首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present results on the energy balance of the Deep Impact experiment based on analysis of 180 infrared spectra of the ejecta obtained by the Deep Impact spacecraft. We derive an output energy of 16.5 (+9.1/−4.1) GJ. With an input energy of 19.7 GJ, the error bars are large enough so that there may or may not be a balance between the kinetic energy of the impact and that of outflowing materials. Although possible, no other source of energy other than the impactor or the Sun is needed to explain the observations. Most of the energy (85%) goes into the hot plume in the first few seconds, which only represents a very small fraction (<0.01%) of the total ejected mass. The hot plume contains 190 (+263/−71) kg of H2O, 1.6 ± 0.5 kg of CO2, 8.2 (+11.3/3.1) kg of CO (assuming a CO/H2O ratio of 4.3%), 27.9 (+25.0/−8.9) kg of organic material and 255 ± 128 kg of dust, while the ejecta contains ∼107 kg of materials. About 12% of the energy goes into the ejecta (mostly water) and 3% to destroy the impactor. Volatiles species other than H2O (CO2, CO or organic molecules) contribute to <7% of the energy balance. In terms of physical processes, 68% of the energy is used to accelerate grains (kinetic energy), 16% to heat them, 6% to sublimate or melt them and 10% (upper limit) to break and compress dust and/or water ice aggregates into small micron size particles. For the hot plume, we derive a dust/H2O ratio of 1.3 (+1.9/−1.0), a CO2/H2O ratio of 0.008 (+0.009/−0.006), an organics/H2O ratio of 0.15 (+0.29/−0.11) and an organics/dust ratio of 0.11 (+0.30/−0.07). This composition refers to the impact site and is different from that of the bulk nucleus, consistent with the idea of layers of different composition in the nucleus sub-surface. Our results emphasize the importance of laboratory impact experiments to understand the physical processes involved at such a large scale.  相似文献   

2.
Shock-induced melting and vaporization of H2O ice during planetary impact events are widespread phenomena. Here, we investigate the mass of shock-produced liquid water remaining within impact craters for the wide range of impact conditions and target properties encountered in the Solar System. Using the CTH shock physics code and the new 5-phase model equation of state for H2O, we calculate the shock pressure field generated by an impact and fit scaling laws for melting and vaporization as a function of projectile mass, impact velocity, impact angle, initial temperature, and porosity. Melt production nearly scales with impact energy, and natural variations in impact parameters result in only a factor of two change in the predicted mass of melt. A fit to the π-scaling law for the transient cavity and transient-to-final crater diameter scaling are determined from recent simulations of the entire cratering process in ice. Combining melt production with π-scaling and the modified Maxwell Z-model for excavation, less than half of the melt is ejected during formation of the transient crater. For impact energies less than about 2 × 1020 J and impact velocities less than about 5 km s−1, the remaining melt lines the final crater floor. However, for larger impact energies and higher impact velocities, the phenomenon of discontinuous excavation in H2O ice concentrates the impact melt into a small plug in the center of the crater floor.  相似文献   

3.
The Deep Impact encounter with the Jupiter family Comet 9P/Tempel 1 on UT 2005 July 4 was observed at high spectral resolving power (λ/δλ∼25,000) using the cross-dispersed near-infrared echelle spectrometer (NIRSPEC) at Keck-2. We report the temporal evolution of parent volatiles and dust (simultaneously measured) resulting from the event. Column abundances are presented for H2O and C2H6 beginning 30 min prior to impact (T−30) and ending 50 min following impact (T+50), and for H2O and HCN from T+50 until T+96, in time steps of approximately 6 min post-impact. The ejecta composition was revealed by an abrupt increase in H2O and C2H6 near T+25. This showed C2H6/H2O to be higher than its pre-impact value by a factor 2.4±0.5, while HCN/H2O was unchanged within the uncertainty of the measurements. The mixing ratios for C2H6 and HCN in the ejecta agree with those found in the majority of Oort cloud comets, perhaps indicating a common region of formation. The expanding dust plume was tracked by continuum measurements, both through the 3.5-μm spectral continuum and through 2-μm images acquired with the SCAM slit-viewing camera, and each showed a monotonic increase in continuum intensity following impact. A Monte Carlo model that included dust opacity was applied to the dust coma, and its parameters were constrained by observations; the simulated continuum intensities reproduced both spectral and SCAM data. The relatively sudden appearance of the volatile ejecta signature is attributed to heating of icy grains (perhaps to a threshold temperature) that are decreasingly shadowed by intervening (sunward) dust particles in an optically thick ejecta plume, perhaps coupled with an accelerated decrease in dust optical depth near T+25.  相似文献   

4.
The Lunar CRater Observation and Sensing Satellite mission (LCROSS) impacted the moon in a permanently shadowed region of Cabeus crater on October 9th 2009, excavating material rich in water ice and volatiles. The thermal and spatial evolution of LCROSS ejecta is essential to interpretation of regolith properties and sources of released volatiles. The unique conditions of the impact, however, made analysis of the data based on canonical ejecta models impossible. Here we present the results of a series of impact experiments performed at the NASA Ames Vertical Gun Range designed to explore the LCROSS event using both high-speed cameras and LCROSS flight backup instruments. The LCROSS impact created a two-component ejecta plume: the usual inverted lampshade “low-angle” curtain, and a high speed, high-angle component. These separate components excavated to different depths in the regolith. Extrapolations from experiments match the visible data and the light curves in the spectrometers. The hollow geometry of the Centaur led to the formation of the high-angle plume, as was evident in the LCROSS visible and infrared measurements of the ejecta. Subsequent ballistic return of the sunlight-warmed ejecta curtain could scour the surface out to many crater radii, possibly liberating loosely bonded surface volatiles (e.g., H2). Thermal imaging reveals a complex, heterogeneous distribution of heated material after crater formation that is present but unresolved in LCROSS data. This material could potentially serve as an additional source of energy for volatile release.  相似文献   

5.
With the sample of 105 emission line galaxies selected from the Sloan Digital Sky Survey Data Release 4 (SDSS DR4), we have investigated the relations of the [OII]λ3727/Hα flux ratio with the dust extinction, the ionization state of interstellar gas and the metal abundance of galaxies. It is found that the dust extinction correction has a significant effect on the [OII]λ3727/Hα flux ratio. Before and after the dust distinction correction is made, the mean [OII]λ3727/Hα flux ratios are 0.48 and 0.89, respectively. After the dust extinction is corrected, the dispersion of the distribution of F([OII]λ3727) as a function of F(Hα) is obviously reduced. The [OII]λ3727/Hα flux ratio of metal-poor galaxies decreases with the increasing ionization degree of interstellar gas, but this relation does not exist in metal-rich galaxies. Besides, it is found that the [OII]λ3727/Hα flux ratio is correlated with the metal abundance. When 12 + lg(O/H) > 8.5, the [OII]λ3727/Hα flux ratio decreases with the increasing metal abundance; for the galaxies of 12 + lg(O/H) > 8.5, the spectral flux ratio correlates positively with the metal abundance. Finally, by using the parameters of gas ionization degree and metal abundances of galaxies, the formulae for calculating the [OII]λ3727/Hα flux ratios of different types of galaxies are given. With the [OII]λ3727/Hα flux ratio given by these formulae, the star formation rate can be derived by using the [OII]λ3727-line flux, for the galaxies of the redshift z > 0.4, such as the large number of galaxies to be observed by the LAMOST telescope.  相似文献   

6.
Based on spectropolarimetric observations Seyfert 2 (Sy2) galaxies are generally divided into two populations. Some Sy2s show polarized broad emission lines (PBLs) which is an evidence for the hypothesis of the Unified model while others do not. In order to determine the properties of these two apparently different populations we compiled a sample of 66 Sy2 objects with and without detected PBLs. We used a (J − H) − (H − Ks) diagram based on 2MASS J, H, Ks magnitudes in 14 arcsec aperture, the F[OIII] emission line flux and the infrared emission flux FKs using the Ks filter. From the (J − H) − (H − Ks) diagram we determined that one third of the Sy2 objects with PBLs have a power-law infrared component which could be a result of both a non-thermal AGN component scattered by free electrons (or dust) and emission from hot dust near its sublimation temperature. The rest of the objects (with PBLs) are significantly dominated by a dust thermal re-emission. The Sy2s without PBLs show infrared emission dominated by a host galaxy stellar component and also by thermal dust re-emission. The Sy2s with PBLs tend to have a few times larger L[OIII] luminosities than those without. Following the median values of F[OIII]/FKs, it seems that this ratio is sensitive enough to separate our sample of Sy2 galaxies into two types - with and without PBLs. There are no Sy2s with PBLs having Eddington ratio below 10−3 which confirms the results of Nicastro et al. (2003).  相似文献   

7.
The Deep Impact oblique impact cratering experiment   总被引:1,自引:0,他引:1  
The Deep Impact probe collided with 9P Tempel 1 at an angle of about 30° from the horizontal. This impact angle produced an evolving ejecta flow field very similar to much smaller scale oblique-impact experiments in porous particulate targets in the laboratory. Similar features and phenomena include a decoupled vapor/dust plume at the earliest times, a pronounced downrange bias of the ejecta, an uprange “zone of avoidance” (ZoA), heart-shaped ejecta ray system (cardioid pattern), and a conical (but asymmetric) ejecta curtain. Departures from nominal cratering evolution, however, provide clues on the nature of the impact target. These departures include: fainter than expected flash at first contact, delayed emergence of the self-luminous vapor/dust plume, uprange-directed plume, narrow early-time uprange ray followed by a late-stage uprange plume, persistence of ejecta asymmetries (and the uprange ZoA) throughout the approach sequence, emergence of a downrange ZoA at late times, detachment of uprange curved rays, very long lasting non-radial ejecta rays, and high-angle ejecta plume lasting over the entire encounter. The first second of crater formation most closely resembles the consequences of a highly porous target, while later evolution indicates that the target may be layered as well. Experiments also reveal that impacts into highly porous targets produce a vapor/dust plume directed back up the incoming trajectory. This uprange plume is attributed to cavitation within a narrow penetration funnel. The observed lateral expansion speed of the initial vapor plume downrange provides an estimate for the total vaporized mass equal to ∼5mp (projectile masses) of water ice or 6mp of CO2. The downrange plume speed is consistent with the gas expansion added to the downrange horizontal component of the DI probe. Based on high-speed spectroscopy of experimental impacts, the observed delay in brightening of the DI plume may be the result of delayed condensation of carbon, in addition to silicates. Observed molecular species in the initial self-luminous vapor plume likely represent recombination products from completely dissociated target materials. The crater produced by the impact can be estimated from Earth-based observations of total ejected mass to be 130-220 m in diameter. This size range is consistent with a 220 m-diameter circular feature at the point of impact visible in highly processed, deconvolved HRI images. The final crater, however, may resemble an inverted sombrero-hat, with a deep central pit surrounded by a shallow excavation crater. Excavated distal material observed from the Earth was likely from the upper few meters contrasted with ballistic ejecta observed from the DI flyby, which included deep materials (10-30 m) within the diffuse plume above the crater and shallower (5-10 m) materials within the ejecta curtain.  相似文献   

8.
Impact strength and cratering ejecta were studied for porous targets of pure ice and icy-silicate mixture in order to clarify the accumulation and destruction (shattering) condition of small icy bodies. The icy projectile impacted on the cylindrical targets with the porosity up to 55% at a velocity of 150 to 670 m/s at −10°C. The porosity dependence of the impact strength and that of the maximum ejecta velocity were measured in each type of these targets. As a result, the maximum ejecta velocity normalized by the impact velocity (Ve-max/Vi) is found to depend only on the porosity (φ), irrespective of the target type; a relationship is derived to be Ve-max/Vi=−2.17φ+1.29. The impact strength of pure ice increased with increased target porosity, but that of mixture target had an opposite trend; that is, the strength decreased with increased porosity. These porosity dependencies of the impact strength could be explained by the porosity dependence of the physical parameters such as impact pressure, pressure decay, and static strength. Finally, the accumulation of small icy bodies is discussed to show that the collisional events can be divided into three types by the porosity and the collision velocity according to our experimental results: mass loss, rubble pile formation, and regolith formation (compaction).  相似文献   

9.
We present the results based on multiwavelength imaging observations of the prominent dust lane starburst galaxy NGC 1482 aimed to investigate the extinction properties of dust existing in the extreme environment. (B-V) colour-index map derived for the starburst galaxy NGC 1482 confirms two prominent dust lanes running along its optical major axis and are found to extend up to ∼11 kpc. In addition to the main lanes, several filamentary structures of dust originating from the central starburst are also evident. Though, the dust is surrounded by exotic environment, the average extinction curve derived for this target galaxy is compatible with the Galactic curve, with RV = 3.05, and imply that the dust grains responsible for the optical extinction in the target galaxy are not really different than the canonical grains in the Milky Way. Our estimate of total dust content of NGC 1482 assuming screening effect of dust is ∼2.7 × 105 M, and provide lower limit due to the fact that our method is not sensitive to the intermix component of dust. Comparison of the observed dust in the galaxy with that supplied by the SNe to the ISM, imply that this supply is not sufficient to account for the observed dust and hence point towards the origin of dust in this galaxy through a merger like event.Our multiband imaging analysis reveals a qualitative physical correspondence between the morphologies of the dust and Hα emission lines as well as diffuse X-ray emission in this galaxy. Spatially resolved spectral analysis of the hot gas along outflows exhibit a gradient in the temperature. Similar gradient was also noticed in the measured values of metallicity, indicating that the gas in the halo is not yet enriched. High resolution, 2-8 keV Chandra image reveals a pair of point sources in the nuclear region with their luminosities equal to 2.27 × 1039 erg s−1 and 9.34 × 1039 erg s−1, and are in excess of the Eddington-limit of 1.5 M accreting source. Spectral analysis of these sources exhibit an absorbed-power law with the hydrogen column density higher than that derived from the optical measurements.  相似文献   

10.
We used numerical simulations to model the orbital evolution of interplanetary dust particles (IDPs) evolving inward past Earth’s orbit under the influence of radiation pressure, Poynting–Robertson light drag (PR drag), solar wind drag, and gravitational perturbations from the planets. A series of β values (where β is the ratio of the force from radiation pressure to that of central gravity) were used ranging from 0.0025 up to 0.02. Assuming a composition consistent with astronomical silicate and a particle density of 2.5 g cm−3 these β values correspond to dust particle diameters ranging from 200 μm down to 25 μm. As the dust particle orbits decay past 1 AU between 4% (for β = 0.02, or 25 μm) and 40% (for β = 0.0025, or 200 μm) of the population became trapped in 1:1 co-orbital resonance with Earth. In addition to traditional horseshoe type co-orbitals, we found about a quarter of the co-orbital IDPs became trapped as so-called quasi-satellites. Quasi-satellite IDPs always remain relatively near to Earth (within 0.1–0.3 AU, or 10–30 Hill radii, RH) and undergo two close-encounters with Earth each year. While resonant perturbations from Earth halt the decay in semi-major axis of quasi-satellite IDPs their orbital eccentricities continue to decrease under the influence of PR drag and solar wind drag, forcing the IDPs onto more Earth-like orbits. This has dramatic consequences for the relative velocity and distance of closest approach between Earth and the quasi-satellite IDPs. After 104–105 years in the quasi-satellite resonance dust particles are typically less than 10RH from Earth and consistently coming within about 3RH. In the late stages of evolution, as the dust particles are escaping the 1:1 resonance, quasi-satellite IDPs can have deep close-encounters with Earth significantly below RH. Removing the effects of Earth’s gravitational acceleration reveals that encounter velocities (i.e., velocities “at infinity”) between quasi-satellite IDPs and Earth during these close-encounters are just a few hundred meters per second or slower, well below the average values of 2–4 km s−1 for non-resonant Earth-crossing IDPs with similar initial orbits. These low encounter velocities lead to a factor of 10–100 increase in Earth’s gravitationally enhanced impact cross-section (σgrav) for quasi-satellite IDPs compared to similar non-resonant IDPs. The enhancement in σgrav between quasi-satellite IDPs and cometary Earth-crossing IDPs is even more pronounced, favoring accretion of quasi-satellite dust particles by a factor of 100–3000 over the cometary IDPs. This suggests that quasi-satellite dust particles may dominate the flux of large (25–200 μm) IDPs entering Earth’s atmosphere. Furthermore, because quasi-satellite trapping is known to be directly correlated with the host planet’s orbital eccentricity the accretion of quasi-satellite dust likely ebbs and flows on 105 year time scales synchronized with Earth’s orbital evolution.  相似文献   

11.
While CO, HCl, and HF, that were considered in the first part of this work, have distinct absorption lines in high-resolution spectra and were detected four decades ago, the lines of HDO, OCS, and SO2 are either very weak or blended by the telluric lines and have not been observed previously by ground-based infrared spectroscopy at the Venus cloud tops. The H2O abundance above the Venus clouds is typically below the detection limit of ground-based IR spectroscopy. However, the large D/H ratio on Venus facilitates observations of HDO. Converted to H2O with D/H ≈ 200, our observations at 2722 cm−1 in the Venus afternoon show a H2O mixing ratio of ∼1.2 ppm at latitudes between ±40° increasing to ±60° by a factor of 2. The observations in the early morning reveal the H2O mixing ratio that is almost constant at 2.9 ppm within latitudes of ±75°. The measured H2O mixing ratios refer to 74 km. The observed increase in H2O is explained by the lack of photochemical production of sulfuric acid in the night time. The recent observations at the P-branch of OCS at 4094 cm−1 confirm our detection of OCS. Four distributions of OCS along the disk of Venus at various latitudes and local times have been retrieved. Both regular and irregular components are present in the variations of OCS. The observed OCS mixing ratio at 65 km varies from ∼0.3 to 9 ppb with the mean value of ∼3 ppb. The OCS scale height is retrieved from the observed limb darkening and varies from 1 to 4 km with a mean value of half the atmospheric scale height. SO2 at the cloud tops has been detected for the first time by means of ground-based infrared spectroscopy. The SO2 lines look irregular in the observed spectra at 2476 cm−1. The SO2 abundances are retrieved by fitting by synthetic spectra, and two methods have been applied to determine uncertainties and detection limits in this fitting. The retrieved mean SO2 mixing ratio of 350 ± 50 ppb at 72 km favors a significant increase in SO2 above the clouds since the period of 1980-1995 that was observed by the SOIR occultations at Venus Express. Scale heights of OCS and SO2 may be similar, and the SO2/OCS ratio is ∼500 and may be rather stable at 65-70 km under varying conditions on Venus.  相似文献   

12.
Hypervelocity microparticle impact experiments were performed with a 2 MV Van De Graaff dust accelerator. From measurements of the light intensity I and the total light energy E, the relations I=c1mv4.1 and E=c2mv3.2 were obtained, where m is the projectile mass, ν the projectile velocity and c1,c2 are constants, depending on projectile and target material. Using the measured values of the spectral distribution of the light emitted during impact, the temperature of the radiating material was estimated to be between 2500 and 5000 K depending on the projectile velocity. From an analysis of these measurements the angular distribution of secondary particle velocities as well as the relative mass distribution of these particles was determined. Approximately 90% of the detected ejecta mass (ν?1 km/sec) is found between 50° and 70° ejection angle. For ejection angles smaller than 20°, ejecta velocities of up to 30 km/sec were detected when the primary particle velocity was 4.8 km/sec. Using the dependence of the light intensity on pressure in the target chamber, an estimate of the total amount of material vaporized during impact could be derived. It was concluded that at 7.4 km/sec particle impact velocity at least 1.6% of the displaced projectile and crater material was vaporized.  相似文献   

13.
To explain the observed abundances of CO2 in Titan's atmosphere, a relatively high water deposition into the atmosphere needs to be invoked due to the importance of H2O photolysis in CO2 production. A likely source of H2O is icy dust particles from space. This paper considers the direct dust input to Titan's atmosphere from the interplanetary environment, and also ejecta particles from micrometeoroid impacts with the icy satellites Hyperion, Iapetus and Phoebe. It is found that the likely mass influx to Titan is 10–16 to 10–15 kg m–2 s–1. This mass influx is an order of magnitude too low to explain the observed levels of CO2 in Titan's atmosphere in the context of a recent photochemical model. This leads one to speculate as to the likelihood of one large impact to Titan in the recent past;i.e., that the atmosphere is not in equilibrium but is cnrrently losing CO2.  相似文献   

14.
The vertical profile of H2SO4 vapor is calculated using current atmospheric and thermodynamic data. The atmospheric data include the H2O profiles observed at 70-112 km by the SOIR solar occultations, the SPICAV-UV profiles of the haze extinction at 220 nm, the VeRa temperature profiles, and a typical profile of eddy diffusion. The thermodynamic data are the saturated vapor pressures of H2O and H2SO4 and chemical potentials of these species in sulfuric acid solutions. The calculated concentration of sulfuric acid in the cloud droplets varies from 85% at 70 km to a minimum of 70% at 90 km and then gradually increasing to 90-100% at 110 km. The H2SO4 vapor mixing ratio is ∼10−12 at 70 and 110 km with a deep minimum of 3 × 10−18 at 88 km. The H2O-H2SO4 system matches the local thermodynamic equilibrium conditions up to 87 km. The column photolysis rate of H2SO4 is 1.6 × 105 cm−2 s−1 at 70 km and 23 cm−2 s−1 at 90 km. The calculated abundance of H2SO4 vapor at 90-110 km and its photolysis rate are smaller than those presented in the recent model by Zhang et al. (Zhang, X., Liang, M.C., Montmessin, F., Bertaux, J.L., Parkinson, C., Yung, Y.L. [2010]. Nat. Geosci. 3, 834-837) by factors of 106 and 109, respectively. Assumptions of 100% sulfuric acid, local thermodynamic equilibrium, too warm atmosphere, supersaturation of H2SO4 (impossible for a source of SOX), and cross sections for H2SO4·H2O (impossible above the pure H2SO4) are the main reasons of this huge difference. Significant differences and contradictions between the SPICAV-UV, SOIR, and ground-based submillimeter observations of SOX at 70-110 km are briefly discussed and some weaknesses are outlined. The possible source of high altitude SOX on Venus remains unclear and probably does not exist.  相似文献   

15.
We have numerically integrated the orbits of ejecta from Telesto and Calypso, the two small Trojan companions of Saturn’s major satellite Tethys. Ejecta were launched with speeds comparable to or exceeding their parent’s escape velocity, consistent with impacts into regolith surfaces. We find that the fates of ejecta fall into several distinct categories, depending on both the speed and direction of launch.The slowest ejecta follow suborbital trajectories and re-impact their source moon in less than one day. Slightly faster debris barely escape their parent’s Hill sphere and are confined to tadpole orbits, librating about Tethys’ triangular Lagrange points L4 (leading, near Telesto) or L5 (trailing, near Calypso) with nearly the same orbital semi-major axis as Tethys, Telesto, and Calypso. These ejecta too eventually re-impact their source moon, but with a median lifetime of a few dozen years. Those which re-impact within the first 10 years or so have lifetimes near integer multiples of 348.6 days (half the tadpole period).Still faster debris with azimuthal velocity components ?10 m/s enter horseshoe orbits which enclose both L4 and L5 as well as L3, but which avoid Tethys and its Hill sphere. These ejecta impact either Telesto or Calypso at comparable rates, with median lifetimes of several thousand years. However, they cannot reach Tethys itself; only the fastest ejecta, with azimuthal velocities ?40 m/s, achieve “passing orbits” which are able to encounter Tethys. Tethys accretes most of these ejecta within several years, but some 1% of them are scattered either inward to hit Enceladus or outward to strike Dione, over timescales on the order of a few hundred years.  相似文献   

16.
We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks ?1 cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ∼10 μm to 10 mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r* for all three planets. On the Moon, r* ∼ R−0.18 for craters 5-640 km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as r* ∼ R−0.49, consistent with ejecta entrainment in Venus’ dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R−0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials.  相似文献   

17.
Abstract— We present numerical simulations of crater formation under Martian conditions with a single near‐surface icy layer to investigate changes in crater morphology between glacial and interglacial periods. The ice fraction, thickness, and depth to the icy layer are varied to understand the systematic effects on observable crater features. To accurately model impact cratering into ice, a new equation of state table and strength model parameters for H2O are fitted to laboratory data. The presence of an icy layer significantly modifies the cratering mechanics. Observable features demonstrated by the modeling include variations in crater morphometry (depth and rim height) and icy infill of the crater floor during the late stages of crater formation. In addition, an icy layer modifies the velocities, angles, and volumes of ejecta, leading to deviations of ejecta blanket thickness from the predicted power law. The dramatic changes in crater excavation are a result of both the shock impedance and the strength mismatch between layers of icy and rocky materials. Our simulations suggest that many of the unusual features of Martian craters may be explained by the presence of icy layers, including shallow craters with well‐preserved ejecta blankets, icy flow related features, some layered ejecta structures, and crater lakes. Therefore, the cratering record implies that near‐surface icy layers are widespread on Mars.  相似文献   

18.
B. Gundlach  S. Kilias  E. Beitz  J. Blum 《Icarus》2011,214(2):717-723
Coagulation models assume a higher sticking threshold for micrometer-sized ice particles than for micrometer-sized silicate particles. However, in contrast to silicates, laboratory investigations of the collision properties of micrometer-sized ice particles (in particular, of the most abundant H2O-ice) have not been conducted yet. Thus, we used two different experimental methods to produce micrometer-sized H2O-ice particles, i.e. by spraying H2O droplets into liquid nitrogen and by spraying H2O droplets into a cold nitrogen atmosphere. The mean particle radii of the ice particles produced with these experimental methods are (1.49 ± 0.79) μm and (1.45 ± 0.65) μm. Ice aggregates composed of the micrometer-sized ice particles are highly porous (volume filling factor: ? = 0.11 ± 0.01) or rather compact (volume filling factor: ? = 0.72 ± 0.04), depending on the method of production. Furthermore, the critical rolling friction force of FRoll,ice = (114.8 ± 23.8) × 10−10 N was measured for micrometer-sized ice particles, which exceeds the critical rolling friction force of micrometer-sized SiO2 particles . This result implies that the adhesive bonding between micrometer-sized ice particles is stronger than the bonding strength between SiO2 particles. An estimation of the specific surface energy of micrometer-sized ice particles, derived from the measured critical rolling friction forces and the surface energy of micrometer-sized SiO2 particles, results in γice = 0.190 J m−2.  相似文献   

19.
The Hubble constant is split into two terms H = H1 + H2 , where H1 is a decreasing function due to the Big Bang and the subsequent gravitational interaction that slows the expansion of the Universe and H2 is an increasing function that corresponds to dark energy which accelerates this expansion. For T = 13.7 Gyr we prove that H2(T) > 5 m/(yr AU). This is a quite large number and thus the impact of dark energy, which is spread almost everywhere uniformly, should be observable not only on large scales, but also in our Solar system. In particular, we show that Earth, Mars and other planets were closer to the Sun 4.5 Gyr ago. The recession speed ≈5.3 m/yr of the Earth from the Sun seems to be just right for an almost constant influx of solar energy from the origin of life on Earth up to the present over which time the Sun’s luminosity has increased approximately linearly. This presents further support for the Anthropic Principle. Namely, the existence of dark energy guarantees very stable conditions for the development of intelligent life on Earth over a period of 3.5 Gyr.  相似文献   

20.
In July of 2005, the Deep Impact mission collided a 366 kg impactor with the nucleus of Comet 9P/Tempel 1, at a closing speed of 10.2 km s−1. In this work, we develop a first-order, three-dimensional, forward model of the ejecta plume behavior resulting from this cratering event, and then adjust the model parameters to match the flyby-spacecraft observations of the actual ejecta plume, image by image. This modeling exercise indicates Deep Impact to have been a reasonably “well-behaved” oblique impact, in which the impactor-spacecraft apparently struck a small, westward-facing slope of roughly 1/3-1/2 the size of the final crater produced (determined from initial ejecta plume geometry), and possessing an effective strength of not more than . The resulting ejecta plume followed well-established scaling relationships for cratering in a medium-to-high porosity target, consistent with a transient crater of not more than 85-140 m diameter, formed in not more than 250-550 s, for the case of (gravity-dominated cratering); and not less than 22-26 m diameter, formed in not less than 1-3 s, for the case of (strength-dominated cratering). At , an upper limit to the total ejected mass of 1.8×107 kg (1.5-2.2×107 kg) is consistent with measurements made via long-range remote sensing, after taking into account that 90% of this mass would have stayed close to the surface and then landed within 45 min of the impact. However, at , a lower limit to the total ejected mass of 2.3×105 kg (1.5-2.9×105 kg) is also consistent with these measurements. The expansion rate of the ejecta plume imaged during the look-back phase of observations leads to an estimate of the comet's mean surface gravity of (0.17-0.90 mm s−2), which corresponds to a comet mass of mt=4.5×1013 kg (2.3-12.0×1013 kg) and a bulk density of (200-1000 kg m−3), where the large high-end error is due to uncertainties in the magnitude of coma gas pressure effects on the ejecta particles in flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号