首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present values from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) of four fundamental disk-integrated spectrophotometric properties (bolometric Bond albedo, solar phase curve, phase integral, and geometric albedo at 7-15 different wavelengths in the λ = 0.35-5.1 μm range) for five mid-sized saturnian icy satellites: Rhea, Dione, Tethys, Mimas, and Enceladus. These values, which include data from the period 2004-2008 and add to past VIMS phase curves, include opposition surge effects at down to fractions of a degree in solar phase angle for several moons and extend to over double the solar phase angle coverage of the Voyager mission. We also present new rotational light curves for Rhea and Dione at 7 near-infrared bands not previously available in ground-based or spacecraft studies. The bolometric Bond albedos we derive are as follows: 0.48 ± 0.09 (Rhea), 0.52 ± 0.08 (Dione), 0.61 ± 0.09 (Tethys), 0.67 ± 0.10 (Mimas), and 0.85 ± 0.11 (Enceladus). We also provide breakdowns of the major photometric quantities in both leading and trailing hemispheres. These refined parameters can be used to construct future bolometric Bond albedo maps that will contribute to surface composition identification studies, as well as models of volatile transport and sublimation. Through such applications, these data will help to determine the physical properties of surface particles, how the E-ring affects the inner saturnian moons, what is responsible for the dark albedo patterns seen on Tethys, and if these moons (e.g., Dione) are geologically active.  相似文献   

2.
We observed Phoebe for 13 nights over a period of 55 days before, during, and after the 2005 Saturn opposition with the New Mexico State University (NMSU) 1-m telescope at Apache Point Observatory (APO) in Sunspot, NM and characterized the width and magnitude of Phoebe’s opposition surge in BVRI filters. Our observations cover a phase angle range of 4.87° to 0.0509°. We use a Hapke reflectance model incorporating shadow hiding and coherent backscatter to investigate the wavelength dependence of Phoebe’s opposition surge. We find a significant opposition surge magnitude of 55-58% between phase angles of 5° and 0°. We find the strongest opposition surge for phase angles less than 2° in the I-band. The coherent backscatter angular width is on the order of 0.50°. We find Phoebe’s albedo to be spectrally flat within our error limits, with a B-band albedo of 0.0855 ± 0.0031, a V-band albedo of 0.0856 ± 0.0023, an R-band albedo of 0.0843 ± 0.0020, and an I-band albedo of 0.0839 ± 0.0023. We compare Phoebe’s albedo, color, and opposition surge magnitudes and slopes with those of other outer solar system bodies and find similarities to Centaurs, Nereid, Puck, and Comets 19P/Borrelly, 9P/Tempel 1, and 81P/Wild 2. We find that this comparison supports the idea that Phoebe originated in the Kuiper Belt. We also discuss the caveats of using results from a Hapke reflectance model to derive specific surface particle properties.  相似文献   

3.
The roughness of a planetary surface offers clues to its past geologic history. We apply a surface roughness model developed by Buratti and Veverka (Buratti, B.J., Veverka, J. [1985]. Icarus 64, 320-328) to Cassini ISS data from the January 1st, 2005 flyby of Iapetus. This model uses the observed scattering behavior to provide a depth to radius factor q quantifying the size of idealized craters on the surface. Our findings indicate that the surface on the dark side is significantly smoother than the surfaces of other icy low-albedo saturnian satellites. We have found that the average depth to radius on the leading (dark) side is 0.084, corresponding to a Hapke mean slope angle of 6°. As compared to the 13-33° Hapke mean slope angle of other icy satellites (Buratti, B.J., and 10 colleagues [2008]. Icarus 193, 309-322), our results present a clearly different picture for the leading surface of Iapetus, suggesting that the dark deposit contributes to the decrease in macroscopic surface roughness of the leading side. Attempts were made to obtain an average depth to radius value for the trailing (bright) side; however the scans of the bright side from this flyby exhibited large variations in albedo, resulting in results that were physically unrealistic.  相似文献   

4.
New global maps of the five inner midsize icy saturnian satellites, Mimas, Enceladus, Tethys, Dione, and Rhea, have been constructed in three colors (UV, Green and near-IR) at resolutions of 1 km/pixel. The maps reveal prominent global patterns common to several of these satellites but also three major color features unique to specific satellites or satellite subgroups. The most common features among the group are first-order global asymmetries in color properties. This pattern, expressed on Tethys, Dione and Rhea, takes the form of a ∼1.4-1.8 times enhancement in redness (expressed as IR/UV ratio) of the surface at the center of the trailing hemisphere of motion, and a similar though significantly weaker IR/UV enhancement at the center of the leading hemisphere. The peak in redness on the trailing hemisphere also corresponds to a known decrease in albedo. These double hemispheric asymmetries are attributable to plasma and E-ring grain bombardment on the trailing and leading hemispheres, respectively, for the outer three satellites Tethys, Dione and Rhea, whereas as E-ring bombardment may be focused on the trailing hemisphere of Mimas due to its orbital location interior to Enceladus. The maps also reveal three major deviations from these basic global patterns. We observe the previously known dark bluish leading hemisphere equatorial band on Tethys but have also discovered a similar band on Mimas. Similar in shape, both features match the surface patterns expected for irradiation of the surface by incident MeV electrons that drift in a direction opposite to the plasma flow. The global asymmetry on Enceladus is offset ∼40° to the west compared to the other satellites. We do not consider Enceladus in detail here, but the global distribution of bluish material can be shown to match the deposition pattern predicted for plume fallback onto the surface (Kempf, S., Beckmann, U., Schmidt, S. [2010]. Icarus 206, 446-457. doi:10.1016/j.icarus.2009.09.016). E-ring deposition on Enceladus thus appears to mask or prevent the formation of the lenses and hemispheric asymmetries we see on the other satellites. Finally, we observe a chain of discrete bluish splotches along the equator of Rhea. Unlike the equatorial bands of Tethys and Mimas, these splotches form a very narrow great circle ?10-km wide (north-to-south) and appear to be related to surface disruption, exposing fresh, bluish ice on older crater rims. This feature is unique to Rhea and may have formed by impact onto its surface of orbiting material.  相似文献   

5.
Hubble Space Telescope (HST) Wide-Field Planetary Camera (WFPC2) observations at phase angles in the range α=0.26°-6.4° obtained at every opposition and near quadrature between October 1996 and December 2002 reveal the opposition effect of Enceladus. We present a photometric analysis of nearly 200 images obtained through the five broadband UVBRI filters (F336W, F439W, F555W, F675W, and F814W) and the F785LP and F1042M filters from which we generate mutually consistent solar and rotational phase curves. Our solar phase curves reveal a dramatic, sharp increase in the albedo (from 0.11 mag in the F675W filter to 0.17 mag in the F785LP filter) as phase angles decrease from 2° to 0.26°. A slight opposition effect is evident in data from the F1042M filter (λeff=1022 nm); however, the smallest phase angle currently available for observations from this filter is α=0.58°. With the addition of data from the F255W filter we demonstrate the wavelength dependence of the albedo of the trailing hemisphere from 275 to 1022 nm. Our rotation curves show that the trailing hemisphere is ∼0.06 mag brighter than the leading when observed at wavelengths between 338 and 868 nm and 0.11 mag brighter than the leading at 1022 nm. We have supplemented the phase curve from the F439W filter (λeff=434 nm) with Voyager clear filter (λeff=480 nm) observations made at larger phase angles (α=13°-43°) to produce a phase curve with the most extensive phase angle coverage possible to date. This newly expanded range of phase angles enhances the ability of the Hapke photometric model (Hapke B., 2002, Icarus 157, 523-534) to relate physical characteristics of the surface of Enceladus to the manner in which incident light is reflected from it. We present Hapke 2002 model fits to solar phase curves from each UVBRI filter as well as from the F785LP and F1042M filters. Geometric albedos derived from these model fits range from p=0.92±0.01 at 1022 nm to p=1.41±0.03 at 549 nm, necessitating an increase of about 20% from previously derived values. Our Hapke fits demonstrate that the opposition surge of Enceladus is best described by a model which combines both moderate shadow-hiding and narrow coherent backscattering components.  相似文献   

6.
We report the detailed analysis of the spectrophotometric properties of Saturn’s icy satellites as derived by full-disk observations obtained by visual and infrared mapping spectrometer (VIMS) experiment aboard Cassini. In this paper, we have extended the coverage until the end of the Cassini’s nominal mission (June 1st 2008), while a previous paper (Filacchione, G., and 28 colleagues [2007]. Icarus 186, 259-290, hereby referred to as Paper I) reported the preliminary results of this study.During the four years of nominal mission, VIMS has observed the entire population of Saturn’s icy satellites allowing us to make a comparative analysis of the VIS-NIR spectral properties of the major satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus) and irregular moons (Atlas, Prometheus, Pandora, Janus, Epimetheus, Telesto, Calypso, Phoebe). The results we discuss here are derived from the entire dataset available at June 2008 which consists of 1417 full-disk observations acquired from a variety of distances and inclinations from the equatorial plane, with different phase angles and hemispheric coverage. The most important spectrophotometric indicators (as defined in Paper I: I/F continua at 0.55 μm, 1.822 μm and 3.547 μm, visible spectral slopes, water and carbon dioxide bands depths and positions) are calculated for each observation in order to investigate the disk-integrated composition of the satellites, the distribution of water ice respect to “contaminants” abundances and typical regolith grain properties. These quantities vary from the almost pure water ice surfaces of Enceladus and Calypso to the organic and carbon dioxide rich Hyperion, Iapetus and Phoebe. Janus visible colors are intermediate between these two classes having a slightly positive spectral slope. These results could help to decipher the origins and evolutionary history of the minor moons of the Saturn’s system. We introduce a polar representation of the spectrophotometric parameters as function of the solar phase angle (along radial distance) and of the effective longitude interval illuminated by the Sun and covered by VIMS during the observation (in azimuth) to better investigate the spatial distribution of the spectrophotometric quantities across the regular satellites hemispheres. Finally, we report the observed spectral positions of the 4.26 μm band of the carbon dioxide present in the surface material of three outermost moons Hyperion, Iapetus and Phoebe.  相似文献   

7.
Cassini Visual Infrared Mapping Spectrometer (VIMS) observations of Mimas, Tethys, and Dione obtained during the nominal and extended missions at large solar phase angles were analyzed to search for plume activity. No forward scattered peaks in the solar phase curves of these satellites were detected. The upper limit on water vapor production for Mimas and Tethys is one order of magnitude less than the production for Enceladus. For Dione, the upper limit is two orders of magnitude less, suggesting this world is as inert as Rhea (Pitman, K.M., Buratti, B.J., Mosher, J.A., Bauer, J.M., Momary, T., Brown, R.H., Nicholson, P.D., Hedman, M.M. [2008]. Astrophys. J. Lett. 680, L65-L68). Although the plumes are best seen at ∼2.0 μm, Imaging Science Subsystem (ISS) Narrow Angle Camera images obtained at the same time as the VIMS data were also inspected for these features. None of the Cassini ISS images shows evidence for plumes. The absence of evidence for any Enceladus-like plumes on the medium-sized saturnian satellites cannot absolutely rule out current geologic activity. The activity may below our threshold of detection, or it may be occurring but not captured on the handful of observations at large solar phase angles obtained for each moon. Many VIMS and ISS images of Enceladus at large solar phase angles, for example, do not contain plumes, as the active “tiger stripes” in the south pole region are pointed away from the spacecraft at these times. The 7-year Cassini Solstice Mission is scheduled to gather additional measurements at large solar phase angles that are capable of revealing activity on the saturnian moons.  相似文献   

8.
Spectra taken by Cassini’s Composite Infrared Spectrometer (CIRS) between 10 and 600 cm−1 (17-1000 μm) of surface thermal emission of Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus have been used to derive the thermal inertia and bolometric Bond albedo values. Only an upper limit for the bolometric Bond albedo of Iapetus’ dark leading side could be determined due to the insensitivity of the thermal model to albedo when albedos are very low. The thermal inertia in this region however is better constrained. The CIRS coverage of Enceladus is extensive enough that the latitudinal variation in these values from 60°S to 70°N has been determined in 10° wide bins. The bolometric Bond albedos determined here are consistent with literature values which show the surface of the saturnian icy moons to be covered in ice contaminated to varying degrees. The thermal inertia of the moons is shown to be in the range 9-, approximately 2-6 times lower than that of the Galilean satellites, implying a less well consolidated and more porous surface. The thermal inertias of Iapetus and Phoebe are somewhat higher, suggesting that the very low thermal inertias of satellites from Rhea inwards may be related to their probable coating of E-ring material. Latitudinal variations on the surface of Enceladus show that the bolometric Bond albedo and thermal inertia increase towards the active plume source at the south pole.  相似文献   

9.
G.J. Black  D.B. Campbell 《Icarus》2007,191(2):702-711
We have measured the bulk radar reflectance properties of the mid-size saturnian satellites Rhea, Dione, Tethys, and Enceladus with the Arecibo Observatory's 13 cm wavelength radar system during the 2004 through 2007 oppositions of the Saturn system. Comparing to the better studied icy Galilean satellites, we find that the total reflectivities of Rhea and Tethys are most similar to Ganymede while Dione is most similar to Callisto. Enceladus' reflectivity falls between those of Ganymede and Europa. The mean circular polarization ratios of the saturnian satellites range from ∼0.8 to 1.2, and are on average lower than those of the icy Galilean satellites at this wavelength although still larger than expected for single reflections off the surface. The ratio for the trailing hemisphere of Enceladus may be the exception with a value ?0.56. The 13 cm wavelength radar albedos and polarization ratios may be systematically lower than similar results from the Cassini orbiter's RADAR instrument at 2.2 cm wavelength [Ostro, S.J., and 19 colleagues, 2006. Icarus 183, 479-490]. Overall, these reflectivities and polarization properties, together with the shapes of the echo spectra, suggest subsurface multiple scattering to be the dominant reflection mechanism although operating less efficiently than on the large icy moons of Jupiter. All these saturnian moons and icy jovian moons are atmosphere-less, low temperature water ice surfaces, and any differences in radar properties may be indicative of differences in composition or the effects of various processes that modify the regolith structure. The degree of variation in radar properties with wavelength on each satellite may constrain the thickness and efficiency of the scattering layer.  相似文献   

10.
Resolution of Voyager 1 and 2 images of the mid-sized, icy saturnian satellites was generally not much better than 1 km per line pair, except for a few, isolated higher resolution images. Therefore, analyses of impact crater distributions were generally limited to diameters (D) of tens of kilometers. Even with the limitation, however, these analyses demonstrated that studying impact crater distributions could expand understanding of the geology of the saturnian satellites and impact cratering in the outer Solar System. Thus to gain further insight into Saturn’s mid-sized satellites and impact cratering in the outer Solar System, we have compiled cratering records of these satellites using higher resolution CassiniISS images. Images from Cassini of the satellites range in resolution from tens m/pixel to hundreds m/pixel. These high-resolution images provide a look at the impact cratering records of these satellites never seen before, expanding the observable craters down to diameters of hundreds of meters. The diameters and locations of all observable craters are recorded for regions of Mimas, Tethys, Dione, Rhea, Iapetus, and Phoebe. These impact crater data are then analyzed and compared using cumulative, differential and relative (R) size-frequency distributions. Results indicate that the heavily cratered terrains on Rhea and Iapetus have similar distributions implying one common impactor population bombarded these two satellites. The distributions for Mimas and Dione, however, are different from Rhea and Iapetus, but are similar to one another, possibly implying another impactor population common to those two satellites. The difference between these two populations is a relative increase of craters with diameters between 10 and 30 km and a relative deficiency of craters with diameters between 30 and 80 km for Mimas and Dione compared with Rhea and Iapetus. This may support the result from Voyager images of two distinct impactor populations. One population was suggested to have a greater number of large impactors, most likely heliocentric comets (Saturn Population I in the Voyager literature), and the other a relative deficiency of large impactors and a greater number of small impactors, most likely planetocentric debris (Saturn Population II). Meanwhile, Tethys’ impact crater size-frequency distribution, which has some similarity to the distributions of Mimas, Dione, Rhea, and Iapetus, may be transitional between the two populations. Furthermore, when the impact crater distributions from these older cratered terrains are compared to younger ones like Dione’s smooth plains, the distributions have some similarities and differences. Therefore, it is uncertain whether the size-frequency distribution of the impactor population(s) changed over time. Finally, we find that Phoebe has a unique impact crater distribution. Phoebe appears to be lacking craters in a narrow diameter range around 1 km. The explanation for this confined “dip” at D = 1 km is not yet clear, but may have something to do with the interaction of Saturn’s irregular satellites or the capture of Phoebe.  相似文献   

11.
Near-infrared observations of Europa's disk-integrated opposition surge by Cassini VIMS, first published in Fig. 4 of Brown et al. (2003, Icarus, 164, 461), have now been modeled with the commonly used Hapke photometric function. The VIMS data set emphasizes observations at 16 solar phase angles from 0.4° to 0.6°—the first time the <1° phase “heart” of Europa's opposition surge has been observed this well in the near-IR. This data set also provides a unique opportunity to examine how the surge is affected by changes in wavelength and albedo: at VIMS wavelengths of 0.91, 1.73, and 2.25 μm, the geometric albedo of Europa is 0.81, 0.33, and 0.18, respectively. Despite this factor-of-four albedo range, however, the slope of Europa's phase curve at <1° phase is similar at all three wavelengths (to within the error bars) and this common slope is similar to the phase coefficient seen in visible-light observations of Europa. The two components of the opposition surge—involving different models of the physical cause of the surge—are the Shadow Hiding Opposition Effect (SHOE) and the Coherent Backscatter Opposition Effect (CBOE). Because of sparse VIMS phase coverage, it is not possible to constrain all the surge parameters at once in a Hapke function that has both SHOE and CBOE; accordingly, we performed separate Hapke fits for SHOE-only and CBOE-only surges. At 2.25 μm, where VIMS data are somewhat noisy, both types of surges can mimic the slope of the VIMS phase curve at <1° phase. At 0.91 and 1.73 μm, however—where VIMS data are “cleaner”—CBOE does a noticeably poorer job than SHOE of matching the VIMS phase coefficient at <1° phase; in particular, the best CBOE fit insists on having a steeper phase-curve slope than the data. This discrepancy suggests that Europa's near-IR opposition surge cannot be explained by CBOE alone and must have a significant SHOE component, even at wavelengths where Europa is bright.  相似文献   

12.
I. Kulyk  K. Jockers 《Icarus》2004,170(1):24-34
We present the results of photometric measurements of the inner jovian satellites Thebe, Amalthea and Metis based on extensive optical observations taken from October 1999 to January 2002. The observations were made in the phase angle range from 8.1° to 0.3°. The Two-Channel Focal Reducer of the Max-Planck Institute for Aeronomy attached to the 2-m RCC telescope at Terskol Observatory (Pik Terskol, Northern Caucasus) was used in coronagraph mode. The observations were performed at a wavelength of 0.887 μm. Mean observational uncertainties corresponding to 1σ rms errors were 3% for the leading and trailing sides of Amalthea, 7 and 9% for the leading and trailing sides of Thebe and 9% for the leading side of Metis after taking into account the longitude brightness variations. Photometric data calibrated on an absolute scale were used to evaluate the near-opposition behavior of satellite brightness. All three satellites exhibit significant opposition brightening, but the strength of this effect, measured as the ratios of intensities at α1=1.6° and α2=6.7° does not vary significantly among these satellites. In order to measure the opposition surge parameters the empirical law proposed by Karkoschka and Hapke's model were used. The parameters of the satellite opposition effects are presented and discussed. The values of geometric albedos calculated with best-fit Hapke parameters are 0.096, 0.157, and 0.24 for Thebe, Amalthea, and Metis respectively. We found that the average leading/trailing ratios of surface reflectance at the measured phase angles are 1.53±0.05, 1.25±0.04, 1.04±0.08 for Amalthea, Thebe, and Metis.  相似文献   

13.
Saturn's icy satellites are among the main scientific objectives of the Cassini-VIMS (Visual and Infrared Mapping Spectrometer) experiment. This paper contains a first systematic and comparative analysis of the full-disk spectral properties of Dione, Enceladus, Epimetheus, Hyperion, Iapetus, Mimas, Phoebe, Rhea and Tethys as observed by VIMS from July 2004 to June 2005. The disk integrated properties (350-5100 nm reflectance spectra and phase curves at 550-2232 nm) and images of satellites are reported and discussed in detail together with the observed geometry. In general, the spectra in the visible spectral range are almost featureless and can be classified according to the spectral slopes: from the bluish Enceladus and Phoebe to the redder Iapetus, Hyperion and Epimetheus. In the 1000-1300 nm range the spectra of Enceladus, Tethys, Mimas and Rhea are characterized by a negative slope, consistent with a surface largely dominated by water ice, while the spectra of Iapetus, Hyperion and Phoebe show a considerable reddening pointing out the relevant role played by darkening materials present on the surface. In between these two classes are Dione and Epimetheus, which have a flat spectrum in this range. The main absorption bands identified in the infrared are the 1520, 2020, 3000 nm H2O/OH bands (for all satellites), although Iapetus dark terrains show mostly a deep 3000 nm band while the 1520 and 2020 nm bands are very faint. In this spectral range, the Iapetus spectrum is characterized by a strong reddening. The CO2 band at 4260 nm and the Fresnel ice peak around 3100 nm are evident only on Hyperion, Phoebe and Iapetus. The phase curves at 550 and at 2232 nm are reported for all the available observations in the 0°-144° range; Rhea shows an opposition surge at visible wavelengths in the 0.5°-1.17° interval. The improvement on the retrieval of the full-disk reflectance spectra can be appreciated by a direct comparison with ground-based telescopic data available from literature. Finally, data processing strategies and recent upgrades introduced in the VIMS-V calibration pipeline (flat-field and destriping-despiking algorithm) are discussed in appendices.  相似文献   

14.
The Hapke (Hapke, B. [1981]. J. Geophys. Res. 86, 3039-3054) photometric model and its modifications are widely used to characterize telescopic, spacecraft, and laboratory observations of the bidirectional reflectance of particulate surfaces. Following work and methods laid out in a companion paper (Helfenstein, P., Shepard, M.K. [2011]. Icarus, in press), we deconstruct the Hapke model and, separating all empirical and ad hoc parameters (opposition surge, particle phase function, surface roughness), combine them into a single parameter called the surface phase function, F(α). We illustrate how to extract this function from scattering data sets acquired with the Bloomsburg University Goniometer (BUG). We show how this method can be used to rapidly and accurately characterize bidirectional reflectance data sets from laboratory and spacecraft measurements, often giving better fits to the data. We examine samples with strong color contrasts in different wavelengths. This allows us to examine the exact same surface, changing only the albedo to investigate how the amplitude and the detailed shape of the surface phase function might systematically depend on wavelength and albedo. We also examine the changes in scattering behavior that result when samples are compacted and find the surface phase function and single scattering albedo to be significantly changed. We suggest that these observations support the hypothesis that much of the scattering behavior attributed to the single particle phase function is instead cause by the surface micro-structure.  相似文献   

15.
We present near-infrared spectrometer (NIS) observations (0.8 to 2.4 μm) of the S-type asteroid 433 Eros obtained by the NEAR Shoemaker spacecraft and report results of our Hapke photometric model analysis of data obtained at phase angles ranging from 1.2° to 111.0° and at spatial resolutions of 1.25×2.5 to 2.75×5.5 km/spectrum. Our Hapke model fits successfully to the NEAR spectroscopic data for systematic color variations that accompany changing viewing and illumination geometry. Model parameters imply a geometric albedo at 0.946 μm of 0.27±0.04, which corresponds to a geometric albedo at 0.550 μm of 0.25±0.05. We find that Eros exhibits phase reddening of up to 10% across the phase angle range of 0-100°. We observe a 10% increase in the 1-μm band depth at high phase angles. In contrast, we observe only a 5% increase in continuum slope from 1.486 to 2.363 μm and essentially no difference in the 2-μm band depth at higher phase angles. These contrasting phase effects imply that there are phase-dependent differences in the parametric measurements of 1- and 2-μm band areas, and in their ratio. The Hapke model fits suggest that Eros exhibits a weaker opposition surge than either 951 Gaspra or 243 Ida (the only other S-type asteroids for which we possess disk-resolved photometric observations). On average, we find that Eros at 0.946 μm has a higher geometric albedo and a higher single-scatter albedo than Gaspra or Ida at 0.56 μm; however, Eros's single-particle phase function asymmetry and average surface macroscopic roughness parameters are intermediate between Gaspra and Ida. Only two of the five Hapke model parameters exhibit a notable wavelength dependence: (1) The single-scatter albedo mimics the spectrum of Eros, and (2) there is a decrease in angular width of the opposition surge with increasing wavelength from 0.8 to 1.7 μm. Such opposition surge behavior is not adequately modeled with our shadow-hiding Hapke model, consistent with coherent backscattering phenomena near zero phase.  相似文献   

16.
In this paper the Stardust disk-integrated phase curve at phase 47.2-134.6° of the Asteroid 5535 Annefrank, combined with groundbased observations (at phase 2.3-18.3°), are fit with Hapke’s photometric model. We confirm Newburn et al.’s (Newburn, R.L. et al. [2003]. J. Geophys. Res. 108 (E11), 5117. doi:10.1029/2003JE002106) observation that Annefrank exhibits a steep phase curve. This manifests itself in an unusually high fit surface roughness parameter of 49°. The single particle scattering albedo is 0.62, also high for an S-asteroid, while the fit phase function is more forward scattering than the typical S-asteroid being nearly isotropic with an asymmetry parameter of −0.09. The fit opposition surge width (h = 0.015) is typical of S-asteroids. However these fits assume a spherical shape to the asteroid. Li et al. (Li, J., A’Hearn, M.F., McFadden, L.A. [2004]. Icarus, 415-431) have shown that this assumption may lead to significant errors particularly at high phase angles leading to higher modeled single particle scattering albedos, macroscopic roughnesses and more forward scattering phase functions than actually exhibited. Our results confirm this finding—fitting only the data below 90° phase yields lower particle albedos (0.41) and roughnesses (20°) and more backscattering particles (−0.19) than the fit including the high phase angle data. Overall Annefrank appears to be on the bright side but otherwise is typical for an S-type asteroid suggesting that it may be a recent collisional fragment with a relatively immature surface which has had relatively little time to be weathered.  相似文献   

17.
We present spectra of Saturn's icy satellites Mimas, Enceladus, Tethys, Dione, Rhea, and Hyperion, 1.0-2.5 μm, with data extending to shorter (Mimas and Enceladus) and longer (Rhea and Dione) wavelengths for certain objects. The spectral resolution (R=λλ) of the data shown here is in the range 800-1000, depending on the specific instrument and configuration used; this is higher than the resolution (R=225 at 3 μm) afforded by the Visual-Infrared Mapping Spectrometer on the Cassini spacecraft. All of the spectra are dominated by water ice absorption bands and no other features are clearly identified. Spectra of all of these satellites show the characteristic signature of hexagonal H2O ice at 1.65 μm. We model the leading hemisphere of Rhea in the wavelength range 0.3-3.6 μm with the Hapke and the Shkuratov radiative transfer codes and discuss the relative merits of the two approaches to fitting the spectrum. In calculations with both codes, the only components used are H2O ice, which is the dominant constituent, and a small amount of tholin (Ice Tholin II). Tholin in small quantities (few percent, depending on the mixing mechanism) appears to be an essential component to give the basic red color of the satellite in the region 0.3-1.0 μm. The quantity and mode of mixing of tholin that can produce the intense coloration of Rhea and other icy satellites has bearing on its likely presence in many other icy bodies of the outer Solar System, both of high and low geometric albedos. Using the modeling codes, we also establish detection limits for the ices of CO2 (a few weight percent, depending on particle size and mixing), CH4 (same), and NH4OH (0.5 weight percent) in our globally averaged spectra of Rhea's leading hemisphere. New laboratory spectral data for NH4OH are presented for the purpose of detection on icy bodies. These limits for CO2, CH4, and NH4OH on Rhea are also applicable to the other icy satellites for which spectra are presented here. The reflectance spectrum of Hyperion shows evidence for a broad, unidentified absorption band centered at 1.75 μm.  相似文献   

18.
We performed photometry of Cassini Visual Infrared Mapping Spectrometer observations of Iapetus to produce the first phase integrals calculated directly from solar phase curves of Iapetus for the leading hemisphere and to estimate the phase integrals for the trailing hemisphere. We also explored the phase integral dependence on wavelength and geometric albedo. The extreme dichotomy of the brightness of the leading and trailing sides of Iapetus is reflected in their phase integrals. Our phase integrals, which are lower than the results of Morrison et al. (Morrison, D., Jones, T.J., Cruikshank, D.P., Murphy, R.E. [1975]. Icarus 24, 157-171) and Squyres et al. (Squyres, S.W., Buratti, B.J., Veverka, J., Sagan, C. [1984]. Icarus 59, 426-435), have profound implications on the energy balance and volatile transport on this icy satellite.  相似文献   

19.
Three weeks prior to the commencement of Cassini's 4 year tour of the saturnian system, the spacecraft executed a close flyby of the outer satellite Phoebe. The infrared channel of the Visual Infrared Mapping Spectrometer (VIMS) obtained images of reflected light over the 0.83-5.1 μm spectral range with an average spectral resolution of 16.5 nm, spatial resolution up to 2 km, and over a range of solar phase angles not observed before. These images have been analyzed to derive fundamental photometric parameters including the phase curve and phase integral, spectral geometric albedo, bolometric Bond albedo, and the single scattering albedo. Physical properties of the surface, including macroscopic roughness and the single particle phase function, have also been characterized. Maps of normal reflectance show the existence of two major albedo regimes in the infrared, with gradations between the two regimes and much terrain with substantially higher albedos. The phase integral of Phoebe is 0.29±0.03, with no significant wavelength dependence. The bolometric Bond albedo is 0.023±007. We find that the surface of Phoebe is rough, with a mean slope angle of 33°. The satellite's surface has a substantial forward scattering component, suggesting that its surface is dusty, perhaps from a history of outgassing. The spectrum of Phoebe is best matched by a composition including water ice, amorphous carbon, iron-bearing minerals, carbon dioxide, and Triton tholin. The characteristics of Phoebe suggest that it originated outside the saturnian system, perhaps in the Kuiper Belt, and was captured on its journey inward, as suggested by Johnson and Lunine (2005).  相似文献   

20.
J Warell 《Icarus》2004,167(2):271-286
A comparison of the photometric properties of Mercury and the Moon is performed, based on their integral phase curves and disk-resolved image data of Mercury obtained with the Swedish Vacuum Solar Telescope. Proper absolute calibration of integral V-band magnitude observations reveals that the near-side of the Moon is 10-15% brighter than average Mercury, and 0-5% brighter for the “bolometric” wavelength range 400-1000 nm. As shown, this is supported by recent estimates of their geometric albedos. Hapke photometric parameters of their surfaces are derived from identical approaches, allowing a contrasting study between their surface properties to be performed. Compared to the average near-side Moon, Mercury has a slightly lower single-scattering albedo, an opposition surge with smaller width and of marginally smaller amplitude, and a somewhat smoother surface with similar porosity. The width of the lobes of the single-particle scattering function are smaller for Mercury, and the backward scattering anisotropy is stronger. In terms of the double Henyey-Greenstein b-c parameter plot, the scattering properties of an average particle on Mercury is closer to the properties of lunar maria than highlands, indicating a higher density of internal scatterers than that of lunar particles. The photometric roughness of Mercury is well constrained by the recent study of Mallama et al. (2002, Icarus 155, 253-264) to a value of about 8°, suggesting that the surfaces sampled by the highest phase angle observations (Borealis, Susei, and Sobkou Planitia) are lunar mare-like in their textural properties. However, Mariner 10 disk brightness profiles obtained at intermediate phase angles indicate a surface roughness of about twice this value. The photometric parameters of the Moon are more difficult to constrain due to limited phase angle coverage, but the best Hapke fits are provided by rather small surface roughnesses. Better-calibrated, multiple-wavelength observations of the integral and disk-resolved brightnesses of both bodies, and obtained at higher phase angle values in the case of the Moon, are urgently needed to arrive at a more consistent picture of the contrasting light scattering properties of their surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号