首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Priyanka Sharma  Shane Byrne 《Icarus》2010,209(2):723-737
Titan’s north polar hydrocarbon lakes offer a unique opportunity to indirectly characterize the statistical properties of Titan’s landscape. The complexity of a shoreline can be related to the complexity of the landscape it is embedded in through fractal theory. We mapped the shorelines of 290 of the north polar titanian lakes in the Cassini synthetic aperture radar dataset. Out of these, we used a subset of 190 lake shorelines for our analysis. The fractal dimensions of the shorelines were calculated via two methods: the divider/ruler method and the box-counting method, at length scales of (1-10) km and found to average 1.27 and 1.32, respectively. The inferred power-spectral exponent of Titan’s topography (β) from theoretical and empirical relations is found to be ?2, which is lower than the values obtained from the global topography of the Earth or Venus. Some of the shorelines exhibit multi-fractal behavior (different fractal dimensions at different scales), which we interpret to signify a transition from one set of dominant surface processes to another. We did not observe any spatial variation in the fractal dimension with latitude; however we do report significant spatial variation of the fractal dimension with longitude. A systematic difference between the dimensions of orthogonal sections of lake shorelines is also noted, which signifies possible anisotropy in Titan’s topography. The topographic information thus gleaned can be used to constrain landscape evolution modeling to infer the dominant surface processes that sculpt the landscape of Titan.  相似文献   

2.
Radarclinometry is a powerful technique for estimating heights of landforms in synthetic aperture radar (SAR) images of planetary surfaces. In particular, it has been used to estimate heights of dunes in the sand seas of Saturn’s moon Titan (Lorenz, R.D., and 39 colleagues [2006]. Science 312, 724-727). In this work, we verify the technique by comparing dune heights derived from radarclinometry to known topography of dune fields in the Namib sand sea of western Africa. We compared results from three different image grid spacings, and found that 350 m/pixel (the same spacing at which the Cassini RADAR data was processed) is sufficient to determine dune height for dunes of similar morphometry to those of the Namib sand sea. At this grid spacing, height estimates derived from radarclinometry are largely representative of, though may underestimate by as much as 30%, or overestimate by as much as 40%, true dune height. Applying the technique to three regions on Titan, we estimate dune heights of 45-180 m, and dune spacings of 2.3-3.3 km. Obtaining accurate heights of Titan’s dunes will help to constrain the total organic inventory on Titan.  相似文献   

3.
The origin of Titan’s atmospheric methane is a key issue for understanding the origin of the saturnian satellite system. It has been proposed that serpentinization reactions in Titan’s interior could lead to the formation of the observed methane. Meanwhile, alternative scenarios suggest that methane was incorporated in Titan’s planetesimals before its formation. Here, we point out that serpentinization reactions in Titan’s interior are not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere, and would require a maximum D/H ratio in Titan’s water ice 30% lower than the value likely acquired by the satellite during its formation, based on Cassini observations at Enceladus. Alternatively, production of methane in Titan’s interior via radiolytic reactions with water can be envisaged but the associated production rates remain uncertain. On the other hand, a mechanism that easily explains the presence of large amounts of methane trapped in Titan in a way consistent with its measured atmospheric D/H ratio is its direct capture in the satellite’s planetesimals at the time of their formation in the solar nebula. In this case, the mass of methane trapped in Titan’s interior can be up to ∼1300 times the current mass of atmospheric methane.  相似文献   

4.
F. Nimmo  B.G. Bills 《Icarus》2010,208(2):896-904
The long-wavelength topography of Titan has an amplitude larger than that expected from tidal and rotational distortions at its current distance from Saturn. This topography is associated with small gravity anomalies, indicating a high degree of compensation. Both observations can be explained if Titan has a floating, isostatically-compensated ice shell with a spatially-varying thickness. The spatial variations arise because of laterally-variable tidal heating within the ice shell. Models incorporating shell thickness variations result in an improved fit to the observations and a degree-two tidal Love number h2t consistent with expectations, without requiring Titan to have moved away from Saturn. Our preferred models have a mean shell thickness of ≈100 km in agreement with the observed gravity anomalies, and a heat flux appropriate to a chondritic Titan. Shell thickness variations are eliminated by convection; we therefore conclude that Titan’s ice shell is not convecting at the present day.  相似文献   

5.
Large expanses of linear dunes cover Titan’s equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini’s radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan’s geology and climate. We estimate that dune fields cover ∼12.5% of Titan’s surface, which corresponds to an area of ∼10 million km2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ∼11°, dune fields tend to become less emissive and brighter as one moves northward. Above ∼11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ∼14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (∼5° latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan’s asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan’s northern tropics.  相似文献   

6.
Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan’s surface imaged by Cassini’s high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan’s craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan’s surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan’s atmosphere in destroying most but not all small projectiles.  相似文献   

7.
We calculate the D/H ratio of CH4 from serpentinization on Titan to determine whether Titan’s atmospheric CH4 was originally produced inside the giant satellite. This is done by performing equilibrium isotopic fractionation calculations in the CH4-H2O-H2 system, with the assumption that the bulk D/H ratio of the system is equivalent to that of the H2O in the plume of Enceladus. These calculations show that the D/H ratio of hydrothermally produced CH4 would be markedly higher than that of atmospheric CH4 on Titan. The implication is that Titan’s CH4 is a primordial chemical species that was accreted by the moon during its formation. There are two evolutionary scenarios that are consistent with the apparent absence of endogenic CH4 in Titan’s atmosphere. The first is that hydrothermal systems capable of making CH4 never existed on Titan because Titan’s interior has always been too cold. The second is that hydrothermal systems on Titan were sufficiently oxidized so that C existed in them predominately in the form of CO2. The latter scenario naturally predicts the formation of endogenic N2, providing a new hypothesis for the origin of Titan’s atmospheric N2: the hydrothermal oxidation of 15N-enriched NH3. A primordial origin for CH4 and an endogenic origin for N2 are self-consistent, but both hypotheses need to be tested further by acquiring isotopic data, especially the D/H ratio of CH4 in comets, and the 15N/14N ratio of NH3 in comets and that of N2 in one of Enceladus’ plumes.  相似文献   

8.
Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002–August 2009) and the beginning of spring, allowing a detailed monitoring of Titan’s cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan’s clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60°N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4 years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1 year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30°S and 60°S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached.We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid-latitudes. The n = 2-mode wave pattern of the distribution, observed since 2003 by Earth-based telescopes and confirmed by our Cassini observations, may be attributed to Saturn’s tides.Although the latitudinal distribution of clouds is now relatively well reproduced and understood by the GCMs, the non-homogeneous longitudinal distributions and the evolution of the cloud coverage with seasons still need investigation. If the observation of a few single clouds at the tropics and at northern mid-latitudes late in winter and at the start of spring cannot be further interpreted for the moment, the obvious shutdown of the cloud activity at Titan’s poles provides clear signs of the onset of the general circulation turnover that is expected to accompany the beginning of Titan’s northern spring. According to our GCM, the persistence of clouds at certain latitudes rather suggests a ‘sudden’ shift in near future of the meteorology into the more illuminated hemisphere. Finally, the observed seasonal change in cloud activity occurred with a significant time lag that is not predicted by our model. This may be due to an overall methane humidity at Titan’s surface higher than previously expected.  相似文献   

9.
A number of synchronous moons are thought to harbor water oceans beneath their outer ice shells. A subsurface ocean frictionally decouples the shell from the interior. This has led to proposals that a weak tidal or atmospheric torque might cause the shell to rotate differentially with respect to the synchronously rotating interior. Applications along these lines have been made to Europa and Titan. However, the shell is coupled to the ocean by an elastic torque. As a result of centrifugal and tidal forces, the ocean would assume an ellipsoidal shape with its long axis aligned toward the parent planet. Any displacement of the shell away from its equilibrium position would induce strains thereby increasing its elastic energy and giving rise to an elastic restoring torque. In the investigation reported on here, the elastic torque is compared with the tidal torque acting on Europa and the atmospheric torque acting on Titan.Regarding Europa, it is shown that the tidal torque is far too weak to produce stresses that could fracture the ice shell, thus refuting an idea that has been widely advocated. Instead, it is suggested that the cracks arise from time-dependent stresses due to non-hydrostatic gravity anomalies from tidally driven, episodic convection in the satellite’s interior.Two years of Cassini RADAR observations of Titan’s surface have been interpreted as implying an angular displacement of ∼0.24° relative to synchronous rotation. Compatibility of the amplitude and phase of the observed non-synchronous rotation with estimates of the atmospheric torque requires that Titan’s shell be decoupled from its interior. We find that the elastic torque balances the seasonal atmospheric torque at an angular displacement ?0.05°, effectively coupling the shell to the interior. Moreover, if Titan’s surface were spinning faster than synchronous, the tidal torque tending to restore synchronous rotation would almost certainly be larger than the atmospheric torque. There must either be a problem with the interpretation of the radar observations, or with our basic understanding of Titan’s atmosphere and/or interior.  相似文献   

10.
Motivated by radar and near-infrared data indicating that Titan’s polar lakes are extremely smooth, we consider the conditions under which a lake surface will be ruffled by wind to form capillary waves. We evaluate laboratory data on wind generation and derive, without scaling for surface tension effects, a threshold for pure methane/ethane of ∼0.5-1 m/s. However, we compute the physical properties of predicted Titan lake compositions using the National Institute for Standards Technology (NIST) code and note that dissolved amounts of C3 and C4 compounds are likely to make Titan lakes much more viscous than pure ethane or methane, even without allowing for suspended particulates which would increase the viscosity further. Wind tunnel experiments show a strong dependence of capillary wave growth on liquid viscosity, and this effect may explain the apparent absence so far of waves, contrary to prior expectations that generation of gravity waves by wind should be easy on Titan. On the other hand, we note that winds over Titan lakes predicted with the TitanWRF Global Circulation Model indicate radar observations so far have in any case been when winds have been low (∼0.5-0.7 m/s), possibly below the wave generation threshold, while peak winds during summer may reach 1-2 m/s. Thus observations of Titan’s northern lakes during the coming years by the Cassini Solstice mission offer the highest probability of observing wind-roughening of lake surfaces, while observations of Ontario Lacus in the south will likely continue to show it to be flat and smooth.  相似文献   

11.
12.
Accretional temperature profiles for Saturn’s large moon Titan are used to determine the conditions needed for accretion to avoid global melting as a function of the timing, duration, and nebular conditions of Titan’s accretion. We find that Titan can accrete undifferentiated in a “gas-starved” disk even with modest quantities of ammonia mixed in with its ices. Simulations of impact-induced core formation are used to show that Titan can remain only partially differentiated after an outer Solar System late heavy bombardment capable of melting its outer layers, permitting some of its rock to consolidate into a core.  相似文献   

13.
Titan’s enigmatic Xanadu province has been seen in some detail with instruments from the Cassini spacecraft. The region contains some of the most rugged, mountainous terrain on Titan, with relief over 2000 m. Xanadu contains evolved and integrated river channels, impact craters, and dry basins filled with smooth, radar-dark material, perhaps sediments from past lake beds. Arcuate and aligned mountain chains give evidence of compressional tectonism, yet the overall elevation of Xanadu is puzzlingly low compared to surrounding sand seas. Lineations associated with mountain fronts and valley floors give evidence of extension that probably contributed to this regional lowering. Several locations on Xanadu’s western and southern margins contain flow-like features that may be cryovolcanic in origin, perhaps ascended from lithospheric faults related to regional downdropping late in its history. Radiometry and scatterometry observations are consistent with a water-ice or water-ammonia-ice composition to its exposed, eroded, fractured bedrock; both microwave and visible to near-infrared (v-nIR) data indicate a thin overcoating of organics, likely derived from the atmosphere. We suggest Xanadu is one of the oldest terrains on Titan and that its origin and evolution have been controlled and shaped by compressional and then extensional tectonism in the icy crust and ongoing erosion by methane rainfall.  相似文献   

14.
We report the discovery of organic sedimentary deposits at the bottom of dry lakebeds near Titan’s north pole in observations from the Cassini Visual and Infrared Mapping Spectrometer (VIMS). We show evidence that the deposits are evaporitic, making Titan just the third known planetary body with evaporitic processes after Earth and Mars, and is the first that uses a solvent other than water.  相似文献   

15.
As on Earth, Titan’s atmosphere plays a major role in the cooling of heated surfaces. We have assessed the mechanisms by which Titan’s atmosphere, dominantly N2 at a surface pressure of 1.5 × 105 Pa, cools a warm or heated surface. These heated areas can be caused by impacts generating melt sheets and (possibly) by endogenic processes emplacing cryolavas (a low-temperature liquid that freezes on the surface). We find that for a cooling cryolava flow, lava lake, or impact melt body, heat loss is mainly driven by atmospheric convection. Radiative heat loss, a dominant heat loss mechanism with terrestrial silicate lava flows, plays only a minor role on Titan. Long-term cooling and solidification are dependent on melt sheet or flow thickness, and also local climate, because persistent winds will speed cooling. Relatively rapid cooling caused by winds reduces the detectability of these thermal events by instruments measuring surface thermal emission. Because surface temperature drops by ≈50% within ≈1 day of emplacement, fresh flows or impact melt may be difficult to detect via thermal emission unless an active eruption is directly observed. Cooling of flow or impact melt surfaces are orders of magnitude faster on Titan than on airless moons (e.g., Enceladus or Europa).Although upper surfaces cool fast, the internal cooling and solidification process is relatively slow. Cryolava flow lengths are, therefore, more likely to be volume (effusion) limited, rather than cooling-limited. More detailed modeling awaits constraints on the thermophysical properties of the likely cryomagmas and surface materials.  相似文献   

16.
All landforms on Titan that are unambiguously identifiable can be explained by exogenic processes (aeolian, fluvial, impact cratering, and mass wasting). Previous suggestions of endogenically produced cryovolcanic constructs and flows have, without exception, lacked conclusive diagnostic evidence. The modification of sparse recognizable impact craters (themselves exogenic) can be explained by aeolian and fluvial erosion. Tectonic activity could be driven by global thermal evolution or external forcing, rather than by active interior processes. A lack of cryovolcanism would be consistent with geophysical inferences of a relatively quiescent interior: incomplete differentiation, only minor tidal heating, and possibly a lack of internal convection today. Titan might be most akin to Callisto with weather: an endogenically relatively inactive world with a cool interior. We do not aim to disprove the existence of any and all endogenic activity at Titan, nor to provide definitive alternative hypotheses for all landforms, but instead to inject a necessary level of caution into the discussion. The hypothesis of Titan as a predominantly exogenic world can be tested through additional Cassini observations and analyses of putative cryovolcanic features, geophysical and thermal modeling of Titan’s interior evolution, modeling of icy satellite landscape evolution that is shaped by exogenic processes alone, and consideration of possible means for supplying Titan’s atmospheric constituents that do not rely on cryovolcanism.  相似文献   

17.
In the lower troposphere of the Titan the temperature is about 90 K, therefore the chemical production of compounds in the CH4/N2 atmosphere is extremely slow. However, atmospheric electricity could provide conditions at which chemical reactions are fast. This paper is based on the assumption that there are lightning discharges in the Titan’s lower atmosphere. The temporal temperature profile of a gas parcel after lightning was calculated at the conditions of 10 km above the Titan’s surface. Using this temperature profile, composition of the after-lightning atmosphere was simulated using a detailed chemical kinetic mechanism consisting of 1829 reactions of 185 species. The main reaction paths leading to the products were investigated. The main products of lighting discharges in the Titan’s atmosphere are H2, HCN, C2N2, C2H2, C2H4, C2H6, NH3 and H2CN. The annual production of these compounds was estimated in the Titan’s atmosphere.  相似文献   

18.
Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan’s north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ∼6700-10,000 Titan years (∼2.0-3.0 × 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ∼27,000-41,000 Titan years (∼8.0-12.0 × 105 Earth years) when flows in the north polar region are restricted to summer months.  相似文献   

19.
Narrow-band images of Titan were obtained in November 1999 with the NASA/GSFC- built acousto-optic imaging spectrometer (AImS) camera. This instrument utilizes a tunable filter element that was used within the 500- to 1050-nm range, coupled to a CCD camera system. The images were taken with the Mount Wilson 2.54-m (100 in.) Hooker telescope, which is equipped with a natural guide star adaptive optics system. We observed Titan at 830 and 890 nm and at a series of wavelengths across the 940-nm window in Titan’s atmosphere where the methane opacity is relatively low. We determined the absolute reflectivity (I/F) of Titan and fit the values at 940 nm to a Minnaert function at Titan’s equator and at −30° latitude (closer to the subsolar point) and obtained average values for the Minnaert limb-darkening slope, k, of 0.661 ± 0.007 and 0.775 ± 0.018, respectively. Comparison with models suggests that the equatorial value of k is consistent with rain removal of haze in the lower atmosphere. The higher value of k at −30° is consistent with the southern hemisphere being brighter than the equator. However, the fits are not unique. The data and models at 890 are consistent with no limb brightening or darkening at this wavelength either at the equator or at −30°.  相似文献   

20.
Intermediate resolution (6Å) photoelectric spectral scans of Titan, Saturn, Saturn's Rings and the Moon appear in two forms: ratio spectra of Titan vs the Rings and of Saturn vs the Rings, and relative reflectivities, which are compared to previously published results. Titan's geometrical albedo of 0.094 ± 0.012 was measured at 4255Å with a 50Å bandpass. From this and the spectral measurements, we derived the geometrical albedo as a function of wavelength. We find that the wavelength dependences of Titan's uv spectrum and the spectrum of Saturn's Rings are remarkably similar. No trace of any absorption bands is apparent. These results imply that uv gaseous absorption and Rayleigh scattering play a strongly subdued role in Titan's atmosphere. Any homogeneous atmospheric model implies that the absorber responsible for Titan's uv spectral albedo varies strongly with wavelength. On the other hand, we find that the uv observations can be satisfied by an absorber having a relatively weak dependence upon wavelength if an inhomogeneous atmospheric model is employed. In particular, a fine dust, which absorbs as 1/λ, can explain the uv observations provided that it is preferentially distributed high up in Titan's atmosphere where the optical depth from Rayleigh scattering is low. The likely presence of such a dust in Jupiter's atmosphere and the difficulty in explaining the nature of a continuous uv absorber which varies rapidly with wavelength suggest that the gas and aerosol in Titan's atmosphere are inhomogeneously distributed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号