首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The isotopic compositions of Sm and Gd in lunar regolith samples from the Apollo 16 and 17 deep drill stems showed clear isotopic shifts in 150Sm /149Sm (ε = +124 to +191 for A-16, and +37 to +111 for A-17) and 158Gd/157Gd (ε = +107 to +169 for A-16, and +31 to +84 for A-17) corresponding to neutron fluences of (5.68-9.03) × 1016 n cm−2 for A-16 and (1.85-5.04) × 1016 n cm−2 for A-17. The depth profiles of neutron fluences suggest that the regoliths at both sites were due to incomplete mixing of three different slabs which experienced individual two-stage irradiation before and after deposition of the upper slabs. The variations in REE compositions provide chemical evidence for incompletely vertical mixing of regoliths especially at upper layers of the two sites. The thermal neutron energy index estimated from the combination of Sm and Gd isotopic shifts, defined as εSm/εGd, shows a small variation (0.61-0.64) in the A-16 core except for the surface layer. On the other hand, a large variation in εSm/εGd = 0.67 to 0.83 in the A-17 core may result from complicated history such as two-stage irradiation and incomplete mixing during the gardening processes. Isotopic enrichments of 152Gd and 154Gd correlated with Eu/Gd elemental abundances and neutron fluences were also observed in almost all of 15 samples, showing evidence of neutron-capture from 151Eu and 153Eu, respectively.  相似文献   

2.
Multiple lines of evidence show that the Rb-Sr, Sm-Nd, and Ar-Ar isotopic systems individually give robust crystallization ages for basaltic (or diabasic) shergottite Northwest Africa (NWA) 1460. In contrast to other shergottites, NWA 1460 exhibits minimal evidence of excess 40Ar, thus allowing an unambiguous determination of its Ar-Ar age. The concordant Rb-Sr, Sm-Nd, and Ar-Ar results for NWA 1460 define its crystallization age to be 346 ± 17 Ma (2σ). In combination with petrographic and trace element data for this specimen and paired meteorite NWA 480, these results strongly refute the suggestion by others that the shergottites are ∼4.1 Ga old. Current crystallization and cosmic-ray exposure (CRE) age data permit identification of a maximum of nine ejection events for Martian meteorites (numbering more than 50 unpaired specimens as of 2008) and plausibly as few as five such events. Although recent high resolution imaging of the Martian surface has identified limited areas of sparsely cratered terrains, the meteorite data suggest that either these areas are representative of larger areas from which the meteorites might come, or that the cratering chronology needs recalibration. Time-averaged 87Rb/86Sr = 0.16 for the mantle source of the parent magma of NWA 1460/480 over the ∼4.56 Ga age of the planet is consistent with previously estimated values for bulk silicate Mars in the range 0.13-0.16, and similar to values of ∼0.18 for the “lherzolitic” shergottites. Initial εNd for NWA 1460/480 at 350 ± 16 Ma ago was +10.6 ± 0.5, which implies a time-averaged 147Sm/144Nd of 0.217 in the Martian mantle prior to mafic melt extraction, similar to values of 0.211-0.216 for the “lherzolitic” shergottites. These time-averaged values do not imply a simple two-stage mantle/melt evolution, but must result from multiple episodes of melt extractions from the source regions. Much higher “late-stage” εNd values for the depleted shergottites imply similar processes carried to a greater degree. Thus, NWA 1460/480, the “lherzolitic” shergottites and perhaps EET 79001 give the best (albeit imperfect) estimate of the Sr- and Nd-isotopic characteristics of bulk silicate Mars.  相似文献   

3.
Enstatite achondrites (aubrites) when compared to other stone meteorites have unusually long cosmic-ray exposure (CRE) ages. We report here the 150Sm/149Sm and 158Gd/157Gd ratios in six different structural phases, i.e., light and dark (shocked) grains and in matrix materials of Pesyanoe, in three different fragments from Pena Blanca Spring, and in one from Norton County, Shallowater, and Khor Temiki, to investigate the regolith history on the aubrite parent body. The results from phases components of Pesyanoe confirm earlier reported evidence for regolith irradiation of several aubrites. The inferred neutron fluences for six Pesyanoe separates vary between (2.13 and 2.82) × 1016 n cm−2. The fluences also significantly exceed those expected from cosmic-ray irradiation during transit to Earth and approach those observed in the lunar regolith. These observations confirm that the brecciated Pesyanoe meteorite, which contains solar wind (SW) gases only in dark phases, was processed in a regolith and that structural phases were differentially irradiated before compaction. On the other hand, in some aubrites (Mt. Egerton, Shallowater, Pena Blanca Spring, Norton County) neutron capture effects may entirely be due to space irradiation.  相似文献   

4.
We report elemental abundances and the isotopic systematics of the short-lived 26Al-26Mg (half-life of ∼0.73 Ma) and long-lived U-Pb radiochronometers in the ungrouped basaltic meteorite Northwest Africa (NWA) 2976. The bulk geochemical composition of NWA 2976 is clearly distinct from that of the eucrites and angrites, but shows broad similarities to that of the paired NWA 001 and 2400 ungrouped achondrites indicating that it is likely to also be paired with these two samples. The major and trace element abundances in NWA 2976 further indicate that it formed by extensive melting and magmatic fractionation processes on its parent body. The Al-Mg and Pb-Pb isotope systematics indicate that this meteorite represents the earliest stages of crust formation on a differentiated parent body in the early Solar System. The absolute Pb-Pb internal isochron age of NWA 2976, obtained from acid leaching residues of three whole-rock samples and two pyroxene separates, is 4562.89 ± 0.59 Ma (MSWD = 0.02). This Pb-Pb age is calculated using the measured 238U/235U ratio of a NWA 2976 whole-rock of 137.751 ± 0.018 (2σ) which was determined relative to the recently revised value of 137.840 ± 0.008 for the SRM 950a U isotope standard. The Al-Mg systematics reveal the presence of 26Mg isotopic anomalies produced by the decay of 26Al with an (26Al/27Al)0 of (3.94 ± 0.16) × 10−7, and indicate a time of formation of 0.26 ± 0.18 Ma after the D’Orbigny angrite. Using the revised Pb-Pb age of 4563.36 ± 0.34 Ma for the D’Orbigny anchor (corrected for its U isotopic composition), we deduce an Al-Mg model age of 4563.10 ± 0.38 Ma for NWA 2976, which is consistent with its Pb-Pb internal isochron age.The concordance of the Pb-Pb and Al-Mg chronometers, when taking into account the differences in the U isotopic compositions of the D’Orbigny and NWA 2976 achondrites (whose parent bodies likely formed in distinct regions of early Solar System as indicated by their different oxygen isotopic compositions), implies that 26Al was homogeneously distributed in the early Solar System. It also suggests that igneous processes on planetesimals, as represented by the formation of various basaltic meteorite groups that likely originated on distinct parent bodies (e.g., eucrites and angrites, as well as ungrouped achondrites), were widespread throughout the protoplanetary disk within the first ∼5 Ma of the history of the Solar System.  相似文献   

5.
The lunar meteorite Northwest Africa (NWA) 032 is a low-Ti basalt that has incompatible-element abundances and Th/Sm ratios characteristic of the involvement of late stage magma ocean crystallization products (urKREEP) in its petrogenesis. This sample is very fine-grained and contains terrestrial weather products. A progressive leaching procedure was therefore developed and applied to magnetic separates and whole rock fractions to obtain Rb-Sr and Sm-Nd ages. Although many of the leachates, as well as the unleached mineral and whole rock fractions contain terrestrial alteration products, selected residue fractions yield concordant Rb-Sr and Sm-Nd ages. Rubidium-Sr isotopic analyses yield an age of 2947 ± 16 Ma with an initial 87Sr/86Sr of 0.700057 ± 17. These characteristics indicate NWA 032 is derived from a source region with an 87Rb/86Sr ratio of 0.044 ± 0.001. This value is higher than all but those determined for KREEP basalts, and suggests that NWA 032 is derived from a source region that has higher incompatible-element abundances than other low-Ti basalts. Samarium-neodymium isotopic analysis yield a concordant age of 2931 ± 92 Ma and an initial εNd of +9.71 ± 0.74 corresponding to a source region with 147Sm/144Nd ratio of 0.246 ± 0.004. The initial Nd isotopic composition stands in contrast to the initial Sr isotopic composition by requiring NWA 032 to be derived from a source with lower incompatible-element abundances than most low-Ti basalts. The source of NWA 032 is therefore unlike those of other lunar basalts.Modeling of magma ocean cumulate formation demonstrates that unlike other low-Ti basalt source regions the NWA 032 source is a mixture of olivine, pigeonite, and clinopyroxene bearing cumulates and only a small amount of urKREEP. Furthermore, unlike other mare basalt sources, the NWA 032 source does not contain appreciable quantities of plagioclase. Partial melting models demonstrate that the incompatible-element characteristics of the NWA 032 result from formation by smaller degrees of partial melting than other mare basalts. Thus, the incompatible-element geochemical signature that is observed in NWA 032 appears to reflect the combined effects of generation from an unusual plagioclase-free incompatible-element-depleted source region by very small degrees of partial melting. This study demonstrates that both the presence of urKREEP in the source region and small degrees of partial melting generate magmas with similar, but not identical, incompatible-element characteristics. In addition, it underscores the fact that there is significantly more geochemical diversity on the Moon than is represented by samples collected by the American and Soviet lunar missions.  相似文献   

6.
We report 39Ar-40Ar ages of whole rock (WR) and plagioclase and pyroxene mineral separates of nakhlites MIL 03346 and Y-000593, and of WR samples of nakhlites NWA 998 and Nakhla. All age spectra are complex and indicate variable degrees of 39Ar recoil and variable amounts of trapped 40Ar in the samples. Thus, we examine possible Ar-Ar ages in several ways. From consideration of both limited plateau ages and isochron ages, we prefer Ar-Ar ages of NWA 998 = 1334 ± 11 Ma, MIL 03346 = 1368 ± 83 Ma (mesostasis) and 1334 ± 54 Ma (pyroxene), Y-000593 = 1367 ± 7 Ma, and Nakhla = 1357 ± 11 Ma, (2σ errors). For NWA 998 and MIL 03346 the Ar-Ar ages are within uncertainties of preliminary Rb-Sr isochron ages reported in the literature. These Ar-Ar ages for Y-000593 and Nakhla are several Ma older than Sm-Nd ages reported in the literature. We conclude that the major factor in producing Ar-Ar ages slightly too old is the presence of small amounts of trapped martian or terrestrial 40Ar on weathered grain surfaces that was degassed along with the first several percent of 39Ar. A total K-40Ar isochron for WR and mineral data from five nakhlites analyzed by us, plus Lafayette data in the literature, gives an isochron age of 1325 ± 18 Ma (2σ). We emphasize the precision of this isochron over the value of the isochron age. Our Ar-Ar data are consistent with a common formation age for nakhlites. The cosmic-ray exposure (CRE) age for NWA 998 of ∼12 Ma is also similar to CRE ages for other nakhlites.  相似文献   

7.
We report here the results of a study of trace element microdistributions and 53Mn-53Cr systematics in several basaltic and orthopyroxenitic clasts from the Vaca Muerta mesosiderite. Ion microprobe analyses of selected trace and minor element abundances in minerals of the silicate clasts indicate that, following igneous crystallization, these clasts underwent extensive metamorphic equilibration that resulted in intra- and inter-grain redistribution of elements. There is also evidence in the elemental microdistributions that these clasts were subsequently affected to varying degrees by alteration resulting from redox reactions involving the indigenous silicates and externally derived reducing agents (such as phosphorus, derived from the mesosiderite metal) at the time of metal-silicate mixing. Furthermore, our results suggest that the varying degrees of alteration by redox reactions recorded in the different clasts were most likely facilitated by different degrees of remelting induced by heating during the metal-silicate mixing event. After taking into account the effects of these postmagmatic secondary processes, comparison of the trace and minor element concentrations and distributions in minerals of basaltic and orthopyroxenitic clasts with those of noncumulate eucrites and diogenites, respectively, suggests that the primary igneous petrogenesis, including parent magma and source compositions, of Vaca Muerta silicates were similar to those of achondritic meteorites of the Howardite-Eucrite-Diogenite (HED) association. Internal 53Mn-53Cr isochrons obtained for two basaltic (pebble 16 and 4679) and two orthopyroxenitic (4659 and 4670) clasts show that chromium isotopes are equilibrated within each clast. Nevertheless, just as for noncumulate eucrites and diogenites, 53Cr excesses in whole-rock samples of the basaltic clasts (∼1.01 ε in pebble 16; ∼1.07 ε in 4679) are significantly higher than in the orthopyroxene-rich clasts (∼0.62 ε in 4659; ∼0.53 ε in 4670). As in the case of the HED parent body, this suggests that Mn/Cr fractionation in the parent body of the Vaca Muerta silicate clasts occurred very early in the history of the solar system, when 53Mn was still extant. However, the slope of the 53Mn-53Cr isochron defined by the whole-rock samples of Vaca Muerta clasts (corresponding to a 53Mn/55Mn ratio of 3.3 ± 0.6 × 10−6) is distinctly lower than that defined by the HED whole-rock samples (corresponding to a 53Mn/55Mn ratio of 4.7 ± 0.5 × 10−6), indicating that the global Mn/Cr fractionation event that established mantle source reservoirs on the parent body of the Vaca Muerta silicate clasts occurred ∼2 Ma after a similar event on the HED parent body.  相似文献   

8.
We have carried out a comparative Rb-Sr, Sm-Nd and Lu-Hf isotopic study of a progressively deformed hercynian leucogranite from the French Massif Central, belonging to the La Marche ductile shear zone, in order to investigate the respective perturbation of these geochronometers with fluid induced deformation. The one-meter wide outcrop presents a strongly deformed and mylonitized zone at the center, and an asymmetric deformation pattern with a higher deformation gradient on the northern side of the zone. Ten samples have been carefully collected every 10 cm North and South away from the strongest deformed mylonitic zone. They have been analyzed for a complete major, trace element data set, oxygen isotopes, Rb-Sr, Sm-Nd and Lu-Hf isotopic systematics.We show that most of major and trace elements except SiO2, alkaline elements (K2O, Rb), and some metal transition elements (Cu), are progressively depleted with increasing deformation. This depletion includes REE + Y, but also HFS elements (Ti, Hf, Zr, Nb) which are commonly considered as immobile elements during upper level processes. Variations in elemental ratios with deformation, e.g. decrease in LREE/MREE- HREE, Nd/Hf, Th/Sr, increase in Rb/Sr, U/Th and constant Sr/Nd, lead to propose the following order of element mobility: U ? Th > Sr = Nd ? Hf + HREE. We conclude in agreement with previous tectonic and metallogenic studies that trace element patterns across the shear zone result from circulation of oxidizing F-rich hydrothermal fluids associated with deformation. A temperature of the fluid of 470-480 °C can be deduced from the δ18O equilibrium between quartz-muscovite pairs.Elemental fractionation induces perturbation of the Rb-Sr geochronometer. The well-defined 87Rb/86Sr-87Sr/86Sr correlation gives an apparent age of 294 ± 19 Ma, slightly younger than the 323 ± 4 Ma age of leucogranites in this area. This apparent age is interpreted as dating event of intense deformation and fluid circulation associated with mass transfer, and exhumation of the ductile crust shortly after the leucogranite emplacement. Sm-Nd and Lu-Hf isochron-type diagrams do not define any correlation, because of the low fractionated Sm/Nd and Lu/Hf ratios. Isotopic data demonstrate that only the Lu-Hf geochronometer system is not affected by fluid circulation and gives reliable TDM age (1.29 ± 0.03 Ga) and εHf signatures. By contrast, the Sm-Nd geochronometer system gives erroneous old TDM ages of 2.84-4 Ga. There is no positive εNd-εHf correlation, because of decreasing εNd values with deformation at constant εHf values. However, εNd-εHf values remain in the broad εNd-εHf terrestrial array, which strongly indicates that fluid-induced fractionation can contribute to the width of the terrestrial array. The strong εHf negative values of the leucogranite are similar to metasedimentary granulitic xenoliths from the French Massif Central and confirm the generation of the leucogranite by several episodes of reworking of the lower crust.  相似文献   

9.
Spatially resolved argon isotope measurements have been performed on neutron-irradiated samples of two Martian basalts (Los Angeles and Zagami) and two Martian olivine-phyric basalts (Dar al Gani (DaG) 476 and North West Africa (NWA) 1068). With a ∼50 μm diameter focused infrared laser beam, it has been possible to distinguish between argon isotopic signatures from host rock (matrix) minerals and localized shock melt products (pockets and veins). The concentrations of argon in analyzed phases from all four meteorites have been quantified using the measured J values, 40Ar/39Ar ratios and K2O wt% in each phase. Melt pockets contain, on average, 10 times more gas (7-24 ppb 40Ar) than shock veins and matrix minerals (0.3-3 ppb 40Ar). The 40Ar/36Ar ratio of the Martian atmosphere, estimated from melt pocket argon extractions corrected for cosmogenic 36Ar, is: Los Angeles (∼1852), Zagami (∼1744) and NWA 1068 (∼1403). In addition, Los Angeles shows evidence for variable mixing of two distinct trapped noble gas reservoirs: (1) Martian atmosphere in melt pockets, and (2) a trapped component, possibly Martian interior (40Ar/36Ar: 480-490) in matrix minerals. Average apparent 40Ar/39Ar ages determined for matrix minerals in the four analyzed meteorites are 1290 Ma (Los Angeles), 692 Ma (Zagami), 515 Ma (NWA 1068) and 1427 Ma (DaG 476). These 40Ar/39Ar apparent ages are substantially older than the ∼170-474 Ma radiometric ages given by other isotope dating techniques and reveal the presence of trapped 40Ar. Cosmic ray exposure (CRE) ages were measured using spallogenic 36Ar and 38Ar production. Los Angeles (3.1 ± 0.2 Ma), Zagami (2.9 ± 0.4 Ma) and NWA 1068 (2.0 ± 0.5 Ma) yielded ages within the range of previous determinations. DaG 476, however, yielded a young CRE age (0.7 ± 0.25 Ma), attributed to terrestrial alteration. The high spatial variation of argon indicates that the incorporation of Martian atmospheric argon into near-surface rocks is controlled by localized glass-bearing melts produced by shock processes. In particular, the larger (mm-size) melt pockets contain near end-member Martian atmospheric argon. Based on petrography, composition and argon isotopic data we conclude that the investigated melt pockets formed by localized in situ shock melting associated with ejection. Three processes may have led to atmosphere incorporation: (1) argon implantation due to atmospheric shock front collision with the Martian surface, (2) transformation of an atmosphere-filled cavity into a localized melt zone, and (3) shock implantation of atmosphere trapped in cracks, pores and fissures.  相似文献   

10.
The influence of cosmic-ray production on extinct nuclide systems   总被引:1,自引:0,他引:1  
Variations in the atomic abundances of 53Cr, 92Zr, 98Ru, 99Ru, and 182W in meteorites and lunar samples relative to terrestrial values may imply the early decay of radioactive 53Mn, 92Nb, 98Tc, 99Tc and 182Hf, respectively. From this one can deduce nucleosynthetic sites and early solar system timescales. Because these effects are very small, production and consumption of the respective isotopes by cosmic-ray interactions is a concern. It has recently been demonstrated that 182W production by neutron capture reactions on 181Ta is crucial for most lunar samples (Leya et al., 2000a). In this study the neutron fluence of each sample was estimated from its nominal cosmic-ray exposure age as deduced from noble gas data. This approach overestimates the true cosmogenic isotopic shift for samples that might have been irradiated very close to the regolith surface. Here we therefore combine our model calculations with the neutron dose proxies 157Gd/158Gd and 149Sm/150Sm. This allows us to accurately correct the measured W isotopic data for cosmic-ray induced shifts without the explicit knowledge of the exposure age or the shielding depth of the sample simply by measuring 157Gd/158Gd and/or 149Sm/150Sm in an aliquot. In addition we present new model results for the GCR-induced effects on 53Mn-53Cr, 92Nb-92Zr and 98Tc-99Tc-98Ru-99Ru. For each of these systems, except Tc-Ru, a proper cosmic-ray dose proxy is given, permitting the accurate correction of measured isotopic ratios for cosmogenic contributions.  相似文献   

11.
Rubidium-strontium and samarium-neodymium isotopes of lunar meteorite LaPaz Icefield (LAP) 02205 are consistent with derivation of the parent magma from a source region similar to that which produced the Apollo 12 low-Ti olivine basalts followed by mixing of the magma with small amounts (1-2 wt%) of trace element-enriched material similar to lunar KREEP-rich sample SaU 169. The crystallization age of LAP 02205 is most precisely dated by an internal Rb-Sr isochron of 2991 ± 14 Ma, with an initial 87Sr/88Sr at the time of crystallization of 0.699836 ± 0.000010. Leachable REE-rich phosphate phases of LAP 02205 do not plot on a Sm-Nd mineral isochron, indicating contamination or open system behavior of the phosphates. Excluding anomalous phases from the calculation of a Sm-Nd isochron yields a crystallization age of 2992 ± 85 (initial ε143Nd = +2.9 ± 0.8) that is within error of the Rb-Sr age, and in agreement with other independent age determinations for LAP 02205 from Ar-Ar and U-Pb methods. The calculated 147Sm/144Nd source ratios for LAP 02205, various Apollo 12 and 15 basalts, and samples with strong affinities to KREEP (SaU 169, NWA 773, 15386) are uncorrelated with their crystallization ages. This finding does not support the involvement of a common KREEP component as a heat source for lunar melting events that occurred after crystallization of the lunar magma ocean.  相似文献   

12.
Noble gas measurements were performed for nine aubrites: Bishopville, Cumberland Falls, Mayo Belwa, Mount Egerton, Norton County, Peña Blanca Spring, Shallowater, ALHA 78113 and LAP 02233. These data clarify the origins and histories, particularly cosmic-ray exposure and regolith histories, of the aubrites and their parent body(ies). Accurate cosmic-ray exposure ages were obtained using the 81Kr-Kr method for three meteorites: 52 ± 3, 49 ± 10 and 117 ± 14 Ma for Bishopville, Cumberland Falls and Mayo Belwa, respectively. Mayo Belwa shows the longest cosmic-ray exposure age determined by the 81Kr-Kr method so far, close to the age of 121 Ma for Norton County. These are the longest ages among stony meteorites. Distribution of cosmic-ray exposure ages of aubrites implies 4-9 break-up events (except anomalous aubrites) on the parent body. Six aubrites show “exposure at the surface” on their parent body(ies): (i) neutron capture 36Ar, 80Kr, 82Kr and/or 128Xe probably produced on the respective parent body (Bishopville, Cumberland Falls, Mayo Belwa, Peña Blanca Spring, Shallowater and ALHA 78113); and/or (ii) chondritic trapped noble gases, which were likely released from chondritic inclusions preserved in the aubrite hosts (Cumberland Falls, Peña Blanca Spring and ALHA 78113). The concentrations of 128Xe from neutron capture on 127I vary among four measured specimens of Cumberland Falls (0.5-76 × 10−14 cm3STP/g), but are correlated with those of radiogenic 129Xe, implying that the concentrations of (128Xe)n and (129Xe)rad reflect variable abundances of iodine among specimens. The ratios of (128Xe)n/(129Xe)rad obtained in this work are different for Mayo Belwa (0.045), Cumberland Falls (0.015) and Shallowater (0.001), meaning that neutron fluences, radiogenic 129Xe retention ages, or both, are different among these aubrites. Shallowater contains abundant trapped Ar, Kr and Xe (2.2 × 10−7, 9.4 × 10−10 and 2.8 × 10−10 cm3STP/g, respectively) as reported previously (Busemann and Eugster, 2002). Isotopic compositions of Kr and Xe in Shallowater are consistent with those of Q (a primordial noble gas component trapped in chondrites). The Ar/Kr/Xe compositions are somewhat fractionated from Q, favoring lighter elements. Because of the unbrecciated nature of Shallowater, Q-like noble gases are considered to be primordial in origin. Fission Xe is found in Cumberland Falls, Mayo Belwa, Peña Blanca Spring, ALHA 78113 and LAP 02233. The majority of fission Xe is most likely 244Pu-derived, and about 10-20% seems to be 238U-derived at 136Xe. The observed (136Xe)Pu corresponds to 0.019-0.16 ppb of 244Pu, from which the 244Pu/U ratios are calculated as 0.002-0.009. These ratios resemble those of chondrites and other achondrites like eucrites, suggesting that no thermal resetting of the Pu-Xe system occurred after ∼4.5 Ga ago. We also determined oxygen isotopic compositions for four aubrites with chondritic noble gases and a new aubrite LAP 02233. In spite of their chondritic noble gas signatures, oxygen with chondritic isotopic compositions was found only in a specimen of Cumberland Falls (Δ17O of ∼0.3‰). The other four aubrites and the other two measured specimens of Cumberland Falls are concurrent with the typical range for aubrites.  相似文献   

13.
Lunar Mg-suite norite 78238 was dated using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems in order to constrain the age of lunar magma ocean solidification and the beginning of Mg-suite magmatism, as well as to provide a direct comparison between the three isotopic systems. The Sm-Nd isotopic system yields a crystallization age for 78238 of 4334 ± 37 Ma and an initial value of −0.27 ± 0.74. The age-initial (T-I) systematics of a variety of KREEP-rich samples, including 78238 and other Mg-suite rocks, KREEP basalts, and olivine cumulate NWA 773, suggest that lunar differentiation was completed by 4492 ± 61 Ma assuming a Chondritic Uniform Reservoir bulk composition for the Moon. The Rb-Sr isotopic systematics of 78238 were disturbed by post-crystallization processes. Nevertheless, selected data points yield two Rb-Sr isochrons. One is concordant with the Sm-Nd crystallization age, 4366 ± 53 Ma. The other is 4003 ± 95 Ma and is concordant with an Ar-Ar age for 78236. The 207Pb-206Pb age of 4333 ± 59 Ma is concordant with the Sm-Nd age. The U-Pb isotopic systematics of 78238 yield linear arrays equivalent to younger ages than the Pb-Pb system, and may reflect fractionation of U and Pb during sample handling. Despite the disturbed nature of the U-Pb systems, a time-averaged μ (238U/204Pb) value of the source can be estimated at 27 ± 30 from the Pb-Pb isotopic systematics. Because KREEP-rich samples are likely to be derived from source regions with the highest U/Pb ratios, the relatively low μ value calculated for the 78238 source suggests the bulk Moon does not have an exceedingly high μ value.  相似文献   

14.
We have investigated the distribution and isotopic composition of nitrogen and noble gases, and the Ar-Ar chronology of the Bencubbin meteorite. Gases were extracted from different lithologies by both stepwise heating and vacuum crushing. Significant amounts of gases were found to be trapped within vesicles present in silicate clasts. Results indicate a global redistribution of volatile elements during a shock event caused by an impactor that collided with a planetary regolith. A transient atmosphere was created that interacted with partially or totally melted silicates and metal clasts. This atmosphere contained 15N-rich nitrogen with a pressure ?3 × 105 hPa, noble gases, and probably, although not analyzed here, other volatile species. Nitrogen and noble gases were re-distributed among bubbles, metal, and partly or totally melted silicates, according to their partition coefficients among these different phases. The occurrence of N2 trapped in vesicles and dissolved in silicates indicates that the oxygen fugacity (fO2) was greater than the iron-wüstite buffer during the shock event. Ar-Ar dating of Bencubbin glass gives an age of 4.20 ± 0.05 Ga, which probably dates this impact event. The cosmic-ray exposure age is estimated at ∼40 Ma with two different methods. Noble gases present isotopic signatures similar to those of “phase Q” (the major host of noble gases trapped in chondrites) but elemental patterns enriched in light noble gases (He, Ne and Ar) relative to Kr and Xe, normalized to the phase Q composition. Nitrogen isotopic data together with 40Ar/36Ar ratios indicate mixing between a 15N-rich component (δ15N = +1000‰), terrestrial N, and an isotopically normal, chondritic N.Bencubbin and related 15N-rich meteorites of the CR clan do not show stable isotope (H and C) anomalies, precluding contribution of a nucleosynthetic component as the source of 15N enrichments. This leaves two possibilities, trapping of an ancient, highly fractionated atmosphere, or degassing of a primitive, isotopically unequilibrated, nitrogen component. Although the first possibility cannot be excluded, we favor the contribution of primitive material in the light of the recent finding of extremely 15N-rich anhydrous clasts in the CB/CH Isheyevo meteorite. This unequilibrated material, probably carried by the impactor, could have been insoluble organic matter extremely rich in 15N and hosting isotopically Q-like noble gases, possibly from the outer solar system.  相似文献   

15.
Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ15N values of chloropigments of photosynthetic organisms to determine the corresponding δ15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth’s history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ15Nbiomass − δ15Nchloropigment) for prokaryotes, with average values for species ranging from −12.2‰ to +11.7‰. We define this difference as εpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of εpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of εpor for freshwater cyanobacterial species is −9.8 ± 1.8‰, while for marine cyanobacteria it is −0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., εpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of εpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of εpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of εpor suggests that values of εpor could be useful for determining the fractional burial of eukaryotic vs. cyanobacterial organic matter in the sedimentary record.  相似文献   

16.
SHRIMP zircon U-Pb dates, combined with in-situ Hf isotopic data, provide new constraints on the petrogenesis and protolith of peralkaline, metaluminous and peraluminous intrusions and rhyolitic tuffs in the Emeishan large igneous province, with significant bearing on crustal melting associated with mantle plumes. Syenite and A-type granitic intrusions from Huili, Miyi and Taihe in the center of this large igneous province yield U-Pb dates at ∼260 Ma, consistent with the ages obtained for mafic layered intrusions in the same province. Zircon from these rocks exhibits a wide range of initial Hf isotope ratios (εHf(t) = −1.4 to +13.4), with corresponding TDM1 of 400-900 Ma. The highest εHf(t) value is only marginally lower than that of depleted mantle reservoir at 260 Ma, suggesting that their source is primarily juvenile crust added during Emeishan volcanism, with incorporation of variable amounts of Neoproterozoic crust. The trigger of crustal melting is most likely related to advective heating associated with magmatic underplating. In contrast, the 255-251 Ma peraluminous granites from Ailanghe and 238 Ma rhyolitic tuff from Binchuan, have negative initial εHf values of −1.3 to −4.4, and of −7.7 to −14, respectively. Hf isotopic model ages and presence of inherited zircons indicate their derivation from Mesoproterozoic and Paleoproterozoic crust, respectively. Given the time lag relative to the plume impact (∼260 Ma) and insignificant mantle contribution to 255-238 Ma magmatism, conductive heating is suggested as the trigger of crustal melting that resulted in formation of delayed felsic magmas. The involvement of older crust in younger felsic magmas is consistent with upward heat transfer to the lithosphere during plume impregnation, if the age of crust is inversely stratified, i.e., changes from Paleoproterozoic to Mesoproterozoic to Neoproterozoic to Permian with increasing depth. Such crust may have resulted from episodic, downward crustal growth during the evolution of the western Yangtze Craton.  相似文献   

17.
The petrogenesis and geodynamic implications of the Cenozoic adakites in southern Tibet remain topics of debate. Here we report geochronological and geochemical data for host granites and mafic enclaves from Wolong in the eastern Gangdese Batholith, southern Tibet. Zircon LA-ICP-MS dating indicates that the Wolong host granites and enclaves were synchronously emplaced at ca. 38 Ma. The host granites are medium- to high-K calc-alkaline, metaluminous (A/CNK = 0.93-0.96), with high Al2O3 (15.47-17.68%), low MgO (0.67-1.18%), very low abundances of compatible elements (e.g., Cr = 3.87-8.36 ppm, Ni = 3.04-5.71 ppm), and high Sr/Y ratios (127-217), similar to those typical of adakite. The mafic enclaves (SiO2 = 51.08-56.29%) have 3.83-5.02% MgO and an Mg# of 48-50, with negative Eu anomalies (δEu = 0.59-0.79). The Wolong host granites and enclaves have similar Sr-Nd isotopic compositions (initial 87Sr/86Sr = 0.7053-0.7055, εNd(t) = − 2.7 to − 1.4), with varying zircon εHf(t) values, ranging from + 6.0 to + 12.6. A comprehensive study of the data available for adakitic rocks from the Gangdese Batholith indicates that the Wolong adakitic host granites were derived from partial melting of a thickened lower crust, while the parental magmas of the mafic enclaves were most likely derived from lithospheric mantle beneath southern Tibet. The Wolong granitoids are interpreted as the result of mixing between the thickened lower crust-derived melts and lithospheric mantle-derived mafic melts, which are likely the protracted magmatic response to the break-off of the Neo-Tethyan oceanic slab at about 50 Ma. Our results suggest that the crustal thickening in southern Tibet occurred prior to ~ 38 Ma, and support the general view that the India-Asia collision must have occurred before 40 Ma.  相似文献   

18.
40Ar/39Ar and K-Ar geochronology have long suffered from large systematic errors arising from imprecise K and Ar isotopic data for standards and imprecisely determined decay constants for the branched decay of 40K by electron capture and β emission. This study presents a statistical optimization approach allowing constraints from 40K activity data, K-Ar isotopic data, and pairs of 238U-206Pb and 40Ar/39Ar data for rigorously selected rocks to be used as inputs for estimating the partial decay constants (λε and λβ) of 40K and the 40Ar∗/40K ratio (κFCs) of the widely used Fish Canyon sanidine (FCs) standard. This yields values of κFCs = (1.6418 ± 0.0045) × 10−3, λε = (0.5755 ± 0.0016) × 10−10 a−1 and λβ = (4.9737 ± 0.0093) × 10−10 a−1. These results improve uncertainties in the decay constants by a factor of >4 relative to values derived from activity data alone. Uncertainties in these variables determined by our approach are moderately to highly correlated (cov(κFCs, λε) = 7.1889 × 10−19, cov(κFCs, λβ) = −7.1390 × 10−19, cov(λε, λβ) = −3.4497 × 10−26) and one must take account of the covariances in error propagation by either linear or Monte Carlo methods. 40Ar/39Ar age errors estimated from these results are significantly reduced relative to previous calibrations. Also, age errors are smaller for a comparable level of isotopic measurement precision than those produced by the 238U/206Pb system, because the 40Ar/39Ar system is now jointly calibrated by both the 40K and 238U decay constants, and because λε(40K) < λ(238U). Based on this new calibration, the age of the widely used Fish Canyon sanidine standard is 28.305 ± 0.036 Ma. The increased accuracy of 40Ar/39Ar ages is now adequate to provide meaningful validation of high-precision U/Pb or astronomical tuning ages in cases where closed system behavior of K and Ar can be established.  相似文献   

19.
Northwest Africa 468 (NWA 468) is a new ungrouped, silicate-rich member of the IAB complex of nonmagmatic iron meteorites. The silicates contain relatively coarse (∼300 μm) grains of low-Ca clinopyroxene with polysynthetic twinning and inclined extinction. Low-Ca clinopyroxene is indicative of quenching from high temperatures (either from protoenstatite in a few seconds or high-temperature clinoenstatite in a few hours). It seems likely that NWA 468 formed by impact melting followed by rapid cooling to ≤660°C. After the loss of a metal-sulfide melt from the silicates, sulfide was reintroduced, either from impact-mobilized FeS or as an S2 vapor that combined with metallic Fe to produce FeS. The O isotopic composition (Δ17O = −1.39‰) indicates that the precursor material of NWA 468 was a metal-rich (e.g., CR) carbonaceous chondrite. Lodranites are similar in bulk chemical and O isotopic composition to the silicates in NWA 468; the MAC 88177 lodranite (which also contains low-Ca clinopyroxene) is close in bulk chemical composition. Both NWA 468 and MAC 88177 have relatively low abundances of rare earth and plagiophile elements. Siderophiles in the metal-rich areas of NWA 468 are similar to those in the MAC 88177 whole rock; both samples contain low Ir and relatively high Fe, Cu, and Se. Most unweathered lodranites contain ∼20 to 38 wt.% metallic Fe-Ni. These rocks may have formed in an analogous manner to NWA 468 (i.e., by impact melting of metal-rich carbonaceous chondrite precursors) but with less separation of metal-rich melts from silicates.  相似文献   

20.
We have reinvestigated the Mn-Cr systematics in a number of primitive meteorites, differentiated planetesimals and terrestrial planets in order to address the chronology of the early stages of protoplanetary disk evolution and planetary formation. Our analytical procedure is based on the assumption of terrestrial abundances for 50Cr and 52Cr only; recognizing that a data reduction scheme based on Earth-like 54Cr/52Cr abundances in all meteorites is not tenable. Here we show that initial ε53Cr compositions of 54Cr-rich and 54Cr-poor acid leach fractions in the primitive carbonaceous chondrite Orgueil differ by 0.9ε, reflecting primordial mineral-scale heterogeneity. However, asteroidal processing effectively homogenized any ε53Cr variations on the planetesimal scale, providing a uniform present-day solar ε53Cr=0.20±0.10. Thus, our 53Mn-53Cr data argue against the previously suggested 53Mn heliocentric gradient. Instead, we suggest that inner Solar System objects possessed an initially homogeneous 53Mn/55Mn composition, which determined by two independent means is estimated at (6.28 ± 0.66) × 10−6. Our revised Mn-Cr age for Ste. Marguerite (SM) metamorphism of 4562.9 ± 1.0 Ma is identical to the Pb-Pb age of SM phosphates. Using this age, we confirm that mantle differentiation of the eucrite parent body occurred 4564.9 ± 1.1 Ma ago, and revise the time interval between this event and CAI formation to 2.2 ± 1.1 Ma. We also constrain metamorphism in carbonaceous chondrites of type 2 and 3 to have occurred between 1 and 6 Ma after CAI formation. The 53Mn-53Cr correlation among chondrites, planetesimals and terrestrial planets (the eucrite parent body, Mars and Earth) provides evidence for Mn/Cr fractionation within the protoplanetary disk recorded by all precursor materials of the terrestrial planets and primitive asteroids. This fractionation appears to have occurred within 2 Ma of CAI formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号