首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Javier Ruiz  Valle López 《Icarus》2010,207(2):631-637
The present-day thermal state of the martian interior is a very important issue for understanding the internal evolution of the planet. Here, in order to obtain an improved upper limit for the heat flow at the north polar region, we use the lower limit of the effective elastic thickness of the lithosphere loaded by the north polar cap, crustal heat-producing elements (HPE) abundances based on martian geochemistry, and a temperature-dependent thermal conductivity for the upper mantle. We also perform similar calculations for the south polar region, although uncertainties in lithospheric flexure make the results less robust. Our results show that the present-day surface and sublithospheric heat flows cannot be higher than 19 and 12 mW m−2, respectively, in the north polar region, and similar values might be representative of the south polar region (although with a somewhat higher surface heat flow due to the radioactive contribution from a thicker crust). These values, if representative of martian averages, do not necessarily imply sub-chondritic HPE bulk abundances for Mars (as previously suggested), since (1) chondritic composition models produce a present-day total heat power equivalent to an average surface heat flow of 14-22 mW m−2 and (2) some convective models obtain similar heat flows for the present time. Regions of low heat flow may even have existed during the last billions of years, in accordance with several surface heat flow estimates of ∼20 mW m−2 or less for terrains loaded during Hesperian or Amazonian times. On the other hand, there are some evidences suggesting the current existence of regions of enhanced heat flow, and therefore average heat flows could be higher than those obtained for the north (and maybe the south) polar region.  相似文献   

2.
M. Grott  E. Hauber  P. Kronberg 《Icarus》2007,186(2):517-526
Insight into the state of the early martian lithosphere is gained by modeling the topography above surface breaking thrust faults in the southern Thaumasia region. Crater counts of key surface units associated with the faulting indicate a scarp emplacement in the late Noachian-early Hesperian periods between 4.0 and 3.7 Gyr. The seismogenic layer thickness at the time of faulting is constrained to 27-35 km and 21-28 km for the two scarps investigated, implying paleo geothermal gradients of 12-18 and 15-23 K km−1, corresponding to heat flows of 24-36 and 30-46 mW m−2. The heat flow values obtained in this study are considerably lower than those derived from rift flank uplift at the close-by Coracis Fossae for a similar time period, indicating that surface heat flow is a strong function of regional setting. If viewed as representative for magmatically active and inactive regions, the thermal gradients at rifts and scarps span the range of admissible global mean values. This implies , with the true value probably being closer to the lower bound.  相似文献   

3.
Hale crater, a 125 × 150 km impact crater located near the intersection of Uzboi Vallis and the northern rim of Argyre basin at 35.7°S, 323.6°E, is surrounded by channels that radiate from, incise, and transport material within Hale’s ejecta. The spatial and temporal relationship between the channels and Hale’s ejecta strongly suggests the impact event created or modified the channels and emplaced fluidized debris flow lobes over an extensive area (>200,000 km2). We estimate ∼1010 m3 of liquid water was required to form some of Hale’s smaller channels, a volume we propose was supplied by subsurface ice melted and mobilized by the Hale-forming impact. If 10% of the subsurface volume was ice, based on a conservative porosity estimate for the upper martian crust, 1012 m3 of liquid water could have been present in the ejecta. We determine a crater-retention age of 1 Ga inside the primary cavity, providing a minimum age for Hale and a time at which we propose the subsurface was volatile-rich. Hale crater demonstrates the important role impacts may play in supplying liquid water to the martian surface: they are capable of producing fluvially-modified terrains that may be analogous to some landforms of Noachian Mars.  相似文献   

4.
Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a ‘honeycomb’ structure created by sublimation. This ice could have a density as low as c. 450 kg m−3 and a thermal conductivity as low as 1.6 W m−1 K−1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will act to reduce the surface temperature, and hence rate of sublimation, thereby prolonging the lifespan of any liquid water beneath.  相似文献   

5.
The Thermal Emission Spectrometer (TES) on the Mars Global Surveyor spacecraft has detected deposits of coarse-grained, gray crystalline hematite in Sinus Meridiani, Aram Chaos, and Vallis Marineris. We argue that the key to the origin of gray hematite is that it requires crystallization at temperatures in excess of about 100 °C. We discuss thermal crystallization (1) as diagenesis at a depth of a few kilometers of sediments originally formed in low-temperature waters, or (2) as precipitation from hydrothermal solution. In Aram Chaos, a combination of TES data, Mars Orbiter Camera images, and Mars Orbiter Laser Altimeter (MOLA) topography suggests that high concentrations of hematite were formed in planar strata and have since been exposed by erosion of an overlying light-toned, caprock. Lesser concentrations of hematite are found adjacent to these strata at lower elevations, which we interpret as perhaps due to accumulation from physical weathering. The topography and the collapsed nature of the chaotic terrain favor a hydrothermally charged aquifer as the original setting where the hematite formed. Concentration of iron into such an ore-like body would be chemically favored by saline, Cl-rich hydrothermal fluids. An alternative sedimentary origin requires post-depositional burial to a depth of ∼3-5 km to induce thermally driven recrystallization of fine-grained iron oxides to coarse-grained hematite. This depth of burial and re-exposure is difficult to reconcile with commonly inferred martian geological processes. However, shallow burial accompanied by post-burial hydrothermal activity remains plausible. When the hematite regions originally formed, redox balance requires that much hydrogen must have been evolved to complement the extensive oxidation. Finally, we suggest that the coexistence of several factors required to form the gray hematite deposits would have produced a favorable environment for primitive life on early Mars, if it ever existed. These factors include liquid water, abundant electron donors in the form of H2, and abundant electron acceptors in the form of Fe3+.  相似文献   

6.
Ares Vallis is one of the greatest outflow channels of Mars. Using high-resolution images of recent missions to Mars (MGS, 2001 Odyssey, and Mars Express), we investigated Ares Vallis and its valley arms, taking advantage of 3-dimensional analysis performed using the high-resolution stereo capability of the Mars Express High Resolution Stereo Camera (HRSC). In our view, Ares Vallis is characterized by catastrophic flood landscapes partially superimposed by ice-related morphologies. Catastrophic flood landforms include erosional terraces, grooved terrains, streamlined uplands, giant bars, pendant bars, and cataract-like features. Ice-related morphologies include probable kame features, thermokarstic depressions, and patterned grounds. Our investigations outline that throughout the Hesperian age, Ares Vallis and its valley arms had been sculpted by several, time-scattered, catastrophic floods, originating from Iani, Hydaspis and Aram Chaos. Geomorphological evidence suggests that catastrophic floods were ice-covered, and that climatic conditions of Mars at this time were similar to those of the present day. At the end of each catastrophic flood, ice masses grounded, forming a thick stagnant dead-ice body. Each catastrophic flood was followed by a relatively brief period of warmer-wetter climatic conditions, originated as a consequence of catastrophic flooding. During such periods thermokarstic depressions originated, liquid water formed meandering channels, and ice-contact deposits were emplaced by ice-walled streams. Finally, the climate turned into cold-dry conditions similar to the present-day ones, and ice masses sublimated.  相似文献   

7.
Radar observations in the Deuteronilus Mensae region by Mars Reconnaissance Orbiter have constrained the thickness and dust concentration found within mid-latitude ice deposits, providing an opportunity to more accurately estimate the rheology of ice responsible for the formation of lobate debris aprons based on their apparent age of ∼100 Myr. We developed a numerical model simulating ice flow under martian conditions using results from ice deformation experiments, theory of ice grain growth based on terrestrial ice cores, and observational constraints from radar profiles and laser altimetry. By varying the ice grain size, the ice temperature, the subsurface slope, and the initial ice volume we determine the combination of parameters that best reproduce the observed LDA lengths and thicknesses over a period of time comparable to the apparent ages of LDA surfaces (90-300 Myr). We find that an ice temperature of 205 K, an ice grain size of 5 mm, and a flat subsurface slope give reasonable ages for many LDAs in the northern mid-latitudes of Mars. Assuming that the ice grain size is limited by the grain boundary pinning effect of incorporated dust, these results limit the dust volume concentration to less than 4%. However, assuming all LDAs were emplaced by a single event, we find that there is no single combination of grain size, temperature, and subsurface slope which can give realistic ages for all LDAs, suggesting that some or all of these variables are spatially heterogeneous. Based on our model we conclude that the majority of northern mid-latitude LDAs are composed of clean (?4 vol%), coarse (?1 mm) grained ice, but regional differences in either the amount of dust mixed in with the ice, or in the presence of a basal slope below the LDA ice must be invoked. Alternatively, the ice temperature and/or timing of ice deposition may vary significantly between different mid-latitude regions. Either eventuality can be tested with future observations.  相似文献   

8.
Heat flow calculations based on geological and/or geophysical indicators can help to constrain the thickness, and potentially the geochemical stratification, of the martian crust. Here we analyze the Warrego rise region, part of the ancient mountain range referred to as the Thaumasia highlands. This region has a crustal thickness much greater than the martian average, as well as estimations of the depth to the brittle-ductile transition beneath two scarps interpreted to be thrust faults. For the local crustal density (2900 kg m−3) favored by our analysis of the flexural state of compensation of the local topography, the crustal thickness is at least 70 and 75 km at the scarp locations. However, for one of the scarp locations our nominal model does not obtain heat flow solutions permitting a homogeneous crust as thick as required. Our results, therefore, suggest that the crust beneath the Warrego rise region is chemically stratified with a heat-producing enriched upper layer thinner than the whole crust. Moreover, if the mantle heat flow (at the time of scarp formation) was higher than 0.3 of the surface heat low, as predicted by thermal history models, then a stratified crust rise seems unavoidable for this region, even if local heat-producing element abundances lower than average or hydrostatic pore pressure are considered. This finding is consistent with a complex geological history, which includes magmatic-driven activity.  相似文献   

9.
Laura Kerber  James W. Head 《Icarus》2010,206(2):669-684
The Medusae Fossae Formation (MFF), covering about 2.1 × 106 km2 (with an estimated volume of 1.4 × 106 km3) and straddling the equatorial region of Mars east of Tharsis, has historically been mapped and dated as Amazonian in age. Analysis of the MFF using a range of new observations from recent mission data at multiple resolutions reveals evidence that the formation is older than previously hypothesized, with parts of the MFF having formed in the Hesperian and parts having been reworked and reformed throughout the Amazonian, up to the present. Ancient outcroppings of the MFF, edged with jagged yardangs, became a “mold” for embaying Hesperian-aged lavas. The erosion of the MFF left solidified lava “casts” in the embaying lava unit. This lava edge morphology permits the identification of ancient contacts between the MFF and Hesperian-aged lava terrain. Additionally, the flanking fan of the Hesperian-aged Apollinaris Patera volcano embays the formation at its foot, indicating that parts of the MFF were formed in the Hesperian. Erosion has erased and inverted many of the superposed craters in the region, showing that very young Amazonian ages derived from impact crater size-frequency distributions are resurfacing ages, and not emplacement ages. We find abundant evidence that the formation is extremely mobile and continuously reworked. We conclude that a significant part of the MFF may have originally been emplaced in the Hesperian. These observations place new constraints on the mode of origin of the MFF.  相似文献   

10.
Lithospheric strength can be used to estimate the heat flow at the time when a given region was deformed, allowing us to constrain the thermal evolution of a planetary body. In this sense, the high (>300 km) effective elastic thickness of the lithosphere deduced from the very limited deflection caused by the north polar cap of Mars indicates a low surface heat flow for this region at the present time, a finding difficult to reconcile with thermal history models. This has started a debate on the current heat flow of Mars and the implications for the thermal evolution of the planet. Here we perform refined estimates of paleo-heat flow for 22 martian regions of different periods and geological context, derived from the effective elastic thickness of the lithosphere or from faulting depth beneath large thrust faults, by considering regional radioactive element abundances and realistic thermal conductivities for the crust and mantle lithosphere. For the calculations based on the effective elastic thickness of the lithosphere we also consider the respective contributions of crust and mantle lithosphere to the total lithospheric strength. The obtained surface heat flows are in general lower than the equivalent radioactive heat production of Mars at the corresponding times, suggesting a limited contribution from secular cooling to the heat flow during the majority of the history of Mars. This is contrary to the predictions from the majority of thermal history models, but is consistent with evidence suggesting a currently fluid core, limited secular contraction for Mars, and recent extensive volcanism. Moreover, the interior of Mars could even have been heating up during part of the thermal history of the planet.  相似文献   

11.
John E. Moores  Peter H. Smith 《Icarus》2011,211(2):1129-1149
A chamber was constructed to simulate the boundary between the ice table, regolith and atmosphere of Mars and to examine fractionation between H2O and HDO during sublimation under realistic martian conditions of temperature and pressure. Thirteen experimental runs were conducted with regolith overlying the ice. The thickness and characteristic grain size of the regolith layer as well as the temperature of the underlying ice was varied. From these runs, values for the effective diffusivity, taking into account the effects of adsorption, of the regolith were derived. These effective diffusivities ranged from 1.8 × 10−4 m2 s−1 to 2.2 × 10−3 m2 s−1 for bare ice and from 2.4 × 10−11 m2 s−1 to 2.0 × 10−9 m2 s−1 with an adsorptive layer present. From these, latent heats of adsorption of 8.6 ± 2.6 kJ mol−1 and 9.3 ± 2.8 kJ mol−1 were derived at ice-surface temperatures above 223 ± 8 K and 96 ± 28 kJ mol−1 and 104 ± 31 kJ mol−1 respectively for H2O and HDO were derived at colder temperatures. For temperatures below 223 K, the effective diffusivity of HDO was found to be lower than the diffusivity of H2O by 40% on average, suggesting that the regolith was adsorptively fractionating the sublimating gas with a fractionation factor of 1.96 ± 0.74. Applying these values to Mars predicts that adsorbed water on the regolith is enriched in HDO compared to the atmosphere, particularly where the regolith is colder. Based on current observations, the D/H ratio of the regolith may be as high as 21 ± 8 times VSMOW at 12°S and LS = 357° if the regolith is hydrated primarily by the atmosphere, neglecting any hydration from subsurface ice.  相似文献   

12.
The value of slope stability analyses for gaining insight into the geologic conditions that would facilitate the growth of gully alcoves on Mars is demonstrated in Gasa crater. Two-dimensional limit equilibrium methods are used in conjunction with high-resolution topography derived from stereo High Resolution Imaging Science Experiment (HiRISE) imagery. These analyses reveal three conditions that may produce observed alcove morphologies through slope failure: (1) a ca. >10 m thick surface layer that is either saturated with H2O ground ice or contains no groundwater/ice at all, above a zone of melting H2O ice or groundwater and under dynamic loading (i.e., seismicity), (2) a 1-10 m thick surface layer that is saturated with either melting H2O ice or groundwater and under dynamic loading, or (3) a >100 m thick surface layer that is saturated with either melting H2O ice or groundwater and under static loading. This finding of three plausible scenarios for slope failure demonstrates how the triggering mechanisms and characteristics of future alcove growth would be affected by prevailing environmental conditions. HiRISE images also reveal normal faults and other fractures tangential to the crowns of some gully alcoves that are interpreted to be the result of slope instability, which may facilitate future slope movement. Stability analyses show that the most failure-prone slopes in this area are found in alcoves that are adjacent to crown fractures. Accordingly, crown fractures appear to be a useful indicator of those alcoves that should be monitored for future landslide activity.  相似文献   

13.
It is investigated whether conditions for melting can be temporarily created in the upper sub-surface parts of snow/ice-packs on Mars at subzero surface temperatures by means of the solid-state greenhouse effect, as occurs in snow- and ice-covered regions on Earth. The conditions for this possible temporary melting are quantitatively described for bolometric albedo values A = 0.8 and A = 0.2, and with model parameters typical for the thermo-physical conditions at snow/ice sites on the surface of present Mars. It is demonstrated by numerical modelling that there are several sets of parameters which will lead to development of layers of liquid water just below the top surface of snow- and ice-packs on Mars. This at least partial liquefaction occurs repetitively (e.g. diurnally, seasonally), and can in some cases lead to liquid water persisting through the night-time in the summer season. This liquid water can form in sufficient amounts to be relevant for macroscopic physical (rheology, erosion), for chemical, and eventually also for biological processes. The creation of temporary pockets of sub-surface water by this effect requires pre-existing snow or ice cover, and thus is more likely to take place at high latitudes, since the present deposits of snow/ice can mainly be found there. Possible rheologic and related erosion consequences of the appearance of liquid sub-surface water in martian snow/ice-packs are discussed in view of current observations of recent rheologic processes.  相似文献   

14.
R. Greve 《Icarus》2008,196(2):359-367
The martian polar caps feature large chasmata and smaller trough systems which have no counterpart in terrestrial ice sheets. Chasma Boreale cuts about 500 km into the western part of the north-polar cap, is up to 100 km wide and up to 2 km deep. One possible formation mechanism is by a temporary heat source under the ice due to tectono-thermal or volcanic activity, which melts the ice from below. It is demonstrated by model simulations that this process is feasible, a moderately increased heat flux of 0.5-1 W m−2, sustained over at least tens of thousands of years, producing a topographic depression which resembles the real chasma. Associated meltwater discharge rates are small (), but can exceed 10 km3 a−1 if a stronger heat flux of 10 W m−2 is assumed. Local ice-flow velocities during the process of chasma formation can exceed 1 m a−1 at the head and scarps of the chasma. However, if the thermal anomaly shuts down, glacial flow quickly decreases, so that the chasma can stay open for an indefinite amount of time without an ongoing, sustaining process under the climate conditions of the most recent millions of years.  相似文献   

15.
N. Thomas  C.J. Hansen 《Icarus》2010,205(1):296-310
The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes and, in particular, the jet-like activity which may result from the process described by Kieffer (JGR, 112, E08005, doi:10.1029/2006JE002816, 2007) involving translucent CO2 ice. In this work, we mostly concentrate on observations of the Inca City (81°S, 296°E) and Manhattan (86°S, 99°E) regions in the southern spring of 2007. Two companion papers, [Hansen et al. this issue] and [Portyankina et al. this issue], discuss the surface features in these regions and specific models of the behaviour of CO2 slab ice, respectively. The observations indicate rapid on-set of activity in late winter initiating before HiRISE can obtain adequately illuminated images (Ls < 174° at Inca City). Most sources become active within the subsequent 8 weeks. Activity is indicated by the production of dark deposits surrounded by brighter bluer deposits which probably arise from the freezing out of vented CO2 [Titus et al., 2007. AGU (abstract P41A-0188)]. These deposits originate from araneiform structures (spiders), boulders on ridges, cracks on slopes, and along linear cracks in the slab ice on flatter surfaces. The type of activity observed can often be explained qualitatively by considering the local topography. Some dark fans are observed to shorten enormously in length on a timescale of 18 days. We consider this to be strong evidence that outgassing was in progress at the time of HiRISE image acquisition and estimate a total particulate emission rate of >30 g s−1 from a single typical jet feature. Brighter deposits at Inca City become increasingly hard to detect after Ls = 210°. In the Inca City region, the orientations of surficial deposits are topographically controlled. The deposition of dark material also appears to be influenced by local topography suggesting that the ejection from the vents is at low velocity (<10 m s−1) and that a ground-hugging flow process (a sort of “cryo-fumarole”) may be occurring. The failure up to this point to obtain a clear detection of outgassing though stereo imaging is consistent with low level transport. The downslope orientation of the deposits may result from the geometry of the vent or from catabatic winds. At many sites, more than one ejection event appears to have occurred suggesting re-charging of the sources. Around Ls = 230°, the brightness of the surface begins to drop rapidly on north-facing slopes and the contrast between the dark deposits and the surrounding surface reduces. This indicates that the CO2 ice slab is being lost completely in some areas at around this time. By Ls = 280°, at Inca City, the ice slab has effectively gone. CRISM band ratios and THEMIS brightness temperature measurements are consistent with this interpretation.  相似文献   

16.
The morphology of materials on the floor of Gusev Crater (14° S, 175° W), Mars, imply a history of volcanism and subsequent removal of an ice-rich deposit. Fluid lava flows observed in the western portion of Gusev Crater paradoxically terminate in a steep, thick (<60 m) flow front adjacent to hummocky terrain. The hummocky terrain is morphologically similar to deglaciated terrain on Earth, generated when glacial debris are left behind after the glacier has retreated. We propose the following scenario for the floor of Gusev Crater. First, ice-rich material was deposited adjacent to Thira Crater. Second, fluid lavas were emplaced and ponded against the ice-rich deposits. At some later time, the ice within the deposit sublimated, leaving hummocky terrain. Current age estimates for the Gusev flows are Hesperian, suggesting that the ice removal occurred in the upper Hesperian or more recently. If this hypothesis is correct, quench features (glassy rinds, columnar jointing) should be observed at the lava flow margin; the hummocky deposit should be poorly sorted, angular debris.  相似文献   

17.
In springtime on HiRISE images of the Southern polar terrain of Mars flow-like or rheologic features were observed. Their dark color is interpreted as partly defrosted surface where the temperature is too high for CO2 but low enough for H2O ice to be present there. These branching streaks grow in size and can move by an average velocity of up to about 1 m/day and could terminate in pond-like accumulation features. The phenomenon may be the result of interfacial water driven rheologic processes. Liquid interfacial water can in the presence of water ice exist well below the melting point of bulk water, by melting in course of interfacial attractive pressure by intermolecular forces (van der Waals forces e.g.), curvature of water film surfaces, and e.g. by macroscopic weight, acting upon ice. This melting phenomenon can be described in terms of “premelting of ice”. It is a challenging consequence, that liquid interfacial water unavoidably must in form of nanometric layers be present in water ice containing soil in the subsurface of Mars. It is the aim of this paper to study possible rheologic consequences in relation to observations, which seem to happen at sites of dark polar dunes on Mars at present. The model in this work assumes that interfacial water accumulates at the bottom of a translucent water-ice layer above a dark and insolated ground. This is warmed up towards the melting point of water. The evolving layer of liquid interfacial water between the covering ice sheet and the heated ground is assumed to drive downward directed flow-like features on slopes, and it can, at least partially, infiltrate (seep) into a porous ground. There, in at least temporarily cooler subsurface layers, the infiltrated liquid water refreezes and forms ice. The related stress built-up is shown to be sufficient to cause destructive erosive processes. The above-mentioned processes may cause change in the structure and thickness of the covering ice and/or may cause the movement of dune grains. All these processes may explain the observed springtime growing and downward extension of the slope streaks analyzed here.  相似文献   

18.
Tetsuya Tokano 《Icarus》2003,164(1):50-78
In an effort to test and to understand the global hydrogen distribution in the shallow subsurface of Mars retrieved by the Mars Odyssey gamma-ray spectrometer, the present state and movement of water are investigated by a coupled global subsurface-atmosphere water cycle model. It was found that the observed global subsurface hydrogen distribution is largely consistent with the modeled global water cycle, so a large fraction of hydrogen is likely to exist as water, at low and mid latitudes in the form of adsorbed water. Under the present climate the water content in the shallow subsurface becomes higher in the northern hemisphere than in the southern hemisphere as a result of global water cycle, regardless of the initial water distribution in the soil or adsorptive capacity. The higher annual maximum soil temperature in the south, stronger net northward transport of atmospheric water vapor, and the emission of vapor from the northern residual polar cap in northern summer contribute to this hemispheric asymmetry. The generally higher adsorptive capacity of clay minerals in the northern plains may further increase this bias. The longitudinal inhomogeneity is caused by several factors, such as thermal inertia, adsorptive capacity, and atmospheric surface pressure. The water abundance is locally high in low thermal inertia regions (e.g., Arabia Terra) and at deep places where the surface pressure is high (e.g., Hellas); it is low in soil with a low adsorptive capacity (e.g., Tharsis) and high thermal inertia regions (e.g., Solis Planum). Most of the soil humidity near the surface at low and mid latitudes may originate from the atmosphere. The model implies that the upper soil layer should be largely ice-free because otherwise an excessive sublimation and vapor emission into the atmosphere in warm seasons would violate the observational constraints. Moreover, the more uniform latitudinal variation of the observed hydrogen abundance near the surface compared to that of deeper layers is indicative of the presence of adsorbed water instead of ground ice because the adsorbed water content does not as steeply depend on latitude as the ground ice stability. Concerning the regolith mineralogy, montmorillonite can much better account for the observed water cycle than palagonite. While the presence of permanent ground ice appears likely in the polar region below a thin layer, large seasonal cycle of phase change between pore ice and adsorbed water may be possible. Regolith adsorption/desorption is neither negligible nor crucial for the seasonal atmospheric water cycle, but the surface-atmosphere coupling is a major prerequisite for the long-term evolution of subsurface water distribution.  相似文献   

19.
An investigation of the activity of Comet C/1995 O1 (Hale-Bopp) with a thermophysical nucleus model that does not rely on the existence of amorphous ice is presented. Our approach incorporates recent observations allowing to constrain important parameters that control cometary activity. The model accounts for heat conduction, heat advection, gas diffusion, sublimation, and condensation in a porous ice-dust matrix with moving boundaries. Erosion due to surface sublimation of water ice leads to a moving boundary. The movement of the boundary is modeled by applying a temperature remapping technique which allows us to account for the loss in the internal energy of the eroded surface material. These kind of problems are commonly referred to as Stefan problems. The model takes into account the diurnal rotation of the nucleus and seasonal effects due to the strong obliquity of Hale-Bopp as reported by Jorda et al. (Jorda, L., Rembor, K., Lecacheux, J., Colom, P., Colas, F., Frappa, E., Lara, L.M. [1997]. Earth Moon Planets 77, 167-180). Only bulk sublimation of water and CO ice are considered without further assumptions such as amorphous ices with certain amount of occluded CO gas. Confined and localized activity patterns are investigated following the reports of Lederer and Campins (Lederer, S.M., Campins, H. [2002]. Earth Moon Planets 90, 381-389) about the chemical heterogeneity of Hale-Bopp and of Bockelée-Morvan et al. (Bockelée-Morvan, D., Henry, F., Biver, N., Boissier, J., Colom, P., Crovisier, J., Despois, D., Moreno, R., Wink, J. [2009]. Astron. Astrophys. 505, 825-843) about a strong CO source at a latitude of 20°. The best fit to the observations of Biver et al. (Biver, N. et al. [2002]. Earth Moon Planets 90, 5-14) is obtained with a low thermal conductivity of 0.01 W m−1 K−1. This is in agreement with recent results of the Deep Impact mission to 9P/Tempel 1 (Groussin, O., A’Hearn, M.F., Li, J.-Y., Thomas, P.C., Sunshine, J.M., Lisse, C.M., Meech, K.J., Farnham, T.L., Feaga, L.M., Delamere, W.A. [2007]. Icarus 187, 16-25) and with previous thermal simulations (Kührt, E. [1999]. Space Sci. Rev. 90, 75-82). The water production curve matches the production rates well from −4 AU pre-perihelion to the outgoing leg while the model does not reproduce so well the water production beyond 4 AU pre-perihelion. The CO production curve is a good fit to the measurements of Biver et al. (2002) over the whole measured heliocentric range from −7 AU pre- to 15 AU post-perihelion.  相似文献   

20.
Detailed statistical examination of Cl, Br, and S distributions, in martian soil profiles at Gusev Crater and Meridiani Planum, indicates decreasing Br abundance and weakening Br–S association towards the surface. All three elements decrease towards the surface in the order Cl < S < Br. Furthermore, Br variability decouples from potential cations such as Mg at the surface relative to the subsurface. These observations support a relative loss of surficial Br compared to S and Cl, all highly mobile elements in aqueous environments. We propose that Br may have converted preferentially to gas phases (e.g., BrO), driven either by UV photolysis or by chemical oxidants. Such volatilization pathways may in turn impart a global signature on Mars by acting as controls on oxidants such as ozone and perchlorates. S/Cl mass ratios vary with depth (∼4–5 in the subsurface; 1.8–3.6 on the surface) as well, with a strong correlation of S and Cl near the surface but more variable at depth, consistent with differential vertical mobility, but not volatilization of Cl. Elevated S/Cl in subsurface soil also suggests that the ratio may be higher in bulk soil – a key repository of martian geologic and climatic records – than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号