首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The solar wind interacts directly with the lunar surface material resulting in an essentially complete absorption of the corpuscles producing no upstream bowshock but a cavity downstream from the Moon. The main source of most neutral species of the atmosphere, except probably40Ar, is the solar-wind interaction products. The other sources which appear to be minor contributors to the atmosphere are the interaction products of cosmic rays, planetary degassing, effects of meteorite impacts and radioactive decays. Most of the hydrogen atoms derived from the solar-wind protons contribute to the atmosphere as hydrogen molecules rather than atoms. Only on the basis of the solar-wind protons, alpha particles and ions of oxygen and carbon, the atmospheric species concentration (cm–3) near the lunar surface at 300K are as follows: H2 3.3 to 9.9 × 103; He 2.4 to 4.7 × 103; H 3.7; OH 0.25; H2O 0.24; and O2, O, CO, CO2 and CH4 in concentrations smaller than H2. Whatever the source, the OH and H2O concentrations in the atmosphere are about the same. The calculated concentrations are in good agreement with the observations by the Apollo 17 lunar surface mass spectrometer and the Apollo 17 orbital UV spectrometer. At the time of sample collection from the Moon, the hydrogen content in the trapped gas layer of the lunar surface material was partly as hydrogen atoms and partly as hydrogen molecules, but at the time of sample analysis hydrogen was mostly in molecular form. The H2O content at the time of sample analysis was only a few parts per million by weight.Paper presented at the Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon, sponsored by the Lunar Science Institute, Houston, Texas and held at the Lake Geneva Campus of George Williams College, Wisconsin, between September 30 and October 4, 1974.  相似文献   

2.
The solar and galactic cosmic rays interact directly with lunar surface materials, and the dominant nature of interactions is essentially the complete absorption of corpuscles. These corpuscles damage the lattice structure, and induce a complex set of reactions in the materials producing various species. The cosmic ray damage of the lattice would not produce an amorphous layer, similar to that produced by the solar wind, because the solar wind erosion rate is faster than the cosmic ray-induced amorphous layer formation rate. The species formation rate considered in this paper are those produced by protons, the dominant component of cosmic rays. Protons produce H, H2, OH, H2O, and hydrogenated species of carbon, nitrogen, sulfur, etc. These species, while migrating in the material, encounter oncoming cosmic ray corpuscles, and undergo a complex set of reactions. Although a variety of species are produced by protons, the dominant contributor to the atmosphere is H2. The H2 flux (molecules cm–2 sec–1) is about 1.5 × 105 as compared to the H flux of 8.4 × 101 and the H2O flux of 4.6 × 10–2. These fluxes are about 10–3 smaller than the fluxes of the same species produced by the solar wind protons. Thus the contributions of the cosmic ray-induced species to the atmosphere is very small compared to the solar wind-induced species. Although simulated experiments showed high concentractions of OH and H2O in the terrestrial materials of lunar type, these species concentrations in the lunar materials under the lunar environment is much smaller than those observed in the simulated experiments.  相似文献   

3.
This paper presents a review of research findings on the various forms of water on the Moon. First, this is the water of the Moon’s interior, which has been detected by sensitive mass spectrometric analysis of basaltic glasses delivered by the Apollo 15 and Apollo 17 missions. The previous concepts that lunar magmas are completely dehydrated have been disproved. Second, this is H2O and/or OH in a thin layer (a few upper millimeters) of the lunar regolith, which is likely a result of bombardment of the oxygen contained in the lunar regolith with solar wind protons. This form of water is highly unstable and quite easily escapes from the surface, possibly being one of the sources of the water ice reservoirs at the Moon’s poles. Third, this is water ice associated with other frozen gases in cold traps at the lunar poles. Its possible sources are impacts of comets and meteorites, the release of gas from the Moon’s interior, and solar wind protons. The ice trapped at the lunar polars could be of practical interest for further exploration of the Moon.  相似文献   

4.
The University of Wisconsin–Madison and NASA–Goddard conducted acomprehensive multi-wavelength observing campaign of coma emissionsfrom comet Hale–Bopp, including OH 3080 Å, [O I] 6300 Å H2O+ 6158 Å, H Balmer-α 6563 Å, NH2 6330 Å, [C I] 9850 ÅCN 3879 Å, C2 5141 Å, C3 4062 Å,C I 1657 Å, and the UV and optical continua. In thiswork, we concentrate on the results of the H2O daughter studies.Our wide-field OH 3080 Å measured flux agrees with other, similarobservations and the expected value calculated from published waterproduction rates using standard H2O and OH photochemistry.However, the total [O I] 6300 Å flux determined spectroscopically overa similar field-of-view was a factor of 3-4 higher than expected.Narrow-band [O I] images show this excess came from beyond theH2O scale length, suggesting either a previously unknown source of[O I] or an error in the standard OH + ν→ O(1 D) + H branching ratio. The Hale–Bopp OH and[O I] distributions, both of which were imaged tocometocentric distances >1 × 106 km, were more spatiallyextended than those of comet Halley (after correcting for brightnessdifferences), suggesting a higher bulk outflow velocity. Evidence ofthe driving mechanism for this outflow is found in the Hα lineprofile, which was narrower than in comet Halley (though likelybecause of opacity effects, not as narrow as predicted by Monte-Carlomodels). This is consistent with greater collisional coupling betweenthe suprathermal H photodissociation products and Hale–Bopp's densecoma. Presumably because of mass loading of the solar wind by ionsand ions by the neutrals, the measured acceleration of H2O+ downthe ion tail was much smaller than in comet Halley. Tailwardextensions in the azimuthal distributions of OH 3080 Å,[O I], and [C I] , as well as a Doppler asymmetry in the[O I] line profile, suggest ion-neutral coupling. While thetailward extension in the OH can be explained by increased neutralacceleration, the [O I] 6300 Å and [C I] 9850 Å emissions show 13%and >200% excesses in this direction (respectively), suggesting anon-negligible contribution from dissociative recombination of CO+and/or electron collisional excitation. Thus, models including theeffects of photo- and collisional chemistry are necessary for the fullinterpretation of these data.  相似文献   

5.
We present near-IR spectra of solid CO2 in H2O and CH3OH, and find they are significantly different from that of pure solid CO2. Peaks not present in either pure H2O or pure CO2 spectra become evident when the two are mixed. First, the putative theoretically forbidden CO2 (2ν3) overtone near 2.134 μm (4685 cm−1), that is absent from our spectrum of pure solid CO2, is prominent in the spectra of H2O/CO2=5 and 25 mixtures. Second, a 2.74-μm (3650 cm−1) dangling OH feature of H2O (and a potentially related peak at 1.89 μm) appear in the spectra of CO2-H2O ice mixtures, but are probably not diagnostic of the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with H2O. Warming causes some peak positions and profiles in the spectrum of a H2O/CO2=5 mixture to take on the appearance of pure CO2. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 (2ν3) overtone near 2.134 μm (4685 cm−1) is not present in pure CO2 but prominent in mixtures, it may be a good observational (spectral) indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. These observations may be applicable to Mars polar caps as well as outer Solar System bodies.  相似文献   

6.
An accessible model for interstellar OH/H2O maser associations is presented. It can be classified into radiative pumping model. It can close the dynamical cycle of H2O and OH species, and can give an interpretation on interstellar OH/H2O associations. A reasonable scheme for both regeneration and destruction of interstellar H2O and OH molecules is argued. Our model has overcome the defects of former radiative models, and is compatible with astronomical conditions. It is shown that the rotational population of H2O and OH in these regions is much less affected by collisions than by radiation. Some experiments have confirmed our proposal.  相似文献   

7.
Interstellar H2O and OH masers associated with massive star-forming regions can be classified into three morphological types: isolated H2O masers; isolated OH masers; and spatially overlapping OH/H2O maser groups. In a large sample of star-forming regions the total number of maser groups of each type is approximately equal. In order to account for these statistics we propose a pumping scheme based on a broadband radiative pump which produces inverted populations of both OH and H2O masers by a process involving predissociation and dissociation of H2O. This scheme overcomes some drawbacks of earlier radiative pumping models, and may account for the association of OH and H2O masers in massive star forming regions.  相似文献   

8.
Amphibole in chassignite melt inclusions provides valuable information about the volatile content of the original interstitial magma, but also shock and postshock processes. We have analyzed amphibole and other phases from NWA 2737 melt inclusions, and we evaluate these data along with published values to constrain the crystallization Cl and H2O content of phases in chassignite melt inclusions and the effects of shock on these amphibole grains. Using a model for the Cl/OH exchange between amphibole and melt, we estimate primary crystallization OH contents of chassignite amphiboles. SIMS analysis shows that amphibole from NWA 2737 currently has 0.15 wt% H2O. It has lost ~0.6 wt% H2O from an initial 0.7–0.8 wt% H2O due to intense shock. Chassigny amphibole had on average 0.3–0.4 wt% H2O and suffered little net loss of H2O due to shock. NWA 2737 amphibole has δD ≈ +3700‰; it absorbed Martian atmosphere‐derived heavy H in the aftermath of shock. Chassigny amphibole, with δD ≤ +1900‰, incorporated less heavy H. Low H2O/Cl ratios are inferred for the primitive chassignite magma, which had significant effects on melting and crystallization. Volatiles released by the degassing of Martian magma were more Cl‐rich than on Earth, resulting in the high Cl content of Martian surface materials.  相似文献   

9.
The interstellar UV field at 1565 Å is calculated around nearby OH/IR sources. The front-back asymmetry observed in the 1612 MHz maser line profile is well correlated with anisotropy of the interstellar UV flux. For some sources the spatial positions of the 1612 MHz masers are confined to the position angles for which stronger UV radiation occurs. These facts strongly support the theory of the photoproduction of OH from H2O induced by ambient interstellar UV photons penetrating the circumstellar shell. A simple model of the 1612 MHz maser with OH photoproduction suggests that the influence of the UV field on the observed maser profiles is governed by the mass loss rate and the relative abundances of OH and H2O molecules.  相似文献   

10.
We used the NIRSPEC instrument on the Keck-2 telescope atop Mauna Kea, HI to observe Comet C/2001 A2 (LINEAR) in a Target of Opportunity campaign on UT 2001 July 9.5, 10.5 August 4.4, 10.5. We measured seven organic parent volatiles (C2H6, C2H2, HCN, CH4, CO, CH3OH, H2CO) simultaneously with H2O. We obtained absolute production rates and relative abundances for parent volatiles, and also measured rotational temperatures for several of these species. The chemical composition of C/2001 A2 differs substantially from any comet we have observed to date. The abundances we measure (relative to H2O) for C2H6, C2H2, HCN, and CH3OH are enriched by a factor of ∼2 to 3 in C/2001 A2 compared with most comets in our database. Other molecular species were detected within the typical range of measured abundances. C/2001 A2 presented a unique opportunity to study the chemistry of a fragmenting comet where pristine areas are exposed to the Sun.  相似文献   

11.
M.D. Dyar  C.A. Hibbitts 《Icarus》2010,208(1):425-1934
Storage of hydrogen atoms in or on a planetary surface can take place via several different mechanisms. If the hydrogen atom reacts to form a hydroxyl (OH) group or water molecule, an absorption band near 3 μm will be present. Many possible mechanisms for sequestering atomic hydrogen are discussed: internal hydrogen in the form of non-structural OH and H2O in nominally-anhydrous minerals, structural OH in minerals, structural H2O in minerals, H2O in fluid inclusions, and OH and H2O in glasses; bulk H2O as either liquid water or ice; and surficial hydrogen that is either physisorbed as H2O, chemisorbed as an H2O surface complex, or chemically-bound as an OH group on surface terminal sites and grain boundary regions. Understanding the spectroscopic distinctions among these various phenomena is of critical importance in constraining both the evolution of planetary interiors and the cycling of water on planetary surfaces. Proper interpretation of 3-μm bands in reflectance spectra is shown to depend upon the relative contributions from surficial vs. interior hydrogen, which vary with effective surface area (i.e., the grain size and surface roughness) and the volume sampled by the spectrometer.  相似文献   

12.
Ultraviolet absorption by H2O and other species in the comae of comets could be detected by studying, with satellite telescope-spectrometers, the occultation of hot stars by comets. Such observations could produce the first direct detection of H2O, the fundamental parent molecule in comet comae, and give measures of molecular level populations. The first instrument suitable for such observations will be the High Resolution Spectrograph on Space Telescope and, therefore, we consider its capabilities. We have used a Haser model to estimate the molecular column densities and to predict equivalent widths for lines of H2O, OH, CO, and O as functions of time and angular distance from a comet with a high H2O production rate. We have determined the minimum detectable equivalent widths, and therefore, the maximum angular separation from such a comet at which H2O, OH, and CO could be studied. A conservative, statistical estimate shows that comets with high water production rates should pass near enough to about 10 to 100 stars suitable for absorption studies of the CX band of H2O (1240 Å). Estimated equivalent widths for CO, OH, and the resonance lines of C and O indicate that these species may also be detected.  相似文献   

13.
Galina M. Chaban 《Icarus》2007,187(2):592-599
An absorption band at ∼4.26 μm wavelength attributed to the asymmetric stretching mode of CO in CO2 has been found on two satellites of Jupiter and several satellites of Saturn. The wavelength of pure CO2 ice determined in the laboratory is 4.2675 μm, indicating that the CO2 on the satellites occurs either trapped in a host material, or in a chemical or physical complex with other materials, resulting in a blue shift of the wavelength of the band. In frequency units, the shifts in the satellite spectra range from 3.7 to 11.3 cm−1. We have performed ab initio quantum chemical calculations of CO2 molecules chemically complexed with one, two, and more H2O molecules and molecules of CH3OH to explore the possibility that the blue shift of the band is caused by chemical complexing of CO2 with other volatile materials. Our computations of the harmonic and anharmonic vibrational frequencies using high levels of theory show a frequency shift to the blue by 5 cm−1 from pure CO2 to CO-H2O, and an additional 5 cm−1 from CO2-H2O to CO2-2H2O. Complexing with more than two H2O molecules does not increase the blue shift. Complexes of CO2 with one molecule of CH3OH and with one CH3OH plus one H2O molecule produce smaller shifts than the CO2-2H2O complex. Laboratory studies of CO2:H2O in a solid N2 matrix also show a blue shift of the asymmetric stretching mode.  相似文献   

14.
We have investigated the H and Cl systematics in apatite from four brecciated lunar meteorites. In Northwest Africa (NWA) 4472, most of the apatites contain ~2000–6000 ppm H2O with δD between ?200 and 0‰, except for one grain isolated in the matrix, which contains ~6000 ppm H2O with δD of ~500–900‰. This low‐δD apatite contains ~2500–7500 ppm Cl associated with δ37Cl of ~15–20‰, while the high‐δD grain contains ~2500 ppm Cl with δ37Cl of ~7–15‰. In NWA 773, apatites in a first group contain ~700–2500 ppm H2O with δD values averaging around ~0 ± 100‰, while apatites in a second group contain ~5500–16500 ppm H2O with δD ~250 ± 50‰. In Sayh al Uhaymir (SaU) 169 and Kalahari (Kal) 009, apatites are similar in terms of their H2O contents (~600–3000 ppm) and δD values (?100 to 200‰). In SaU 169, apatites contain ~6000–10,000 ppm Cl, characterized by δ37Cl of ~5–12‰. Overall, most of the analyzed apatite grains have δD within the range reported for carbonaceous chondrites, similar to apatite analyzed in ancient (>3.9 Ga) lunar magmatic. One grain in NWA 4472 has H and Cl isotope compositions similar to apatite from mare basalts. With an age of 4.35 Ga, this grain could be a representative of the oldest known lunar volcanic activity. Finally, since numerous evolved clasts in NWA 773 formed through silicate liquid immiscibility, the apatite grains with extremely high H2O contents, reaching pure hydroxylapatite composition, could provide insights into the effects of such process on the evolution of volatiles in lunar magmas.  相似文献   

15.
We measured the chemical composition of Comet C/2007 W1 (Boattini) using the long-slit echelle grating spectrograph at Keck-2 (NIRSPEC) on 2008 July 9 and 10. We sampled 11 volatile species (H2O, OH, C2H6, CH3OH, H2CO, CH4, HCN, C2H2, NH3, NH2, and CO), and retrieved three important cosmogonic indicators: the ortho-para ratios of H2O and CH4, and an upper-limit for the D/H ratio in water. The abundance ratios of almost all trace volatiles (relative to water) are among the highest ever observed in a comet. The comet also revealed a complex outgassing pattern, with some volatiles (the polar species H2O and CH3OH) presenting very asymmetric spatial profiles (extended in the anti-sunward hemisphere), while others (e.g., C2H6 and HCN) showed particularly symmetric profiles. We present emission profiles measured along the Sun-comet line for all observed volatiles, and discuss different production scenarios needed to explain them. We interpret the emission profiles in terms of release from two distinct moieties of ice, the first being clumps of mixed ice and dust released from the nucleus into the sunward hemisphere. The second moiety considered is very small grains of nearly pure polar ice (water and methanol, without dark material or apolar volatiles). Such grains would sublimate only very slowly, and could be swept into the anti-sunward hemisphere by radiation pressure and solar-actuated non-gravitational jet forces, thus providing an extended source in the anti-sunward hemisphere.  相似文献   

16.
We report on the detection of H2 as seen in our analysis of twilight observations of the lunar atmosphere observed by the LAMP instrument aboard NASA’s Lunar Reconnaissance Orbiter. Using a large amount of data collected on the lunar atmosphere between September 2009 and March 2013, we have detected and identified, the presence of H2 in the native lunar atmosphere, for the first time. We derive a surface density for H2 of 1.2 ± 0.4 × 103 cm−3 at 120 K. This is about 10 times smaller than originally predicted, and several times smaller than previous upper limits from the Apollo era data.  相似文献   

17.
We present new experimental results on impact shock chemistry into icy satellites of the outer planets. Icy mixtures of pure water ice with CO2, Na2CO3, CH3OH, and CH3OH/(NH4)2SO4 at 77 K were ablated with a powerful pulsed laser—a new technique used to simulate shock processes which can occur during impacts. New products were identified by GC-MS and FTIR analyses after laser ablation. Our results show that hydrogen peroxide is formed in irradiated H2O/CO2 ices with a final concentration of 0.23%. CO and CH3OH were also detected as main products. The laser ablation of frozen H2O/Na2CO3 generates only CO and CO2 as destruction products from the salt. Pulsed irradiation of water ice containing methanol leads also to the formation of CO and CO2, generates methane and more complex molecules containing carbonyl groups like acetaldehyde, acetone, methyl formate, and a diether, dimethyl formal. The last three compounds are also produced when adding ammonium sulfate to H2O/CH3OH ice, but acetone is more abundant. The formation of two hydrocarbons, CH4 and C2H6 is observed as well as the production of three nitrogen compounds, nitrous oxide, hydrogen cyanide, and acetonitrile.  相似文献   

18.
Models are developed to describe the photochemistry of ozone on Mars. Catalytic reactions involving H, OH and HO2 play a major role at low latitudes where they ensure a vertical column density for O3 of less than 2 × 10?4 cm atm. The source for odd hydrogen (H + OH + HO2) is relatively smaller at high latitudes in winter due to the small concentrations of H2O present there at that time. Odd hydrogen is also efficiently removed from the high-latitude winter atmosphere by condensation of H2O2. The role of catalytic chemistry is reduced accordingly and the vertical column density of O3 may be as large as 5.7 × 10?3 cm atm in accord with earlier observations carried out by Barth and co-workers with instruments on Mariner 9.  相似文献   

19.
One of the most exciting recent developments in the field of lunar science has been the unambiguous detection of water (either as OH or H2O) or water ice on the Moon through instruments flown on a number of orbiting spacecraft missions. At the same time, continued laboratory-based investigations of returned lunar samples by Apollo missions using high-precision, low-detection, analytical instruments have for the first time, provided the absolute abundance of water (present mostly as structurally bound OH in mineral phases) in lunar samples. These new results suggest that the Moon is not an anhydrous body, questioning conventional wisdom, and indicating the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. However, not all recent results point to a wet Moon and it appears that the distribution of water on the Moon may be highly heterogeneous. Additionally, a number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar-wind hydrogen with the lunar soil. Water on the Moon has implications for future astrobiological investigations as well as for generating resources in situ during future exploration of the Moon and other airless bodies in the Solar System.  相似文献   

20.
C/2006 P1 McNaught is a dynamically new comet from the Oort cloud that passed very close to the Sun, driving overall volatile production rates up to about 1031 molecules s−1. Post-perihelion observations were obtained in a target-of-opportunity campaign using the CSHELL instrument at the NASA Infrared Telescope Facility atop Mauna Kea, Hawaii, on UT 2007 January 27 and 28. Eight parent volatiles (H2O, CH4, C2H2, C2H6, HCN, CO, NH3, H2CO) and two daughter fragments (OH and NH2) were detected, enabling the determination of a rotational temperature and production rate for H2O on UT January 27 and absolute and relative production rates for all the detected parent species on UT January 28. The chemical composition measured in the coma suggests that this close perihelion passage stripped off processed outer surface layers, likely exposing relatively fresh primordial material during these observations. The post-perihelion abundances we measure for CO and CH4 (relative to H2O) are slightly depleted while C2H2, NH2 and possibly NH3 are enhanced when compared to the overall comet population. Measured abundances for other detected molecular species were within the range typically observed in comets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号