首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Shun-ichiro Karato 《Icarus》2011,212(1):14-229
The rheological properties of the mantle of super-Earths have important influences on their orbital and thermal evolution. Mineral physics observations are reviewed to obtain some insights into the rheological properties of deep mantles of these planets where pressure can be as high as ∼1 TPa. It is shown that, in contrast to a conventional view that the viscosity of a solid increases with pressure (at a fixed temperature), viscosity will decrease with pressure (and depth) when pressure exceeds ∼0.1 TPa. The causes for pressure-weakening include: (i) the transition in diffusion mechanisms from vacancy to interstitial mechanism (at ∼0.1 TPa), (ii) the phase transition in MgO from B1 to B2 structure (at ∼0.5 TPa), (iii) the dissociation of MgSiO3 into MgO and SiO2 (at ∼1 TPa), and (iv) the transition to the metallic state (at ∼1 TPa). Some (or all) of them individually or in combination reduce the effective viscosity of constituent materials in the deep interior of super-Earths. Taken together, super-Earths are likely to have low viscosity deep mantle by at least 2-3 orders of magnitude less than the maximum viscosity in the lower mantle of Earth. Because viscosity likely decreases with pressure above ∼0.1 TPa (in addition to higher temperatures for larger planets), deep mantle viscosity of super-Earths will decrease with increasing planetary mass. The inferred low viscosity of the deep mantle results in high tidal dissipation and resultant rapid orbital evolution, and affects thermal history and hence generation of the magnetic field and the style of mantle convection.  相似文献   

2.
C. Sotin  O. Grasset  A. Mocquet 《Icarus》2007,191(1):337-351
By comparison with the Earth-like planets and the large icy satellites of the Solar System, one can model the internal structure of extrasolar planets. The input parameters are the composition of the star (Fe/Si and Mg/Si), the Mg content of the mantle (Mg# = Mg/[Mg + Fe]), the amount of H2O and the total mass of the planet. Equation of State (EoS) of the different materials that are likely to be present within such planets have been obtained thanks to recent progress in high-pressure experiments. They are used to compute the planetary radius as a function of the total mass. Based on accretion models and data on planetary differentiation, the internal structure is likely to consist of an iron-rich core, a silicate mantle and an outer silicate crust resulting from magma formation in the mantle. The amount of H2O and the surface temperature control the possibility for these planets to harbor an ocean. In preparation to the interpretation of the forthcoming data from the CNES led CoRoT (Convection Rotation and Transit) mission and from ground-based observations, this paper investigates the relationship between radius and mass. If H2O is not an important component (less than 0.1%) of the total mass of the planet, then a relation (R/REarth)=ab(M/MEarth) is calculated with (a,b)=(1,0.306) and (a,b)=(1,0.274) for 10−2MEarth<M<MEarth and MEarth<M<10MEarth, respectively. Calculations for a planet that contains 50% H2O suggest that the radius would be more than 25% larger than that based on the Earth-like model, with (a,b)=(1.258,0.302) for 10−2MEarth<M<MEarth and (a,b)=(1.262,0.275) for MEarth<M<10MEarth, respectively. For a surface temperature of 300 K, the thickness of the ocean varies from 150 to 50 km for planets 1 to 10 times the Earth's mass, respectively. Application of this algorithm to bodies of the Solar System provides not only a good fit to most terrestrial planets and large icy satellites, but also insights for discussing future observations of exoplanets.  相似文献   

3.
Of the terrestrial planets, Earth and probably Mercury possess substantial intrinsic magnetic fields generated by core dynamos, while Venus and Mars apparently lack such fields. Thermal histories are calculated for these planets and are found to admit several possible present states, including those which suggest simple explanations for the observations; whule the cores of Earth and Mercury are continuing to freeze, the cores of Venus and Mars may still be completely liquid. The models assume whole mantle convection, which is parameterized by a simple Nusselt-Rayleigh number relation and dictates the rate at which heat escapes from the core. It is found that completely fluid cores, devoid of intrinsic heat sources, are not likely to sustain thermal convection for the age of the solar system but cool to a subadiabatic, conductive state that can not maintain a dynamo. Planets which nucleate an inner core continue to sustain a dynamo because of the gravitational energy release and chemically driven convection that accompany inner core growth. The absence of a significant inner core can arise in Venus because of its slightly higher temperature and lower central pressure relative to Earth, while a Martian core avoids the onset of freezing if the abundance of sulfur in the core is ?15% by mass. All of the models presented assume that (I) core dynamos are driven by thermal and/or chemical convection; (ii) radiogenic heat production is confined to the mantle; (iii) mantle and core cool from initially hot states which are at the solidus and superliquidus, respectively; and (iv) any inner core excludes the light alloying material (sulfur or oxygen) which then mixes uniformly upward through the outer core. The models include realistic pressure and composition-dependent freezing curves for the core, and material parameters are chosen so that the correct present-day values of heat outflow, upper mantle temperature and viscosity, and inner core radius are obtained for the earth. It is found that Venus and Mars may have once had dynamos maintained by thermal convection alone. Earth may have had a completely fluid core and a dynamo maintained by thermal convection for the first 2 to 3 by, but an inner core nucleates and the dynamo energetics are subsequently dominated by gravitational energy release. Complete freezing of the Mercurian core is prohibited if it contains even a small amount of sulfur, and a dynamo can be maintained by chemical convection in a thin, fluid shell.  相似文献   

4.
Numerical models dealing with the planetary scale differentiation of Mercury are presented with the short‐lived nuclide, 26Al, as the major heat source along with the impact‐induced heating during the accretion of planets. These two heat sources are considered to have caused differentiation of Mars, a planet with size comparable to Mercury. The chronological records and the thermal modeling of Mars indicate an early differentiation during the initial ~1 million years (Ma) of the formation of the solar system. We theorize that in case Mercury also accreted over an identical time scale, the two heat sources could have differentiated the planets. Although unlike Mars there is no chronological record of Mercury's differentiation, the proposed mechanism is worth investigation. We demonstrate distinct viable scenarios for a wide range of planetary compositions that could have produced the internal structure of Mercury as deduced by the MESSENGER mission, with a metallic iron (Fe‐Ni‐FeS) core of radius ~2000 km and a silicate mantle thickness of ~400 km. The initial compositions were derived from the enstatite and CB (Bencubbin) chondrites that were formed in the reducing environments of the early solar system. We have also considered distinct planetary accretion scenarios to understand their influence on thermal processing. The majority of our models would require impact‐induced mantle stripping of Mercury by hit and run mechanism with a protoplanet subsequent to its differentiation in order to produce the right size of mantle. However, this can be avoided if we increase the Fe‐Ni‐FeS contents to ~71% by weight. Finally, the models presented here can be used to understand the differentiation of Mercury‐like exoplanets and the planetary embryos of Venus and Earth.  相似文献   

5.
Jun Kimura  Takashi Nakagawa 《Icarus》2009,202(1):216-224
Ganymede has an intrinsic magnetic field which is generally considered to originate from a self-excited dynamo in the metallic core. Driving of the dynamo depends critically on the satellite's thermal state and internal structure. However, the inferred structure based on gravity data alone has a large uncertainty, and this makes the possibility of dynamo activity unclear; variations in core size and composition significantly change the heat capacity and alter the cooling history of the core. The main objectives of this study is to explore the structural conditions for a currently active dynamo in Ganymede using numerical simulations of the thermal history, and to evaluate under which conditions Ganymede can maintain the dynamo activity at present. We have investigated the satellite's thermal history using various core sizes and compositions satisfying the mean density and moment of inertia of Ganymede, and evaluate the temperature and heat flux at the core-mantle boundary (CMB). Based on the following two conditions, we evaluate the possibility of dynamo activity, thereby reducing the uncertainty of the previously inferred interior structure. The first condition is that the temperature at the CMB must exceed the melting point of a metallic core, and the second is that the heat flux through the CMB must exceed the adiabatic temperature gradient. The mantle temperature starts to increase because of the decay of long-lived radiogenic elements in the rocky mantle. After a few Gyr, radiogenic elements are exhausted and temperature starts to decrease. As the rocky mantle cools, the heat flux at the CMB steadily increases. If the temperature and heat flux at the CMB satisfy these conditions simultaneously, we consider the case as capable of driving a dynamo. Finally, we identify the Dynamo Regime, which is the specific range of internal structures capable of driving the dynamo, based on the results of simulations with various structures. If Ganymede's self-sustained magnetic field were maintained by thermal convection, the satellite's metallic core would be relatively large and, in comparison to other terrestrial-type planetary cores, strongly enriched in sulfur. The dynamo activity and the generation of the magnetic field of Ganymede should start from a much later stage, possibly close to the present.  相似文献   

6.
A potentially promising way to gain knowledge about the internal dynamics of extrasolar planets is by remote measurement of an intrinsic magnetic field. Strong planetary magnetic fields, maintained by internal dynamo action in an electrically conducting fluid layer, are helpful for shielding the upper atmosphere from stellar wind induced mass loss and retaining water over long (Gyr) time scales. Here we present a whole planet dynamo model that consists of three main components: an internal structure model with composition and layers similar to the Earth, an optimal mantle convection model that is designed to maximize the heat flow available to drive convective dynamo action in the core, and a scaling law to estimate the magnetic field intensity at the surface of a terrestrial exoplanet. We find that the magnetic field intensity at the core surface can be up to twice the present-day geomagnetic field intensity, while the magnetic moment varies by a factor of 20 over the models considered. Assuming electron cyclotron emission is produced from the interaction between the stellar wind and the exoplanet magnetic field we estimate the cyclotron frequencies around the ionospheric cutoff at 10 MHz with emission fluxes in the range 10−4-10−7 Jy, below the current detection threshold of radio telescopes. However, we propose that anomalous boosts and modulations to the magnetic field intensity and cyclotron emission may allow for their detection in the future.  相似文献   

7.
《Icarus》1987,70(1):78-98
The discovery of large volcanic eruptions on Io suggests that Io is one of the most geologically active planetary bodies. The energy source of this geologic activity is believed to be tidal heating induced by Jupiter. A number of thermal history calculations were done to investigate the effect of tidal heating on the thermal history of Io taking into account solid state convection and advective heat transfer. These simulations show that the total tidal heating energy in Io is almost equal to the advectively transferred heat, indicating that the observed heat flow from Io is nearly equal to the total tidal heating energy. Since total tidal heating energy is dependent on the radius of the liquid mantle and the internal dissipation factor (Q), the radius of the liquid mantle can be estimated for a given value of Q. Some reasonable thermal history models of Io were obtained using a model with Q ≈ 25–50 in which the magma source of Ionian volcanism is at a depth of 100–300 km. The models satisfy the heat flow data and the existence of a thick lithosphere. Using a model with Q = 25 and L = 300 km (thickness of the advective region) as the standard model (model II), we then studied the effect of convective heat transfer and the initial temperature distribution on the Ionian thermal history. In these calculations, the other parameters are the same as in the standard model (model II). These calculations show that although the temperature distribution in the central region reflects the difference in the efficiency of convective heat transfer and initial temperature distribution, the temperature distribution in the outer region does not changes appreciably.  相似文献   

8.
A key parameter for understanding the geodynamics of a terrestrial planet is the size of its core. Numerical evaluation of 28 different interior structure models of Mercury, Venus, Earth, the Moon, and Mars suggests that there is an almost linear relationship between the core radius and the extent of the seismic P-wave core shadow. A scaling law is derived from a simple mantle density and velocity model that permits the interpretation of respective seismic measurements on terrestrial planetary bodies.  相似文献   

9.
Yohai Kaspi  Glenn R. Flierl 《Icarus》2009,202(2):525-542
The giant gas planets have hot convective interiors, and therefore a common assumption is that these deep atmospheres are close to a barotropic state. Here we show using a new anelastic general circulation model that baroclinic vorticity contributions are not negligible, and drive the system away from an isentropic and therefore barotropic state. The motion is still aligned with the direction of the axis of rotation as in a barotropic rotating fluid, but the wind structure has a vertical shear with stronger winds in the atmosphere than in the interior. This shear is associated with baroclinic compressibility effects. Most previous convection models of giant planets have used the Boussinesq approximation, which assumes the density is constant in depth; however, Jupiter's actual density varies by four orders of magnitude through its deep molecular envelope. We therefore developed a new general circulation model (based on the MITgcm) that is anelastic and thereby incorporates this density variation. The model's geometry is a full 3D sphere down to a small inner core. It is nonhydrostatic, uses an equation of state suitable for hydrogen-helium mixtures (SCVH), and is driven by an internal heating profile. We demonstrate the effect of compressibility by comparing anelastic and Boussinesq cases. The simulations develop a mean state that is geostrophic and hydrostatic including the often neglected, but significant, vertical Coriolis contribution. This leads to modification of the standard thermal wind relation for a deep compressible atmosphere. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, and provide a mechanism for the transport of heat poleward, which can cause the observed flat meridional emission. We address the issue of over-forcing which is common in such convection models and analyze the dependence of our results on this; showing that the vertical wind structure is not very sensitive to the Rayleigh number. We also study the effect of rotation, showing how the transition from a rapidly to a slowly rotating system affects the dynamics.  相似文献   

10.
We have developed a parametrization of Jovian moist convection based on a heat engine model of moist convection. In comparison to other moist convection schemes, this framework allows the computation of the total available convective energy TCAPE and the corresponding mass flux M as dynamic variables from the mean atmospheric state. The effects of this parametrization have been investigated both analytically and numerically. In agreement with previous numerical experiments and observations, the inclusion of moist convection leads to heat and water vapor transport from the water condensation level into higher altitudes. The time development of the modeled convective events was found to be strongly influenced by a rapid reduction of kinetic energy and a subsequent lowering of the cumulus tower's top in response to convective heating. We have tested the sensitivity of the scheme to different variations in the fractional cloud coverage and under the inclusion of external radiative forcing towards a stable/unstable temperature profile. While the time development of convective events differs in response to these variations, the general moist convective heating and moistening of the upper troposphere was a robust feature observed in all experiments.  相似文献   

11.
The interior of giant planets can give valuable information on formation and evolution processes of planetary systems. However, the interior and evolution of Uranus and Neptune is still largely unknown. In this paper, we compare water-rich three-layer structure models of these planets with predictions of shell structures derived from magnetic field models. Uranus and Neptune have unusual non-dipolar magnetic fields contrary to that of the Earth. Extensive three-dimensional simulations of Stanley and Bloxham (Stanley, S., Bloxham, J. [2004]. Nature 428, 151-153) have indicated that such a magnetic field is generated in a rather thin shell of at most 0.3 planetary radii located below the H/He rich outer envelope and a conducting core that is fluid but stably stratified. Interior models rely on equation of state data for the planetary materials which have usually considerable uncertainties in the high-pressure domain. We present interior models for Uranus and Neptune that are based on ab initio equation of state data for hydrogen, helium, and water as the representative of all heavier elements or ices. Based on a detailed high-pressure phase diagram of water we can specify the region where superionic water should occur in the inner envelope. This superionic region correlates well with the location of the stably-stratified region as found in the dynamo models. Hence we suggest a significant impact of the phase diagram of water on the generation of the magnetic fields in Uranus and Neptune.  相似文献   

12.
The structure and evolution of isolated giant gaseous protoplanets in the mass range 0.3 to 4.5 Jovian masses is investigated. Under the assumptions of the calculations, the following properties are found: (1) The central region of protoplanets of mass less than about 1 Jovian mass is, at some evolutionary epoch, thermodynamically favorable to the liquification of major interstellar grain constituents. Grains in this region can grow and infall to form a planetary core in tens to hundreds of years. (2) All protoplanets studied are convective through-out most of their interior. This property is in contrast to Bodenheimer's fully radiative proto-Jupiter models. We attribute the difference to the use of improved opacities. The presence of convection has at least two important consequences. First, it can mix grains into the central regions during planetary core formation, possibly allowing a core of mass ~ 1 Earth mass to grow. Second, convection can transport angular momentum outward as the protoplanet quasi-statically contracts. (3) The thermal contraction time depends sensitively on the surface opacity (T < 200°K). This opacity is uncertain within a factor of 5. The contraction times imply that some protoplanets can remain stable against tidal disruption by the proto-Sun and solar nebula during core-forming stages.  相似文献   

13.
Zonal winds simulated in two-dimensional computer models of turbulent convection in the equatorial plane of giant planets have greater surface amplitudes for cases with smaller solid cores, and therefore larger buoyancy driving, all other properties being equal. This differential rotation in radius is maintained by the convergence of angular momentum flux, which occurs because of the convective flow that develops due to the effects of planetary rotation and density stratification. The superposition of the convective flow and the stronger zonal flow produces wave-like, instead of cellular convection.  相似文献   

14.
Thermal evolutions of the terrestrial planets   总被引:1,自引:0,他引:1  
The thermal evolution of the Moon, Mercury, Mars, Venus and hypothetical minor planets is calculated theoretically, taking into account conduction, solid-state convection, and differentiation. An assortment of geological, geochemical, and geophysical data is used to constrain both the present day temperatures and thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. Initial temperatures and core formation play the most important roles in the early differentiation. The size of the planet is the primary factor in determining its present day thermal state. A planetary body with radius less than 1000 km is unlikely to reach melting given heat source concentrations similar to terrestrial values and in the absence of intensive early heating such as short half-life radioactive heating and inductive heating.Studies of individual planets are constrained by varying amounts of data. Most data exist for the Earth and Moon. The Moon is a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. It is presently cooling rapidly and is relatively inactive tectonically.Mercury most likely has a large core. Thermal calculations indicate it may have a 500 km thick solid lithosphere, and the core may be partially molten if it contains some heat sources. If this is not the case, the planet's interior temperatures are everywhere below the melting curve for iron. The thermal evolution is dominated by core separation and the high conductivity of iron which makes up the bulk of Mercury.Mars, intermediate in size among the terrestrial planets, is assumed to have differentiated an Fe–FeS core. Differentiation and formation of an early crust is evident from Mariner and Viking observations. Theoretical models suggest that melting and differentiation of the mantle silicates has occurred at least up until 1 billion years ago. Present day temperature profiles indicate a relatively thick (250 km) lithosphere with a possible asthenosphere below. The core is molten.Venus is characterized as a planet similar to the Earth in many respects. Core formation probably occurred during the first billion years after the formation. Present day temperatures indicate a partially molten upper mantle overlain by a 100 km thick lithosphere and a molten Fe–Ni core. If temperature models are good indicators, we can expect that today, Venus has tectonic processes similar to the Earth's.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978.  相似文献   

15.
We study how the pattern of thermal convection and differential rotation in the interior of a giant gaseous planet is affected by the presence of a small solid core as a function of the planetary rotation rate. We show, using 2D anelastic, hydrodynamic simulations, that the presence of a small solid core results in significantly different flow structure relative to that of a fully convective interior only if there is little or no planetary rotation.  相似文献   

16.
In the present study, the temperature- and pressure-dependent transport and thermal properties, i.e., viscosity, phonon thermal conductivity, thermal expansivity and heat capacities, as well as electronic and radiative thermal conductivities, have been derived for the mantles of super-Earths. These properties are necessary to understand the interior dynamics and the thermal evolution of those planets. We assume that the mantles consist of MgSiO3 perovskite (pv), but we discuss the effects of the post-perovskite transition, and we elaborate on an addition of periclase MgO and incorporated Fe. However, MgO is found to only significantly influence the phonon thermal conductivity – the viscosities, heat capacities and thermal expansivities of pv and MgO remain comparable. We use the Keane theory of solids, which takes into account the behavior of solid matter at the infinite pressure limit, adopt the Keane equations of state, and adjust for pv and MgO by comparison with experimental high-pressure and high-temperature data. We find the theory of the infinite pressure limit of Keane to be in excellent agreement with recent ab initio studies and experiments. To calculate the melting curve, we further use the Lindemann–Stacey scaling law and fit it to available experimental data. The best data fitting melting temperature for pv reaches 5700 K at 135 GPa and increases to 20,000 K at 1.1 TPa, corresponding to the core-mantle boundary of a 10 Earth mass super-Earth (10MEarth). We find the pv adiabatic temperature (with a potential temperature of 1700 K) to reach 2570 K at 135 GPa and 5000 K at 1.1 TPa. To calculate the pressure-and temperature-dependent viscosity, we use the semi-empirical homologous temperature scaling to relate enthalpy change, and hence viscosity, to the melting temperature. We find that the resulting activation volume of pv decreases from 2.8 cm3/mol at 25 GPa to 1.4 cm3/mol at 1.1 TPa-resulting in a viscosity increase by ~15 orders of magnitude through the adiabatic mantle of a 10MEarth planet. Furthermore, the thermal expansivity (of pv and MgO) decreases by a factor of eight, and the total thermal conductivity (phonon, radiative and electronic) of an Earth-like pv/MgO composite increases by a factor of seven through an adiabatic mantle of a 10MEarth super-Earth. At higher temperatures, i.e., for super-adiabatic temperature profiles, the electronic and radiative thermal conductivities strongly increase and dominate the conductive heat transport. All findings indicate an increase of heat transfer solely by conduction in the lower mantles of super-Earths. Thus our results disagree with Earth-biased full-mantle convection assumptions made by previous models for super-Earths, and additionally raise questions about the differentiation of massive rocky exoplanets and their ability to generate magnetic fields or sustain plate tectonics.  相似文献   

17.
During the last decade there was a change in paradigm, which led to consider that terrestrial-type planets within liquid-water habitable zones (LW-HZ) around M stars can also be suitable places for the emergence and evolution of life. Since many dMe stars emit large amount of UV radiation during flares, in this work we analyze the UV constrains for living systems on Earth-like planets around dM stars. We apply our model of UV habitable zone (UV-HZ; Buccino, A.P., Lemarchand, G.A., Mauas, P.J.D., 2006. Icarus 183, 491–503) to the three planetary systems around dM stars (HIP 74995, HIP 109388 and HIP 113020) observed by IUE and to two M-flare stars (AD Leo and EV Lac). In particular, HIP 74995 hosts a terrestrial planet in the LW-HZ, which is the exoplanet that most resembles our own Earth. We show, in general, that during the quiescent state there would not be enough UV radiation within the LW-HZ to trigger the biogenic processes and that this energy could be provided by flares of moderate intensity, while strong flares do not necessarily rule-out the possibility of life-bearing planets.  相似文献   

18.
P. van Thienen  A. Rivoldini 《Icarus》2006,185(1):197-210
The two main volcanic centers on Mars, Tharsis and Elysium, are often interpreted in terms of mantle plume hotspots, even though there are several problems with the plume hypothesis for Mars. We present results of 2D cylindrical shell numerical mantle convection experiments in which we try to ascertain whether flushing of the hot lower mantle could provide a mechanism for the generation of a small number of plume-like features, i.e., localized upwelling of hot material. In this scenario the formation of hot upwellings is driven from the top by cold downwellings rather than from a hot thermal boundary layer at the CMB. First we construct a range of Mars interior structure models consistent with observations in order to demonstrate that the presence of a thin lower mantle in the martian interior is a viable scenario. Then we use a series of numerical convection experiments to investigate the effects of solid-state phase transitions, different stratified and temperature-dependent viscosity models, and the presence of a thick southern hemisphere crust on the operation of such a mechanism. Our results show that it is possible to generate hot strong localized upwellings from top-down dynamics if the lithosphere is thin or actively involved in the convective pattern. The presence of a thick, immobile, insulating southern hemisphere crust reduces the number of upwellings, and the perovskite phase transition causes a focusing of the upwellings. Further experiments demonstrate that an initial 500 Myr phase of mobile lid is sufficient to start this process create an upwelling which is stable for billions of years.  相似文献   

19.
The failure of an equilibrium model to provide an adequate representation of the Earth's external gravitational field suggests that one should consider a more general hydrodynamical model for the interior of the terrestrial globe, and the most probable cause of motion, which may significantly effect the distribution of density inside the Earth, is convection throughout the mantle. In the present paper we investigate the effects of convection in the mantle on the gravitational field of the Earth and calculate the velocity of convection necessary to account for the observed characteristics of the external gravitational field.  相似文献   

20.
At least 20 impact basins with diameters ranging from 1000 to 3380 km have been identified on Mars, with five exceeding 2500 km. The coincidental timing of the end of the sequence of impacts and the disappearance of the global magnetic field has led to investigations of impact heating crippling an early core dynamo. The rate of core cooling (and thus dynamo activity) is limited by that of the overlying mantle. Thus, the pre-existing thermal state of the mantle controls the extent to which a sequence of impacts may affect dynamo activity. Here, we examine the effects of the initial thermal structure of the core and mantle, and the location of an impact with respect to the pre-existing convective structure on the mantle dynamics and surface heat flux.We find that the impacts that formed the five largest basins dominate the impact-driven effects on mantle dynamics. A single impact of this size can alter the entire flow field of the mantle. Such an impact promotes the formation of an upwelling beneath the impact site, resulting in long-lived single-plume convection. The interval between the largest impacts is shorter than the initial recovery time for a single impact. Hence, the change in convective pattern due to each impact sets up a long term change in the global heat flow. These long-term changes are cumulative, and multiple impacts have a synergistic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号