首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high-e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, “rubble pile” asteroid geophysics, and gravitational interactions. The YORP effect torques a “rubble pile” asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.  相似文献   

2.
We present numerical simulations of near-Earth asteroid (NEA) tidal disruption resulting in bound, mutually orbiting systems. Using a rubble pile model we have constrained the relative likelihoods for possible physical and dynamical properties of the binaries created. Overall 110,500 simulations were run, with each body consisting of ∼1000 particles. The encounter parameters of close approach distance and velocity were varied, as were the bodies' spin, elongation and spin axis direction. The binary production rate increases for closer encounters, at lower speeds, for more elongated bodies, and for bodies with greater spin. The semimajor axes for resultant binaries are peaked between 5 to 20 primary radii, and there is an overall trend for high eccentricity, with 97% of binaries having e > 0.1. The secondary-to-primary size ratios of the simulated binaries are peaked between 0.1 and 0.2, similar to trends among observed asteroid binaries. The spin rates of the primary bodies are narrowly distributed between 3.5- and 6-h periods, whereas the secondaries' periods are more evenly distributed and can exceed 15-h periods. The spin axes of the primary bodies are very closely aligned with the angular momenta of the binary orbits, whereas the secondary spin axes are nearly random. The shapes of the primaries show a large distribution of axis ratios, where those with low elongation (ratio of long and short axis) are both oblate and prolate, and nearly all with large elongation are prolate. This work presents results that suggest tidal disruption of gravitational aggregates can make binaries physically similar to those currently observed in the NEA population. As well, tidal disruption may create an equal number of binaries with qualities different from those observed, mostly binaries with large separation and with elongated primaries.  相似文献   

3.
Matija ?uk  Joseph A. Burns 《Icarus》2005,176(2):418-431
The Yarkovsky force, produced when thermal radiation is re-emitted asymmetrically, causes significant orbital evolution of asteroids in the 10 m-10 km size range. When acting on a non-spherical body, the momentum carried by this radiation generally produces a torque, called the YORP effect, which may be important in re-orienting asteroidal spins. Here we explore a related effect, the “binary YORP” (BYORP), that can modify the orbit of a synchronously rotating secondary in a binary system. It arises because a locked secondary is effectively an asymmetric appendage of the primary. It should be particularly important for Near-Earth Asteroids (NEAs) owing to their small sizes, proximity to the Sun, and benign collisional environment. To estimate BYORP's strength, we subjected 100 random Gaussian spheroids to the thermal radiation model of Rubincam (2000, Radiative spin-up and spin-down of small asteroids, Icarus, 148, 2-11). For most shapes, a significant torque arose on the secondary's orbit, typically modifying the orbit's size, eccentricity and inclination in less than 105 years, for components of 1 and 0.3 km radii, separated by 2 km, at 1 AU, each of density 1750 kg m−3. Together YORP and BYORP are capable of synchronizing secondaries and circularizing orbits, making tidal dissipation unnecessary to explain the evolved state of observed NEA pairs. However, BYORP's rapid timescale poses a problem for the abundance of observed NEA binaries, since their formation rate is thought to be much slower. We consider and reject the following resolutions of this quandary: (i) the approximation using Gaussian spheroids inadequately models YORP; (ii) most secondaries are not synchronous, but inhabit other spin-orbit resonances (very unlikely); (iii) tidal dissipation is much more efficient than previously estimated, and thus capable of stabilizing observed systems; and (iv) moderately close encounters with planets can re-orient secondaries, turning BYORP into a slower, random-walk process. Finally, we speculate that most observed binary NEAs are in a stable state in which the obliquity-changing torques of YORP (acting on the primary) and BYORP cancel out, and that those systems must be close to 55° inclination, where the momentum-changing torques of both YORP and BYORP tend to be very small. Some retrograde systems might develop such that the nodes precess at a Sun-synchronous rate, while some prograde ones might move into the “evection” resonance. All three of these hypotheses can be tested directly by comparison with the i, Ω and ? observed for NEA binaries.  相似文献   

4.
Matija ?uk  David Nesvorný 《Icarus》2010,207(2):732-743
About 15% of both near-Earth and main-belt asteroids with diameters below 10 km are now known to be binary. These small asteroid binaries are relatively uniform and typically contain a fast-spinning, flattened primary and a synchronously rotating, elongated secondary that is 20-40% as large (in diameter) as the primary. The principal formation mechanism for these binaries is now thought to be YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect induced spin-up of the primary followed by mass loss and accretion of the secondary from the released material. It has previously been suggested (?uk, M. [2007]. Astrophys. J. 659, L57-L60) that the present population of small binary asteroids is in a steady state between production through YORP and destruction through binary YORP (BYORP), which should increase or decrease secondary’s orbit, depending on the satellite’s shape. However, BYORP-driven evolution has not been directly modeled until now. Here we construct a simple numerical model of the binary’s orbital as well the secondary’s rotational dynamics which includes BYORP and selected terms representing main solar perturbations. We find that many secondaries should be vulnerable to chaotic rotation even for relatively low-eccentricity mutual orbits. We also find that the precession of the mutual orbit for typical small binary asteroids might be dominated by the perturbations from the prolate and librating secondary, rather than the oblate primary. When we evolve the mutual orbit by BYORP we find that the indirect effects on the binary’s eccentricity (through the coupling between the orbit and the secondary’s spin) dominate over direct ones caused by the BYORP acceleration. In particular, outward evolution causes eccentricity to increase and eventually triggers chaotic rotation of the secondary. We conclude that the most likely outcome will be reestablishing of the synchronous lock with a “flipped” secondary which would then evolve back in. For inward evolution we find an initial decrease of eccentricity and secondary’s librations, to be followed by later increase. We think that it is likely that various forms of dissipation we did not model may damp the secondary’s librations close to the primary, allowing for further inward evolution and a possible merger. We conclude that a merger or a tidal disruption of the secondary are the most likely outcomes of the BYORP evolution. Dissociation into heliocentric pairs by BYORP alone should be very difficult, and satellite loss might be restricted to the minority of systems containing more than one satellite at the time.  相似文献   

5.
We observed near-Earth Asteroid (NEA) 2002 CE26 in August and September 2004 using the Arecibo S-band (2380-MHz, 12.6-cm) radar and NASA's Infrared Telescope Facility (IRTF). Shape models obtained based on inversion of our delay-Doppler images show the asteroid to be 3.5±0.4 km in diameter and spheroidal; our corresponding nominal estimates of its visual and radar albedos are 0.07 and 0.24, respectively. Our IRTF spectrum shows the asteroid to be C-class with no evidence of hydration. Thermal models from the IRTF data provide a size and visual albedo consistent with the radar-derived estimate. We estimate the spin-pole to be within a few tens of degrees of λ=317°, β=−20°. Our radar observations reveal a secondary approximately 0.3 km in diameter, giving this binary one of the largest size differentials of any known NEA. The secondary is in a near-circular orbit with period 15.6±0.1 h and a semi-major axis of 4.7±0.2 km. Estimates of the binary orbital pole and secondary rotation rate are consistent with the secondary being in a spin-locked equatorial orbit. The orbit corresponds to a primary mass of M=1.95±0.25×1013 kg, leading to a primary bulk density of , one of the lowest values yet measured for a main-belt or near-Earth asteroid.  相似文献   

6.
7.
Jay McMahon  Daniel Scheeres 《Icarus》2010,209(2):494-509
A previous theory by the authors for detailed modeling of the binary YORP effect is reviewed and expanded to accommodate doubly-synchronous binary systems, as well as a method for non-dimensionalizing the coefficients for application to binary systems where a shape model to compute its own coefficients is not available. The theory is also expanded to account for the effects of primary J2 and the Sun’s 3rd body perturbation on the secular orbit evolution. The newly expanded theory is applied to the binary near-Earth Asteroid 1999 KW4, for which a detailed shape model is available. The result of simulation of the secular evolutionary equations shows that the KW4 orbit will be double in size in approximately 22,000 years, and will reach the Hill radius in approximately 54,000 years. The simulation also shows that the eccentricity will alternate growing and shrinking in magnitude, depending on the location of the solar node in the body-fixed frame. Therefore the eccentricity is not fixed to evolve in the opposite sign as the semi-major axis unless the circulation of the node (with a period of 500 years) is averaged out as well. The current orbit expansion rate for KW4 of 7 cm per year is shown to be detectable with observations of the mean anomaly which grows quadratically in time with an expanding orbit. Finally, the KW4 results are scaled for application to a number of other binary systems for which detailed shape models are not available. This application shows that the orbits considered can expand to their Hill radius in the range of 104-106 years. This implies rapid formation of binary systems is necessary to support the large percentage of binaries observed in the NEA population.  相似文献   

8.
We present results of a simulation of a steady-state binary near-Earth asteroid (NEA) population. This study combines previous work on tidal disruption of gravitational aggregates [Walsh, K.J., Richardson, D.C., 2006. Icarus 180, 201-216] with a Monte Carlo simulation of NEA planetary encounters. Evolutionary effects include tidal evolution and binary disruption from close planetary encounters. The results show that with the best known progenitor (small Main Belt asteroids) shape and spin distributions, and current estimates of NEA lifetime and encounter probabilities, that tidal disruption should account for approximately 1-2% of NEAs being binaries. Given the best observed estimate of a ∼15% binary NEA fraction, we conclude that there are other formation mechanisms that contribute significantly to this population. We also present the expected distribution of binary orbital and physical properties for the steady-state binary NEAs formed by tidal disruption. We discuss the effects on binary fraction and properties due to changes in the least constrained parameters, and other possible effects on our model that could account for differences between the presented results and the observed binary population. Finally, we model possible effects of a significant population of binaries migrating to the near-Earth population from the Main Belt.  相似文献   

9.
Photometric data on 17 binary near-Earth asteroids (15 of them are certain detections, two are probables) were analysed and characteristic properties of the near-Earth asteroid (NEA) binary population were inferred. We have found that binary systems with a secondary-to-primary mean diameter ratio Ds/Dp?0.18 concentrate among NEAs smaller than 2 km in diameter; the abundance of such binaries decreases significantly among larger NEAs. Secondaries show an upper size limit of Ds=0.5-1 km. Systems with Ds/Dp?0.5 are abundant but larger satellites are significantly less common. Primaries have spheroidal shapes and they rotate rapidly, with periods concentrating between 2.2 to 2.8 h and with a tail of the distribution up to ∼4 h. The fast rotators are close to the critical spin for rubble piles with bulk densities about 2 g/cm3. Orbital periods show an apparent cut-off at Porb∼11 h; closer systems with shorter orbital periods have not been discovered, which is consistent with the Roche limit for strengthless bodies. Secondaries are more elongated on average than primaries. Most, but not all, of their rotations appear to be synchronized with the orbital motion; nonsynchronous secondary rotations may occur especially among wider systems with Porb>20 h. The specific total angular momentum of most of the binary systems is similar to within ±20% and close to the angular momentum of a sphere with the same total mass and density, rotating at the disruption limit; this suggests that the binaries were created by mechanism(s) related to rotation near the critical limit and that they neither gained nor lost significant amounts of angular momentum during or since formation. A comparison with six small asynchronous binaries detected in the main belt of asteroids suggests that the population extends beyond the region of terrestrial planets, but with characteristics shifted to larger sizes and longer periods. The estimated mean proportion of binaries with Ds/Dp?0.18 among NEAs larger than 0.3 km is 15±4%. Among fastest rotating NEAs larger than 0.3 km with periods between 2.2 and 2.8 h, the mean proportion of such binaries is (66+10−12)%.  相似文献   

10.
In 2003, we initiated a long-term Adaptive Optics campaign to study the orbit of various main-belt asteroidal systems. Here we present a consistent solution for the mutual orbits of four binary systems: 22 Kalliope, 45 Eugenia, 107 Camilla and 762 Pulcova. With the exception of 45 Eugenia, we did not detect any additional satellites around these systems although we have the capability of detecting a loosely-bound fragment (located at 1/4×RHill) that is ∼40 times smaller in diameter than the primary. The common characteristic of these mutual orbits is that they are roughly circular. Three of these binary systems belong to a C-“group” taxonomic class. Our estimates of their bulk densities are consistently lower (∼1 g/cm3) than their associated meteorite analogs, suggesting an interior porosity of 30-50% (taking CI-CO meteorites as analogs). 22 Kalliope, a W-type asteroid, has a significantly higher bulk density of ∼3 g/cm3, derived based on IRAS radiometric size measurement. We compare the characteristics of these orbits in the light of tidal-effect evolution.  相似文献   

11.
P. Descamps  F. Marchis 《Icarus》2008,193(1):74-84
We describe in this work a thorough study of the physical and orbital characteristics of extensively observed main-belt and trojan binaries, mainly taken from the LAOSA (Large Adaptive Optics Survey of Asteroids [Marchis, F., Baek, M., Berthier, J., Descamps, P., Hestroffer, D., Kaasalainen, M., Vachier, F., 2006c. In: Workshop on Spacecraft Reconnaissance of Asteroid and Comet Interiors. Abstract #3042]) database, along with a selection of bifurcated objects. Dimensionless quantities, such as the specific angular momentum and the scaled primary spin rate, are computed and discussed for each system. They suggest that these asteroidal systems might be the outcome of rotational fission or mass shedding of a parent body presumably subjected to an external torque. One of the most striking features of separated binaries composed of a large primary (Rp>100 km) with a much smaller secondary (Rs<20 km) is that they all have total angular momentum of ∼0.27. This value is quite close to the Maclaurin-Jacobi bifurcation (0.308) of a spinning fluid body. Alternatively, contact binaries and tidally locked double asteroids, made of components of similar size, have an angular momentum larger than 0.48. They compare successfully with the fission equilibrium sequence of a rotating fluid mass. In conclusion, we find that total angular momentum is a useful proxy to assess the internal structure of such systems.  相似文献   

12.
David P. O’Brien 《Icarus》2009,203(1):112-118
The near-Earth Asteroids Eros and Itokawa show a pronounced lack of small (?100 m) craters, the vast majority of which were formed during their time in the main belt, and this has been cited as possible evidence that small (?10 m) impactors are efficiently removed from the main belt by the Yarkovsky effect. Using well-tested models for the evolution of the main-belt size distribution and the evolution of crater populations on asteroid surfaces, I show that a pronounced lack of small impactors would require size-dependent removal far stronger than can result from the Yarkovsky effect (or any other known process). Furthermore, such strong removal would lead to wavelike perturbations in the main-belt and near-Earth asteroid size distributions that are inconsistent with their observed size distributions, as well as the cratering records on asteroid surfaces. A more likely explanation is that processes on asteroid surfaces, such as seismic shaking, are responsible for erasing small craters after they form.  相似文献   

13.
We observed the E-class main-belt Asteroids (MBAs) 44 Nysa and 434 Hungaria with Arecibo Observatory's S-band (12.6 cm) radar. Both asteroids exhibit polarization ratios higher than those measured for any other MBA: Nysa, μc=0.50±0.02 and Hungaria, μc=0.8±0.1. This is consistent with the high polarization ratios measured for every E-class near-Earth asteroid (NEA) observed by Benner et al. [Benner, L.A.M., and 10 collegues, 2008. Icarus, submitted for publication] and suggests a common cause. Our estimates of radar albedo are 0.19±0.06 for Nysa and 0.22±0.06 for Hungaria. These values are higher than those of most MBAs and, when combined with their high polarization ratios, suggest that the surface bulk density of both asteroids is high. We model Nysa as an ellipsoid of dimension 113×67×65 km (±15%) giving an effective diameter Deff=79±10 km, consistent with previous estimates. The echo waveforms are not consistent with a contact binary as suggested by Kaasalainen et al. [Kaasalainen, M., Torppa, J., Piironen, J., 2002. Astron. Astrophys. 383, L19-L22]. We place a constraint on Hungaria's maximum diameter, Dmax?11 km consistent with previous size estimates.  相似文献   

14.
The dynamical evolution of small stellar groups composed of N=6 components was numerically simulated within the framework of a gravitational N-body problem. The effects of stellar mass loss in the form of stellar wind, dynamical friction against the interstellar medium, and star mergers on the dynamical evolution of the groups were investigated. A comparison with a purely gravitational N-body problem was made. The state distributions at the time of 300 initial system crossing times were analyzed. The parameters of the forming binary and stable triple systems as well as the escaping single and binary stars were studied. The star-merger and dynamical-friction effects are more pronounced in close systems, while the stellar wind effects are more pronounced in wide systems. Star-mergers and stellar wind slow down the dynamical evolution. These factors cause the mean and median semimajor axes of the final binaries as well as the semimajor axes of the internal and external binaries in stable triple systems to increase. Star mergers and dynamical friction in close systems decrease the fraction of binary systems with highly eccentric orbits and the mean component mass ratios for the final binaries and the internal and external binaries in stable triple systems. Star mergers and dynamical friction in close systems increase the fraction of stable triple systems with prograde motions. Dynamical friction in close systems can both increase and decrease the mean velocities of the escaping single stars, depending on the density of the interstellar medium and the mean velocity of the stars in the system.  相似文献   

15.
D. Vokrouhlický  D. ?apek 《Icarus》2005,179(1):128-138
We consider the possibility of detecting the Yarkovsky orbital perturbation acting on binary systems among the near-Earth asteroids. This task is significantly more difficult than for solitary asteroids because the Yarkovsky force affects both the heliocentric orbit of the system's center of mass and the relative orbit of the two components. Nevertheless, we argue these are sufficiently well decoupled so that the major Yarkovsky perturbation is in the simpler heliocentric motion and is observable with the current means of radar astrometry. Over the long term, the Yarkovsky perturbation in the relative motion of the two components is also detectable for the best observed systems. However, here we consider a simplified version of the problem by ignoring mutual non-spherical gravitational perturbations between the two asteroids. With the orbital plane constant in space and the components' rotation poles fixed (and assumed perpendicular to the orbital plane), we do not examine the coupling between Yarkovsky and gravitational effects. While radar observations remain an essential element of Yarkovsky detections, lightcurve observations, with their ability to track occultation and eclipse phenomena, are also very important in the case of binaries. The nearest possible future detection of the Yarkovsky effect for a binary system occurs for (66063) 1998 RO1 in September 2006. Farther out, even more statistically significant detections are possible for several other systems including 2000 DP107, (66391) 1999 KW4 and 1996 FG3.  相似文献   

16.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

17.
We report radar, photometric, and spectroscopic observations of near-Earth Asteroid (136617) 1994 CC. The radar measurements were obtained at Goldstone (8560 MHz, 3.5 cm) and Arecibo (2380 MHz, 12.6 cm) on 9 days following the asteroid’s approach within 0.0168 AU on June 10, 2009. 1994 CC was also observed with the Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT) on May 21 and June 1-3. Visible-wavelength spectroscopy was obtained with the 5-m Hale telescope at Palomar on August 25. Delay-Doppler radar images reveal that 1994 CC is a triple system; along with (153591) 2001 SN263, this is only the second confirmed triple in the near-Earth population. Photometry obtained with PROMPT yields a rotation period for the primary P = 2.38860 ± 0.00009 h and a lightcurve amplitude of ∼0.1 mag suggesting a shape with low elongation. Hale telescope spectroscopy indicates that 1994 CC is an Sq-class object. Delay-Doppler radar images and shape modeling reveal that the primary has an effective diameter of 0.62 ± 0.06 km, low pole-on elongation, few obvious surface features, and a prominent equatorial ridge and sloped hemispheres that closely resemble those seen on the primary of binary near-Earth Asteroid (66391) 1999 KW4. Detailed orbit fitting reported separately by Fang et al. (Fang, J., Margot, J.-L., Brozovic, M., Nolan, M.C., Benner, L.A.M., Taylor, P.A. [2011]. Astron. J. 141, 154-168) gives a mass of the primary of 2.6 × 1011 kg that, coupled with the effective diameter, yields a bulk density of 2.1 ± 0.6 g cm−3. The images constrain the diameters of the inner and outer satellites to be 113 ± 30 m and 80 ± 30 m, respectively. The inner satellite has a semimajor axis of ∼1.7 km (∼5.5 primary radii), an orbital period of ∼30 h, and its Doppler dispersion suggests relatively slow rotation, 26 ± 12 h, consistent with spin-orbit lock. The outer satellite has an orbital period of ∼9 days and a rotation period of 14 ± 7 h, establishing that the rotation is not spin-orbit locked. Among all binary and triple systems observed by radar, at least 25% (7/28) have a satellite that rotates more rapidly than its orbital period. This suggests that asynchronous configurations with Protation < Porbital are relatively common among multiple systems in the near-Earth population. 1994 CC’s outer satellite has an observed maximum separation from the primary of ∼5.7 km (∼18.4 primary radii) that is the largest separation relative to primary radius seen to date among all 36 known binary and triple NEA systems. 1994 CC, (153591) 2001 SN263, and 1998 ST27 are the only triple and binary systems known with satellite separations >10 primary radii, suggesting either a detection bias, or that such widely-separated satellites are relatively uncommon in NEA multiple systems.  相似文献   

18.
D. Polishook  N. Brosch 《Icarus》2008,194(1):111-124
Photometric observations were conducted on eight Aten near-Earth asteroids, with the goal of building physical models for the objects (85989) 1999 JD6, (86450) 2000 CK33, (86667) 2000 FO10, (137170) 1999 HF1, 1999 MN, 2000 PJ5, 2002 JC and 2003 NZ6. The results show rotation periods from 2.3 to almost 26 h. Some objects exhibit amplitudes higher than one magnitude on their lightcurves (1999 JD6, 2000 CK33 and 2003 NZ6). Phase curve values (β, H, see below) were derived for four Atens and H-G values were found for two. Five Atens were classified by using their B-V and V-R color indices. This taxonomy was compared with the phase coefficient-albedo correlation defined by Belskaya and Shevchenko [Belskaya, I.N., Shevchenko, V.G., 2000. Icarus 147, 94-105]. Color variations during rotation and phase angle change were searched for. Our study demonstrates the high variety among Atens. Five out of the eight Atens are binaries or possible binaries, a significantly higher fraction than the expected 15% [Bottke, W.F., Melosh, H.J., 1996. Nature 281, 51-53]. The lightcurve of 2000 PJ5 exhibits a binary character with a probable highly eccentric orbital rotation of the secondary component. The different periods of the known binary 1999 HF1's are easily detected. Other Atens have lightcurve with features such as high amplitude, V-shaped minima and U-shaped maxima that can be interpreted as a binary asteroid with a synchronous rotation (2003 NZ6, 2000 CK33 and perhaps also 1999 JD6). The very red colors of 2000 CK33 suggest a unique surface composition for this near-Earth object.  相似文献   

19.
We present the first dynamical solution of the triple asteroid system (45) Eugenia and its two moons Petit–Prince (diameter ∼ 7 km) and S/2004 (45) 1 (diameter ∼ 5 km). The two moons orbit at 1165 and 610 km from the primary, describing an almost-circular orbit (e ∼ 6 × 10−3 and e ∼ 7 × 10−2 respectively). The system is quite different from the other known triple systems in the main belt since the inclinations of the moon orbits are sizeable (9° and 18° with respect to the equator of the primary respectively). No resonances, neither secular nor due to Lidov–Kozai mechanism, were detected in our dynamical solution, suggesting that these inclinations are not due to excitation modes between the primary and the moons. A 10-year evolution study shows that the orbits are slightly affected by perturbations from the Sun, and to a lesser extent by mutual interactions between the moons. The estimated J2 of the primary is three times lower than the theoretical one, calculated assuming the shape of the primary and an homogeneous interior, possibly suggesting the importance of other gravitational harmonics.  相似文献   

20.
Evolution of binary stars and the effect of tides on binary populations   总被引:1,自引:0,他引:1  
We present a rapid binary-evolution algorithm that enables modelling of even the most complex binary systems. In addition to all aspects of single-star evolution, features such as mass transfer, mass accretion, common-envelope evolution, collisions, supernova kicks and angular momentum loss mechanisms are included. In particular, circularization and synchronization of the orbit by tidal interactions are calculated for convective, radiative and degenerate damping mechanisms. We use this algorithm to study the formation and evolution of various binary systems. We also investigate the effect that tidal friction has on the outcome of binary evolution. Using the rapid binary code, we generate a series of large binary populations and evaluate the formation rate of interesting individual species and events. By comparing the results for populations with and without tidal friction, we quantify the hitherto ignored systematic effect of tides and show that modelling of tidal evolution in binary systems is necessary in order to draw accurate conclusions from population synthesis work. Tidal synchronism is important but, because orbits generally circularize before Roche lobe overflow, the outcome of the interactions of systems with the same semilatus rectum is almost independent of eccentricity. It is not necessary to include a distribution of eccentricities in population synthesis of interacting binaries; however, the initial separations should be distributed according to the observed distribution of semilatera recta rather than periods or semimajor axes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号