phoebe appears to be lacking craters in a narrow diameter range around 1 km. The explanation for this confined “dip” at D = 1 km is not yet clear, but may have something to do with the interaction of Saturn’s irregular satellites or the capture of Phoebe.  相似文献   

17.
Analyses of Mars Express OMEGA hyperspectral data (0.4-2.7 μm) for Terra Meridiani and western Arabia Terra show that the northern mantled cratered terrains are covered by dust that is spectrally dominated by nanophase ferric oxides. Dark aeolian dunes inside craters and dark streaks extending from the dunes into the intercrater areas in mantled cratered terrains in western Arabia Terra have similar pyroxene-rich signatures demonstrating that the dunes supply dark basaltic material to create dark streaks. The dissected cratered terrains to the south of the mantled terrains are dominated spectrally by both low-calcium and high-calcium pyroxenes with abundances of 20-30% each retrieved from nonlinear radiative transfer modeling. Spectra over the hematite-bearing plains in Meridiani Planum are characterized by very weak but unique spectral features attributed to a mixture of a dark and featureless component (possibly gray hematite) and minor olivine in some locations. Hydrated minerals (likely hydrous ferric sulfates and/or hydrous hydroxides) associated with poorly ferric crystalline phases are found in the etched terrains to the north and east of the hematite-bearing plains where erosion has exposed ∼1 km of section of layered outcrops with high thermal inertias. These materials are also found in numerous craters in the northern Terra Meridiani and may represent outliers of the etched terrain materials. A few localized spots within the etched terrain also exhibit the spectral signature of Fe-rich phyllosilicates. The ensemble of observations show that the evidence for aqueous processes detected by the Opportunity Rover in Meridiani Planum is widespread and confirms the extended presence of surface or near-surface water over this large region of Mars. The scenarios of formation of Terra Meridiani (“dirty” acidic evaporite, impact surge or weathering of volcanic ash) cannot satisfactorily explain the mineralogy derived from the OMEGA observations. The formation of the etched terrains is consistent with leaching of iron sulfides and formation of sulfates and hydrated iron oxides, either in-place or via transport and evaporation of aqueous fluids and under aqueous conditions less acidic than inferred from rocks examined by Opportunity.  相似文献   

18.
The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently, attesting to late fluvial processes dated as late Early to early Late Hesperian. After this late fluvial episode, the Terby impact crater was submitted to aeolian processes and permanent cold conditions with viscous flow features. Therefore, the Terby crater displays, in a single location, geologic features that characterize the three main periods of time on Mars, with the presence of one of the thickest sub-aqueous fan deposits reported on Mars. The filling of Terby impact crater is thus one potential “reference geologic cross-section” for Mars stratigraphy.  相似文献   

19.
Impact crater saturation equilibrium is a state where a surface is so densely cratered that a new crater cannot form without removing older craters and the observed crater density is in (quasi-)equilibrium. Whether densely cratered surfaces throughout the solar system are saturated for large, kilometer-sized craters has been debated for decades. This work explores if spatial statistics can provide insight if these crater distributions are in saturation equilibrium. The supposition is that crater distributions become more spatially uniform (more evenly spaced) as they reach saturation (Squyres et al. 1997 ). A numerical simulation of crater saturation is combined with observations of cratered terrains throughout the solar system to assess the utility of using spatial statistics. The numerical simulations examine spatial statistics and saturation equilibrium for crater distributions for various input population size-frequency distribution (SFD) slopes, along with a range in the effective crater erasure size, effectiveness of smaller craters erasing the rims of larger craters, and the amount of rim needed to recognize a crater. Simulations show that saturated terrains do become more spatially uniform, and that the degree of uniformity appears to be most dependent on the input SFD slope. When simulation results are compared to observed crater distributions, I find that large, kilometer-sized craters on densely cratered terrains throughout the solar system are likely in saturation equilibrium.  相似文献   

20.
Javier Ruiz  Valle López 《Icarus》2010,207(2):631-637
The present-day thermal state of the martian interior is a very important issue for understanding the internal evolution of the planet. Here, in order to obtain an improved upper limit for the heat flow at the north polar region, we use the lower limit of the effective elastic thickness of the lithosphere loaded by the north polar cap, crustal heat-producing elements (HPE) abundances based on martian geochemistry, and a temperature-dependent thermal conductivity for the upper mantle. We also perform similar calculations for the south polar region, although uncertainties in lithospheric flexure make the results less robust. Our results show that the present-day surface and sublithospheric heat flows cannot be higher than 19 and 12 mW m−2, respectively, in the north polar region, and similar values might be representative of the south polar region (although with a somewhat higher surface heat flow due to the radioactive contribution from a thicker crust). These values, if representative of martian averages, do not necessarily imply sub-chondritic HPE bulk abundances for Mars (as previously suggested), since (1) chondritic composition models produce a present-day total heat power equivalent to an average surface heat flow of 14-22 mW m−2 and (2) some convective models obtain similar heat flows for the present time. Regions of low heat flow may even have existed during the last billions of years, in accordance with several surface heat flow estimates of ∼20 mW m−2 or less for terrains loaded during Hesperian or Amazonian times. On the other hand, there are some evidences suggesting the current existence of regions of enhanced heat flow, and therefore average heat flows could be higher than those obtained for the north (and maybe the south) polar region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号