首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper we present results of two novel experimental methods to investigate the collisional behavior of individual macroscopic icy bodies. The experiments reported here were conducted in the microgravity environments of parabolic flights and the Bremen drop tower facility. Using a cryogenic parabolic-flight setup, we were able to capture 41 near-central collisions of 1.5-cm-sized ice spheres at relative velocities between 6 and . The analysis of the image sequences provides a uniform distribution of coefficients of restitution with a mean value of and values ranging from ε=0.06 to 0.84. Additionally, we designed a prototype drop-tower experiment for collisions within an ensemble of up to one hundred cm-sized projectiles and performed the first experiments with solid glass beads. We were able to statistically analyze the development of the kinetic energy of the entire system, which can be well explained by assuming a granular ‘fluid’ following Haff’s law with a constant coefficient of restitution of ε=0.64. We could also show that the setup is suitable for studying collisions at velocities of <5 mm s−1 appropriate for collisions between particles in Saturn’s dense main rings.  相似文献   

2.
T.M. Davison  G.S. Collins 《Icarus》2010,208(1):468-481
Collisions between planetesimals at speeds of several kilometres per second were common during the early evolution of our Solar System. However, the collateral effects of these collisions are not well understood. In this paper, we quantify the efficiency of heating during high-velocity collisions between planetesimals using hydrocode modelling. We conducted a series of simulations to test the effect on shock heating of the initial porosity and temperature of the planetesimals, the relative velocity of the collision and the relative size of the two colliding bodies. Our results show that while heating is minor in collisions between non-porous planetesimals at impact velocities below 10 km s−1, in agreement with previous work, much higher temperatures are reached in collisions between porous planetesimals. For example, collisions between nearly equal-sized, porous planetesimals can melt all, or nearly all, of the mass of the bodies at collision velocities below 7 km s−1. For collisions of small bodies into larger ones, such as those with an impactor-to-target mass ratio below 0.1, significant localised heating occurs in the target body. At impact velocities as low as 5 km s−1, the mass of melt will be nearly double the mass of the impactor, and the mass of material shock heated by 100 K will be nearly 10 times the mass of the impactor. We present a first-order estimate of the cumulative effects of impact heating on a porous planetesimal parent body by simulating the impact of a population of small bodies until a disruptive event occurs. Before disruption, impact heating is volumetrically minor and highly localised; in no case was more than about 3% of the parent body heated by more than 100 K. However, heating during the final disruptive collision can be significant; in about 10% of cases, almost all of the parent body is heated to 700 K (from an initial temperature of ∼300 K) and more than a tenth of the parent body mass is melted. Hence, energetic collisions between planetesimals could have had important effects on the thermal evolution of primitive materials in the early Solar System.  相似文献   

3.
Rei Niimi  Toshihiko Kadono 《Icarus》2011,211(2):986-992
A large number of cometary dust particles were captured with low-density silica aerogels by NASA’s Stardust Mission. Knowledge of the details of the capture mechanism of hypervelocity particles in silica aerogel is needed in order to correctly derive the original particle features from impact tracks. However, the mechanism has not been fully understood yet. We shot hard spherical projectiles of several different materials into silica aerogel of density 60 mg cm−3 and observed their penetration processes using an image converter or a high-speed video camera. In order to observe the deceleration of projectiles clearly, we carried out impact experiments at two velocity ranges; ∼4 km s−1 and ∼200 m s−1. From the movies we took, it was indicated that the projectiles were decelerated by hydrodynamic force which was proportional to v2 (v: projectile velocity) during the faster penetration process (∼4 km s−1) and they were merely overcoming the aerogel crushing strength during the slower penetration process (∼200 m s−1). We applied these deceleration mechanisms for whole capture process to calculate the track length. Our model well explains the track length in the experimental data set by Burchell et al. (Burchell, M.J., Creighton, J.A., Cole, M.J., Mann, J., Kearsley, A.T. [2001]. Meteorit. Planet. Sci. 36, 209-221).  相似文献   

4.
We show that the peak velocity of Jupiter’s visible-cloud-level zonal winds near 24°N (planetographic) increased from 2000 to 2008. This increase was the only change in the zonal velocity from 2000 to 2008 for latitudes between ±70° that was statistically significant and not obviously associated with visible weather. We present the first automated retrieval of fast (∼130 m s−1) zonal velocities at 8°N planetographic latitude, and show that some previous retrievals incorrectly found slower zonal winds because the eastward drift of the dark projections (associated with 5-μm hot spots) “fooled” the retrieval algorithms.We determined the zonal velocity in 2000 from Cassini images from NASA’s Planetary Data System using a global method similar to previous longitude-shifting correlation methods used by others, and a new local method based on the longitudinal average of the two-dimensional velocity field. We obtained global velocities from images acquired in May 2008 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). Longer-term variability of the zonal winds is based on comparisons with published velocities based on 1979 Voyager 2 and 1995-1998 HST images. Fluctuations in the zonal wind speeds on the order of 10 m s−1 on timescales ranging from weeks to months were found in the 1979 Voyager 2 and the 1995-1998 HST velocities. In data separated by 10 h, we find that the east-west velocity uncertainty due to longitudinal fluctuations are nearly 10 m s−1, so velocity fluctuations of 10 m s−1 may occur on timescales that are even smaller than 10 h. Fluctuations across such a wide range of timescales limit the accuracy of zonal wind measurements. The concept of an average zonal velocity may be ill-posed, and defining a “temporal mean” zonal velocity as the average of several zonal velocity fields spanning months or years may not be physically meaningful.At 8°N, we use our global method to find peak zonal velocities of ∼110 m s−1 in 2000 and ∼130 m s−1 in 2008. Zonal velocities from 2000 Cassini data produced by our local and global methods agree everywhere, except in the vicinity of 8°N. There, the local algorithm shows that the east-west velocity has large variations in longitude; vast regions exceed ∼140 m s−1. Our global algorithm, and all of the velocity-extraction algorithms used in previously-published studies, found the east-west drift velocities of the visible dark projections, rather than the true zonal velocity at the visible-cloud level. Therefore, the apparent increase in zonal winds between 2000 and 2008 at 8°N is not a true change in zonal velocity.At 7.3°N, the Galileo probe found zonal velocities of 170 m s−1 at the 3-bar level. If the true zonal velocity at the visible-cloud level at this latitude is ∼140 m s−1 rather than ∼105 m s−1, then the vertical zonal wind shear is much less than the currently accepted value.  相似文献   

5.
S.M. Metzger  M.C. Towner 《Icarus》2011,214(2):766-772
In situ (mobile) sampling of 33 natural dust devil vortices reveals very high total suspended particle (TSP) mean values of 296 mg m−3 and fine dust loadings (PM10) mean values ranging from 15.1 to 43.8 mg m−3 (milligrams per cubic meter). Concurrent three-dimensional wind profiles show mean tangential rotation of 12.3 m s−1 and vertical uplift of 2.7 m s−1 driving mean vertical TSP flux of 1689 mg m−3 s−1 and fine particle flux of ∼1.0 to ∼50 mg m−3 s−1. Peak PM10 dust loading and flux within the dust column are three times greater than mean values, suggesting previous estimates of dust devil flux might be too high. We find that deflation rates caused by dust devil erosion are ∼2.5-50 μm per year in dust devil active zones on Earth. Similar values are expected for Mars, and may be more significant there where competing erosional mechanisms are less likely.  相似文献   

6.
We present a study of the equatorial region of Jupiter, between latitudes ∼15°S and ∼15°N, based on Cassini ISS images obtained during the Jupiter flyby at the end of 2000, and HST images acquired in May and July 2008. We examine the structure of the zonal wind profile and report the detection of significant longitudinal variations in the intensity of the 6°N eastward jet, up to 60 m s−1 in Cassini and HST observations. These longitudinal variations are, in the HST case, associated with different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images show that at most there is only a small height difference, no larger than ∼0.5-1 scale heights, between the slow (∼100 m s−1) and fast (∼150 m s−1) moving features. This suggests that speed variability at 6°N is not dominated by vertical wind shears but instead we propose that Rossby wave activity is the responsible for the zonal variability. Removing this variability, we find that Jupiter’s equatorial jet is actually symmetric relative to equator with two peaks of ∼140-150 m s−1 located at latitudes 6°N and 6°S and at a similar pressure level. We also study the local dynamics of particular equatorial features such as several dark projections associated with 5 μm hot spots and a large, long-lived feature called the White Spot (WS) located at 6°S. Convergent flow at the dark projections appears to be a characteristic which depends on the particular morphology and has only been detected in some cases. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow.  相似文献   

7.
Laboratory impact experiments were conducted for gypsum-glass bead targets simulating the parent bodies of ordinary chondrites. The effects of the chondrules included in the parent bodies on impact disruption were experimentally investigated in order to determine the impact conditions for the formation of rubble-pile bodies after catastrophic disruption. The targets included glass beads with a diameter ranging from 100 μm to 3 mm and the volume fraction was 0.6, similar to that of ordinary chondrites, which is about 0.65-0.75. Nylon projectiles with diameters of 10 mm and 2 mm were impacted at 60-180 m s−1 by a single-stage gas gun and at 4 km s−1 by a two-stage light gas gun, respectively. The impact strength of the gypsum-glass bead target was found to range from 56 to 116 J kg−1 depending on the glass bead size, and was several times smaller than that of the porous gypsum target, 446 J kg−1 in low-velocity collisions. The impact strengths of the 100 μm bead target and the porous gypsum target strongly depended on the impact velocity: those obtained in high-velocity collisions were several times greater than those obtained in low-velocity collisions. The velocities of fragments ejected from two corners on the impact surface of the target, measured in the center of the mass system, were slightly dependent on the target materials, irrespective of impact velocity. These results suggest that chondrule-including planetesimals (CiPs) can reconstruct rubble-pile bodies in catastrophic disruptions at the size of the planetesimal smaller than that of planetesimals without chondrules.  相似文献   

8.
We present results regarding the dynamical meteorology of Jupiter’s White Ovals at different points in their evolution. Starting from the era with three White Ovals FA, BC, and DE (Galileo), continuing to the post-merger epoch with only one Oval BA (Cassini), and finally to Oval BA’s current reddened state (New Horizons), we demonstrate that the dynamics of their flow have similarly evolved along with their appearance. In the Galileo epoch, Oval DE had an elliptical shape with peak zonal wind speeds of ∼90 m s−1 in both its northern and southern peripheries. During the post-merger epoch, Oval BA’s shape was more triangular and less elliptical than Oval DE; in addition to widening in the north-south direction, its northern periphery was 20 m s−1 slower, and its southern periphery was 20 m s−1 faster than Oval DE’s flow during the Galileo era. Finally, in the New Horizons era, the reddened Oval BA had evolved back to a classical elliptical form. The northern periphery of Oval BA increased in speed by 20 m s−1 from Cassini to New Horizons, ending up at a speed nearly identical to that of the northern periphery of Oval DE during Galileo. However, the peak speeds along the southern rim of the newly formed Oval BA were consistently faster than the corresponding speeds in Oval DE, and they increased still further between Cassini and New Horizons, ending up at ∼140-150 m s−1. Relative vorticity maps of Oval BA reveal a cyclonic ring surrounding its outer periphery, similar to the ring present around the Great Red Spot. The cyclonic ring around Oval BA in 2007 appears to be moderately stronger than observed in 1997 and 2001, suggesting that this may be associated with the coloration of the vortex. The modest strengthening of the winds in Oval BA, the appearance of red aerosols, and the appearance of a turbulent, cyclonic feature to Oval BA’s northwest create a strong resemblance with the Great Red Spot from both a dynamical and morphological perspective.In addition to the White Ovals, we also measure the winds within two compact cyclonic regions, one in the Galileo data set and one in the Cassini data set. In the images, these cyclonic features appear turbulent and filamentary, but our wind field reveals that the flow manifests as a coherent high-speed collar surrounding relatively quiescent interiors. Our relative vorticity maps show that the vorticity likewise concentrates in a collar near the outermost periphery, unlike the White Ovals which have peak relative vorticity magnitudes near the center of the vortex. The cyclones contain several localized bright regions consistent with the characteristics of thunderstorms identified in other studies. Although less studied than their anticyclonic cousins, these cyclones may offer crucial insights into the planet’s cloud-level energetics and dynamical meteorology.  相似文献   

9.
We measured the velocity distributions of impact ejecta with velocities higher than ∼100 m s−1 (high-velocity ejecta) for impacts at variable impact angle α into unconsolidated targets of small soda-lime glass spheres. Polycarbonate projectiles with mass of 0.49 g were accelerated to ∼250 m s−1 by a single-stage light-gas gun. The impact ejecta are detected by thin aluminum foils placed around the targets. We analyzed the holes on the aluminum foils to derive the total number and volume of ejecta that penetrated the aluminum foils. Using the minimum velocity of the ejecta for penetration, determined experimentally, the velocity distributions of the high-velocity ejecta were obtained at α=15°, 30°, 45°, 60°, and 90°. The velocity distribution of the high-velocity ejecta is shown to depend on impact angle. The quantity of the high-velocity ejecta for vertical impact (α=90°) is considerably lower than derived from a power-law relation for the velocity distribution on the low-velocity ejecta (less than 10 m s−1). On the other hand, in oblique impacts, the quantity of the high-velocity ejecta increases with decreasing impact angle, and becomes comparable to those derived from the power-law relation. We attempt to scale the high-velocity ejecta for oblique impacts to a new scaling law, in which the velocity distribution is scaled by the cube of projectile radius (scaled volume) and a horizontal component of impactor velocity (scaled ejection velocity), respectively. The high-velocity ejecta data shows a good correlation between the scaled volume and the scaled ejection velocity.  相似文献   

10.
Laboratory simulations using the Arizona State University Vortex Generator (ASUVG) were run to simulate sediment flux in dust devils in terrestrial ambient and Mars-analog conditions. The objective of this study was to measure vortex sediment flux in the laboratory to yield estimations of natural dust devils on Earth and Mars, where all parameters may not be measured. These tests used particles ranging from 2 to 2000 μm in diameter and 1300 to 4800 kg m−3 in density, and the results were compared with data from natural dust devils on Earth and Mars. Typically, the cores of dust devils (regardless of planetary environment) have a pressure decrease of ∼0.1-1.5% of ambient atmospheric pressure, which enhances the lifting of particles from the surface. Core pressure decreases in our experiments ranged from ∼0.01% to 5.00% of ambient pressure (10 mbar Mars cases and 1000 mbar for Earth cases) corresponding to a few tenths of a millibar for Mars cases and a few millibars for Earth cases. Sediment flux experiments were run at vortex tangential wind velocities of 1-45 m s−1, which typically correspond to ∼30-70% above vortex threshold values for the test particle sizes and densities. Sediment flux was determined by time-averaged measurements of mass loss for a given vortex size. Sediment fluxes of ∼10−6-100 kg m−2 s−1 were obtained, similar to estimates and measurements for fluxes in dust devils on Earth and Mars. Sediment flux is closely related to the vortex intensity, which depends on the strength of the pressure decrease in the core (ΔP). This study found vortex size is less important for lifting materials because many different diameters can have the same ΔP. This finding is critical in scaling the laboratory results to natural dust devils that can be several orders of magnitude larger than the laboratory counterparts.  相似文献   

11.
We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009 (Sánchez-Lavega, A. et al. [2010]. Astrophys. J. 715, L155-L159). The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 μm. The impact cloud expanded zonally from ∼5000 km (July 19) to 225,000 km (29 October, about 180° in longitude), remaining meridionally localized within a latitude band from 53.5°S to 61.5°S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact’s energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5°S latitude increases its eastward velocity with altitude above the tropopause by 5-10 m s−1. The corresponding vertical wind shear is low, about 1 m s−1 per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m s−1. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact.  相似文献   

12.
This paper extends Leovy's theory on Venus’ equatorial superrotation by analytically examining additional terms in the mean zonal momentum equation that stably balances the momentum source of pumping by thermal tides. The general analytical solution is applied to the atmospheres of both Venus and Saturn's moon Titan. The main results are: (i) Venus’ equatorial superrotation of 118 m s−1 results primarily from a balance between the momentum source of pumping by thermal tides and the momentum sink of meridional advection of wind shear by horizontal branches of the Hadley circulation; (ii) no solution is found for Titan's stratospheric equatorial superrotation centered at the 1-hPa level; (iii) however, if the main solar radiation absorption layer in Titan's stratosphere is lifted from 1 hPa (∼185 km) to 0.1 hPa (∼288 km), an equatorial superrotation of ∼110 m s−1 centered at 0.1-hPa could be maintained. Titan's equatorial superrotation results mainly from a balance between the momentum source of tidal pumping and the momentum sink of frictional drag.  相似文献   

13.
The rate of granule ripple movement on Earth and Mars   总被引:1,自引:0,他引:1  
The rate of movement for 3- and 10-cm-high granule ripples was documented in September of 2006 at Great Sand Dunes National Park and Preserve during a particularly strong wind event. Impact creep induced by saltating sand caused ∼24 granules min−1 to cross each cm of crest length during wind that averaged ∼9 m s−1 (at a height well above 1 m), which is substantially larger than the threshold for saltation of sand. Extension of this documented granule movement rate to Mars suggests that a 25-cm-high granule ripple should require from hundreds to thousands of Earth-years to move 1 cm under present atmospheric conditions.  相似文献   

14.
A study of the dynamics of the second largest anticyclone in Jupiter, Oval BA, and its red colour change that occurred in late 2005 is presented in a three part study. The first part, this paper, deals with its long-term kinematical and dynamical behaviour monitored since its formation in 2000 to September 2008 using ground-based observations archived at the public International Outer Planet Watch (IOPW) database. The vortex changed its zonal drift velocity from 1.8 m s−1 in the period 2000-2002 to 0.8 m s−1 in 2002-2003, and to 2.5 m s−1 since late 2003. It also migrated southwards by 1.0 ± 0.5° in latitude between 2000 and 2004, remaining afterwards at an almost fixed latitude position. During the period 2000-2007, the oval also changed its triangular-like shape to a more symmetrical one. No latitudinal change was found in the months before the development of a red annulus in its interior. The colour change took place in less than 5 months in 2005-2006 and no red colour feature was observed to have been present or entrained by BA months before the annulus development. After detailed examination of the four encounters between BA and GRS that took place during this 9 year period, we did not detect any noticeable change in its drift rate or in apparent structure associated with the encounters at cloud level. Also, the area of BA did not significantly change in this period. Additionally, we found that BA displays a long-term oscillation of ∼160 days in its longitude position with peak to peak amplitude of 1.2°. Numerical experiments using the global circulation model EPIC reproduce accurately the shape, connecting it to its latitude migration, and morphology of the oval and confirm that no strong interaction between BA and the GRS is possible at least in the current situation.  相似文献   

15.
Experiments to investigate the effect of impacts on side-walls of dust detectors such as the present NASA/ESA Galileo/Ulysses instrument are reported. Side walls constitute 27% of the internal area of these instruments, and increase field of view from 140° to 180°. Impact of cosmic dust particles onto Galileo/Ulysses Al side walls was simulated by firing Fe particles, 0.5-5 μm diameter, 2-50 km s−1, onto an Al plate, simulating the targets of Galileo and Ulysses dust instruments. Since side wall impacts affect the rise time of the target ionization signal, the degree to which particle fluxes are overestimated varies with velocity. Side-wall impacts at particle velocities of 2-20 km s−1 yield rise times 10-30% longer than for direct impacts, so that derived impact velocity is reduced by a factor of ∼2. Impacts on side wall at 20-50 km s−1 reduced rise times by a factor of ∼10 relative to direct impact data. This would result in serious overestimates of flux of particles intersecting the dust instrument at velocities of 20-50 km s−1. Taking into account differences in laboratory calibration geometry we obtain the following percentages for previous overestimates of incident particle number density values from the Galileo instrument [Grün et al., 1992. The Galileo dust detector. Space Sci. Rev. 60, 317-340]: 55% for 2 km s−1 impacts, 27% at 10 km s−1 and 400% at 70 km s−1. We predict that individual particle masses are overestimated by ∼10-90% when side-wall impacts occur at 2-20 km s−1, and underestimated by ∼10-102 at 20-50 km s−1. We predict that wall impacts at 20-50 km s−1 can be identified in Galileo instrument data on account of their unusually short target rise times. The side-wall calibration is used to obtain new revised values [Krüger et al., 2000. A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids. Planet. Space Sci. 48, 1457-1471; 2003. Impact-generated dust clouds surrounding the Galilean moons. Icarus 164, 170-187] of the Galilean satellite dust number densities of 9.4×10−5, 9.9×10−5, 4.1×10−5, and 6.8×10−5 m−3 at 1 satellite radius from Io, Europa, Ganymede, and Callisto, respectively. Additionally, interplanetary particle number densities detected by the Galileo mission are found to be 1.6×10−4, 7.9×10−4, 3.2×10−5, 3.2×10−5, and 7.9×10−4 m−3 at heliocentric distances of 0.7, 1, 2, 3, and 5 AU, respectively. Work by Burchell et al. [1999b. Acceleration of conducting polymer-coated latex particles as projectiles in hypervelocity impact experiments. J. Phys. D: Appl. Phys. 32, 1719-1728] suggests that low-density “fluffy” particles encountered by Ulysses will not significantly affect our results—further calibration would be useful to confirm this.  相似文献   

16.
We present observational data for Comet 9P/Tempel 1 taken from 1997 through 2010 in an international collaboration in support of the Deep Impact and Stardust-NExT missions. The data were obtained to characterize the nucleus prior to the Deep Impact 2005 encounter, and to enable us to understand the rotation state in order to make a time of arrival adjustment in February 2010 that would allow us to image at least 25% of the nucleus seen by the Deep Impact spacecraft to better than 80 m/pixel, and to image the crater made during the encounter, if possible. In total, ∼500 whole or partial nights were allocated to this project at 14 observatories worldwide, utilizing 25 telescopes. Seventy percent of these nights yielded useful data. The data were used to determine the linear phase coefficient for the comet in the R-band to be 0.045 ± 0.001 mag deg−1 from 1° to 16°. Cometary activity was observed to begin inbound near r ∼ 4.0 AU and the activity ended near r ∼ 4.6 AU as seen from the heliocentric secular light curves, water-sublimation models and from dust dynamical modeling. The light curve exhibits a significant pre- and post-perihelion brightness and activity asymmetry. There was a secular decrease in activity between the 2000 and 2005 perihelion passages of ∼20%. The post-perihelion light curve cannot be easily explained by a simple decrease in solar insolation or observing geometry. CN emission was detected in the comet at 2.43 AU pre-perihelion, and by r = 2.24 AU emission from C2 and C3 were evident. In December 2004 the production rate of CN increased from 1.8 × 1023 mol s−1 to QCN = 2.75 × 1023 mol s−1 in early January 2005 and 9.3 × 1024 mol s−1 on June 6, 2005 at r = 1.53 AU.  相似文献   

17.
Vladimir Svetsov 《Icarus》2011,214(1):316-326
I have performed 3D numerical hydrodynamic simulations of impacts of stony projectiles on stony planar targets in a range of impact velocities from 1.25 to 60 km/s. The projectile and target masses ejected at speeds greater than some given values have been calculated. This provided a possibility to determine impact erosion of a target which undergoes bombardment with comparatively small bodies. The relative losses of target masses and masses of retained projectile material have been averaged over impact angles and approximated by analytical formulas as functions of impact and escape velocities. The balance between escaped material of a target and retained material of a projectile determines growth or reduction of a target mass. The target cratering erosion predominates over the projectile retention when the impacts have velocities of more than 3-5 times the escape velocity of a target. The results can be applied to collisions of planetary embryos with planetesimals, which have higher velocities than embryo-embryo impacts. Estimates for impact velocities 1-10 km/s show that while large embryos accrete planetesimals smaller embryos erode and can completely vanish or partly lose their silicate shells if they are differentiated. Application of calculated erosion efficiency to Mercury made it possible to test a hypothesis (Vityazev, A.V., Pechernikova, G.V., Safronov, V.S. [1988]. Formation of Mercury and removal of its silicate shell. In: Vilas, F., Chapman, C.R., Matthews, M.S. (Eds.), Mercury. Univ. Arizona Press., Tucson, pp. 667−669) that differentiated massive proto-Mercury has lost its mantle due to collisions with objects of moderate sizes. It turned out that in order for this to happen, relative collision velocities must exceed 25 km/s. As alternatives to the widely-known hypothesis of a giant impact on a massive proto-Mercury, other possibilities are considered, which do not require such high speeds. The first one is formation of a number of small-sized metal-rich embryos which lose their silicate shells due to cratering erosion. The second is that a small proto-Mercury was metallic and gained its mantle at the latest stage of its accumulation when it grew so large that the erosion became ineffective.  相似文献   

18.
Jon Legarreta 《Icarus》2008,196(1):184-201
Numerical simulations of jovian vortices at tropical and temperate latitudes, under different atmospheric conditions, have been performed using the EPIC code [Dowling, T.E., Fisher, A.S., Gierasch, P.J., Harrington, J., LeBeau, R.P., Santori, C.M., 1998. Icarus 132, 221-238] to simulate the high-resolution observations of motions and of the lifetimes presented in a previous work [Legarreta, J., Sánchez-Lavega, A., 2005. Icarus 174, 178-191] and infer the vertical structure of Jupiter's troposphere. We first find that in order to reproduce the longevity and drift rate of the vortices, the Brunt-Väisälä frequency of the atmosphere in the upper troposphere (pressures P∼1 to 7 bar) should have a lower limit value of 5×10−3 s−1, increasing upward up to 1.25×10−2 s−1 at pressures P∼0.5 bar (latitudes between 15° and 45° in both hemispheres). Second, the vortices drift also depend on the vertical structure of the zonal wind speed in the same range of altitudes. Simulations of the slowly drifting Southern hemisphere vortices (GRS, White Ovals and anticyclones at 40° S) require a vertically-constant zonal-wind with depth, but Northern hemisphere vortices (cyclonic “barges” and anticyclones at 19, 41 and 45° N) require decreasing winds at a rate of ∼5 m s−1 per scale height. However vortices drifting at a high speed, close to or in the peak of East or West jets and in both hemispheres, require the wind speed slightly increasing with depth, as is the case for the anticyclones at 20° S and at 34° N. We deduce that the maximum absolute vertical shear of the zonal wind from P∼1 bar up to P∼7 bar in these jets is ∼15 m s−1 per scale height. Intense vortices with tangential velocity at their periphery ∼100 m s−1 tend to decay asymptotically to velocities ∼40 to 60 m s−1 with a characteristic time that depends on the vortex intensity and static stability of the atmosphere. The vortices adjust their tangential velocity to the averaged peak to peak velocity of the opposed eastward and westward jets at their boundary. We show through our simulations that large-scale and long-lived vortices whose maximum tangential velocity is ∼100 m s−1 can survive by absorbing smaller intense vortices.  相似文献   

19.
We extend previous work on the global tectonic patterns generated by despinning with a self-consistent treatment of the isotropic despinning contraction that has been ignored. We provide simple analytic approximations that quantify the effect of the isotropic despinning contraction on the global shape and tectonic pattern. The isotropic despinning contraction of Mercury is ∼93 m (T/1 day)−2, where T is the initial rotation period. If we take into account both the isotropic contraction and the degree-2 deformations associated with despinning, the preponderance of compressional tectonic features on Mercury’s surface requires an additional isotropic contraction ?1 km (T/1 day)−2, presumably due to cooling of the interior and growth of the solid inner core. The isotropic despinning contraction of Iapetus is ∼9 m (T/16 h)−2, and it is not sensitive to the presence of a core or the thickness of the elastic lithosphere. The tectonic pattern expected for despinning, including the isotropic contraction, does not explain Iapetus’ ridge. Furthermore, the ridge remains unexplained with the addition of any isotropic compressional stresses, including those generating by cooling.  相似文献   

20.
C.C. Reese  C.P. Orth 《Icarus》2011,213(2):433-442
We show that a sufficiently energetic impact can generate a melt volume which, after isostatic adjustment and differentiation, forms a spherical cap of crust with underlying depleted mantle. Depending on impact energy and initial crustal thickness, a basin may be retained or impact induced crust may be topographically elevated. Retention of a martian lowland scale impact basin at impact energies ∼3 × 1028-3 × 1029 J requires an initial crustal thickness greater than 10 km. Formation of impact induced crust with size comparable to the martian highlands requires a larger impact energy, ∼1-3 × 1030 J, and initial crustal thickness <20 km. Furthermore, we show that the boundary of impact induced crust can be elliptical due to a spatially asymmetric impact melt volume caused by an oblique impact. We suggest the term “impact megadome” for topographically elevated, impact induced crust and propose that processes involved in megadome formation may play an important role in the origin of the martian crustal dichotomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号