首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We obtained longitudinally resolved thermal infrared spectra (8-13 μm and 17-25 μm) of Jupiter’s impact debris at the Gemini South Telescope on July 24, 2009; five days after the July 19th collision. These were used to study the mechanisms responsible for the redistribution of thermal energy and material (ammonia and stratospheric particulates) following the impact. Upwelling of (8.5 ± 4.1) × 1014 g of tropospheric air was sufficient to deposit (6.7 ± 4.1) × 1012 g of NH3 over a 6° longitude range above the impact core. The NH3 was distributed over the 20-80 mbar region with a peak abundance of 1.0 ± 0.6 ppm at 45 mbar. Only a 10th of this abundance was observed over the western ejecta, and it is unlikely that these observations were sensitive to NH3 entrained in the ballistic plume itself. The pattern of excess thermal energy was markedly different from that of Shoemaker-Levy 9 (SL9), with a localized tropospheric perturbation of 2.0 ± 1.0 K at 200-300 mbar and a broader stratospheric warming of up to 3.5 ± 2.0 K at 10-30 mbar. We find no evidence of residual warmth at p < 1 mbar five days after the impact. The excess thermal energy places lower limits on the total energy of the impact (1.8-15.7 × 1026 ergs), which limits the impactor diameter to 70-510 m (depending on the bulk density chosen for the material).The models of the Gemini spectra required three distinct aerosol features, indicative of the mineralogy of the dark particulate debris, centred at 9.1, 10.0 and 18.5 μm. The retrieved opacities for each of these features were distributed over a larger area (9-10° longitude) and at higher altitudes (above the 10-mbar level) than the stratospheric NH3, and they are more spatially inhomogeneous. This implies the particulates were either entrained with the rising hot plume or created upon plume re-entry and are subsequently redistributed by stratospheric winds. The three particulate features were consistent with a mixture of amorphous iron and magnesium-rich silicates and silicas in the debris field. A broad 10-μm signature was coincident with peaks expected from material rich in amorphous olivines (but poor in pyroxenes), and similar to silicate features observed during SL9. A narrow 9.1-μm signature was interpreted as a combination of amorphous and crystalline silica. Finally, a broad 18.5-μm emitter was not adequately reproduced by a mixture of simple olivines and pyroxenes and remains to be identified.  相似文献   

2.
We have developed a one-dimensional thermochemical kinetics and diffusion model for Jupiter’s atmosphere that accurately describes the transition from the thermochemical regime in the deep troposphere (where chemical equilibrium is established) to the quenched regime in the upper troposphere (where chemical equilibrium is disrupted). The model is used to calculate chemical abundances of tropospheric constituents and to identify important chemical pathways for CO-CH4 interconversion in hydrogen-dominated atmospheres. In particular, the observed mole fraction and chemical behavior of CO is used to indirectly constrain the jovian water inventory. Our model can reproduce the observed tropospheric CO abundance provided that the water mole fraction lies in the range (0.25-6.0) × 10−3 in Jupiter’s deep troposphere, corresponding to an enrichment of 0.3-7.3 times the protosolar abundance (assumed to be H2O/H2 = 9.61 × 10−4). Our results suggest that Jupiter’s oxygen enrichment is roughly similar to that for carbon, nitrogen, and other heavy elements, and we conclude that formation scenarios that require very large (>8× solar) enrichments in water can be ruled out. We also evaluate and refine the simple time-constant arguments currently used to predict the quenched CO abundance on Jupiter, other giant planets, and brown dwarfs.  相似文献   

3.
Infrared emission lines of stratospheric ammonia (NH3) were observed following the collisions of the fragments of Comet Shoemaker-Levy 9 with Jupiter in July of 1994 at the impact sites of fragments G and K. Infrared heterodyne spectra near 10.7 μm were obtained by A. Betz et al. (in Abstracts for Special Sessions on Comet Shoemaker-Levy 9, The 26th Meeting of the Division for Planetary Sciences, Washington DC, 31 Oct.-4 Nov. 1994, p. 25) using one of the Infrared Spatial Interferometer telescope systems on Mount Wilson. Lineshapes of up to three different NH3 emission lines were measured at a resolving power of ∼107 at multiple times following the impacts. We present here our radiative transfer analysis of the fully resolved spectral lineshapes of the multiple rovibrational lines. This analysis provides information on temperature structure and NH3 abundance distributions and their temporal changes up to 18 days after impact. These results are compared to photochemical models to determine the role of photochemistry and other mechanisms in the destruction and dilution of NH3 in the jovian stratosphere after the SL9 impacts.One day following the G impact, the inferred temperature above 0.001 mbar altitude is 283±13 K, consistent with a recent plume splashback model. Cooling of the upper stratosphere to 204 K by the fourth day and to quiescence after a week is consistent with a simple gray atmosphere radiative flux calculation and mixing with cold jovian air. During the first 4 days after impact, NH3 was present primarily at altitudes above 1 mbar with a column density of (7.7±1.6)×1017 cm−2 after 1 day and (3.7±0.8)×1017 cm−2 after 4 days. (Errors represent precision.) We obtained >2.5 times more NH3 than can be supplied by nitrogen from a large cometary fragment, suggesting a primarily jovian source for the NH3. By 18 days postimpact, a return to quiescent upper stratospheric temperature is retrieved for the G region, with an NH3 column density of 7.3×1017 cm−2 or more in the lower stratosphere, possibly supplied by NH3 upwelling across an impact-heated and turbulent tropopause, which may have been masked by initial dust and haze. Above the 1-mbar level, the maximum retrieved column density decreased to 6.5×1016 cm−2. Comparison to photochemical models indicates that photolysis alone is not sufficient to account for the loss of NH3 above 1 mbar by that time, even when chemical reformation of NH3 is ignored. We speculate that the dispersion of plume material at high altitudes (above 1 mbar) is responsible for the change in the spectra observed a few days postimpact. Data on the K impact region provide qualitatively consistent results.  相似文献   

4.
Infrared spectroscopy sensitive to thermal emission from Jupiter’s stratosphere reveals effects persisting 23 days after the impact of a body in late July 2009. Measurements obtained on 2009 August 11 UT at the impact latitude of 56°S (planetocentric), using the Goddard Heterodyne Instrument for Planetary Wind and Composition mounted on the NASA Infrared Telescope Facility, reveal increased ethane abundance and the effects of aerosol opacity. An interval of reduced thermal continuum emission at 11.744 μm is measured ∼60-80° towards planetary east of the impact site, estimated to be at 305° longitude (System III). Retrieved stratospheric ethane mole fraction in the near vicinity of the impact site is enhanced by up to ∼60% relative to quiescent regions at this latitude. Thermal continuum emission at the impact site, and somewhat west of it, is significantly enhanced in the same spectra that retrieve enhanced ethane mole fraction. Assuming that the enhanced continuum brightness near the impact site results from thermalized aerosol debris blocking contribution from the continuum formed in the upper troposphere and indicating the local temperature, then continuum emission by a haze layer can be approximated by an opaque surface inserted at the 45-60 mbar pressure level in the stratosphere in an unperturbed thermal profile, setting an upper limit on the pressure and therefore a lower limit on the altitude of the top of the impact debris at this time. The reduced continuum brightness east of the impact site can be modeled by an opaque surface near the cold tropopause, which is consistent with a lower altitude of ejecta/impactor-formed opacity. The physical extent of the observed region of reduced continuum implies a minimum average velocity of 21 m/s transporting material prograde (planetary east) from the impact.  相似文献   

5.
Mid-infrared 7-20 μm imaging of Jupiter from ESO’s Very Large Telescope (VLT/VISIR) demonstrate that the increased albedo of Jupiter’s South Equatorial Belt (SEB) during the ‘fade’ (whitening) event of 2009-2010 was correlated with changes to atmospheric temperature and aerosol opacity. The opacity of the tropospheric condensation cloud deck at pressures less than 800 mbar increased by 80% between May 2008 and July 2010, making the SEB (7-17°S) as opaque in the thermal infrared as the adjacent equatorial zone. After the cessation of discrete convective activity within the SEB in May 2009, a cool band of high aerosol opacity (the SEB zone at 11-15°S) was observed separating the cloud-free northern and southern SEB components. The cooling of the SEBZ (with peak-to-peak contrasts of 1.0 ± 0.5 K), as well as the increased aerosol opacity at 4.8 and 8.6 μm, preceded the visible whitening of the belt by several months. A chain of five warm, cloud-free ‘brown barges’ (subsiding airmasses) were observed regularly in the SEB between June 2009 and June 2010, by which time they too had been obscured by the enhanced aerosol opacity of the SEB, although the underlying warm circulation was still present in July 2010. Upper tropospheric temperatures (150-300 mbar) remained largely unchanged during the fade, but the cool SEBZ formation was detected at deeper levels (p > 300 mbar) within the convectively-unstable region of the troposphere. The SEBZ formation caused the meridional temperature gradient of the SEB to decrease between 2008 and 2010, reducing the vertical thermal windshear on the zonal jets bounding the SEB. The southern SEB had fully faded by July 2010 and was characterised by short-wave undulations at 19-20°S. The northern SEB persisted as a narrow grey lane of cloud-free conditions throughout the fade process.The cool temperatures and enhanced aerosol opacity of the SEBZ after July 2009 are consistent with an upward flux of volatiles (e.g., ammonia-laden air) and enhanced condensation, obscuring the blue-absorbing chromophore and whitening the SEB by April 2010. These changes occurred within cloud decks in the convective troposphere, and not in the radiatively-controlled upper troposphere. NH3 ice coatings on aerosols at p < 800 mbar are plausible sources of the suppressed 4.8 and 8.6-μm emission, although differences in the spatial distribution of opacity at these two wavelengths suggest that enhanced attenuation by a deeper cloud (p > 800 mbar) also occurred during the fade. Revival of the dark SEB coloration in the coming months will ultimately require sublimation of these ices by subsidence and warming of volatile-depleted air.  相似文献   

6.
In July 1994, the Shoemaker-Levy 9 (SL9) impacts introduced hydrogen cyanide (HCN) to Jupiter at a well confined latitude band around −44°, over a range of specific longitudes corresponding to each of the 21 fragments (Bézard et al. 1997, Icarus 125, 94-120). This newcomer to Jupiter's stratosphere traces jovian dynamics. HCN rapidly mixed with longitude, so that observations recorded later than several months after impact witnessed primarily the meridional transport of HCN north and south of the impact latitude band. We report spatially resolved spectroscopy of HCN emission 10 months and 6 years following the impacts. We detect a total mass of HCN in Jupiter's stratosphere of 1.5±0.7×1013 g in 1995 and 1.7±0.4×1013 g in 2000, comparable to that observed several days following the impacts (Bézard et al. 1997, Icarus 125, 94-120). In 1995, 10 months after impact, HCN spread to −30° and −65° latitude (half column masses), consistent with a horizontal eddy diffusion coefficient of Kyy=2-3×1010 cm2 s−1. Six years following impact HCN is observed in the northern hemisphere, while still being concentrated at 44° south latitude. Our meridional distribution of HCN suggests that mixing occurred rapidly north of the equator, with Kyy=2-5×1011 cm2 s−1, consistent with the findings of Moreno et al. (2003, Planet. Space Sci. 51, 591-611) and Lellouch et al. (2002, Icarus 159, 112-131). These inferred eddy diffusion coefficients for Jupiter's stratosphere at 0.1-0.5 mbar generally exceed those that characterize transport on Earth. The low abundance of HCN detected at high latitudes suggests that, like on Earth, polar regions are dynamically isolated from lower latitudes.  相似文献   

7.
Thermal-IR imaging from space-borne and ground-based observatories was used to investigate the temperature, composition and aerosol structure of Jupiter’s Great Red Spot (GRS) and its temporal variability between 1995 and 2008. An elliptical warm core, extending over 8° of longitude and 3° of latitude, was observed within the cold anticyclonic vortex at 21°S. The warm airmass is co-located with the deepest red coloration of the GRS interior. The maximum contrast between the core and the coldest regions of the GRS was 3.0-3.5 K in the north-south direction at 400 mbar atmospheric pressure, although the warmer temperatures are present throughout the 150-500 mbar range. The resulting thermal gradients cause counter-rotating flow in the GRS center to decay with altitude into the lower stratosphere. The elliptical warm airmass was too small to be observed in IRTF imaging prior to 2006, but was present throughout the 2006-2008 period in VLT, Subaru and Gemini imaging.Spatially-resolved maps of mid-IR tropospheric aerosol opacity revealed a well-defined lane of depleted aerosols around the GRS periphery, and a correlation with visibly-dark jovian clouds and bright 4.8-μm emission. Ammonia showed a similar but broader ring of depletion encircling the GRS. This narrow lane of subsidence keeps red aerosols physically separate from white aerosols external to the GRS. The visibility of the 4.8-μm bright periphery varies with the mid-IR aerosol opacity of the upper troposphere. Compositional maps of ammonia, phosphine and para-H2 within the GRS interior all exhibit north-south asymmetries, with evidence for higher concentrations north of the warm central core and the strongest depletions in a symmetric arc near the southern periphery. Small-scale enhancements in temperature, NH3 and aerosol opacity associated with localized convection are observed within the generally-warm and aerosol-free South Equatorial Belt (SEB) northwest of the GRS. The extent of 4.8-μm emission from the SEB varied as a part of the 2007 ‘global upheaval,’ though changes during this period were restricted to pressures greater than 500 mbar. Finally, a region of enhanced temperatures extended southwest of the GRS during the survey, restricted to the 100-400 mbar range and with no counterpart in visible imaging or compositional mapping. The warm airmass was perturbed by frequent encounters with the cold airmass of Oval BA, but no internal thermal or compositional effects were noted in either vortex during the close encounters.  相似文献   

8.
The water vapor line at 557 GHz has been observed with the Odin space telescope with a high signal-to-noise ratio and a high spectral resolution on November 8, 2002. The analysis of this observation as well as a re-analysis of previously published observations obtained with the submillimeter wavelength astronomy satellite seem to favor a cometary origin (Shoemaker-Levy 9) for water in the stratosphere of Jupiter, in agreement with the ISO observation results. Our model predicts that the water line should become fainter and broader from 2007. The observation of such a temporal variability would be contradictory with an IDP steady flux, thus supporting the SL9 source hypothesis.  相似文献   

9.
Five years of thermal infrared spectra from the Cassini Composite Infrared Spectrometer (CIRS) are analyzed to determine the response of Saturn’s atmosphere to seasonal changes in insolation. Hemispheric mapping sequences at 15.0 cm−1 spectral resolution are used to retrieve the variation in the zonal mean temperatures in the stratosphere (0.5-5.0 mbar) and upper troposphere (75-800 mbar) between October 2004 (shortly after the summer solstice in the southern hemisphere) and July 2009 (shortly before the autumnal equinox).Saturn’s northern mid-latitudes show signs of dramatic warming in the stratosphere (by 6-10 K) as they emerge from ring-shadow into springtime conditions, whereas southern mid-latitudes show evidence for cooling (4-6 K). The 40-K asymmetry in stratospheric temperatures between northern and southern hemispheres (at 1 mbar) slowly decreased during the timespan of the observations. Tropospheric temperatures also show temporal variations but with a smaller range, consistent with the increasing radiative time constant of the atmospheric response with increasing pressure. The tropospheric response to the insolation changes shows the largest magnitude at the locations of the broad retrograde jets. Saturn’s warm south-polar stratospheric hood has cooled over the course of the mission, but remains present.Stratospheric temperatures are compared to a radiative climate model which accounts for the spatial distribution of the stratospheric coolants. The model successfully predicts the magnitude and morphology of the observed changes at most latitudes. However, the model fails at locations where strong dynamical perturbations dominate the temporal changes in the thermal field, such as the hot polar vortices and the equatorial semi-annual oscillation (Orton, G., and 27 colleagues [2008]. Nature 453, 196-198). Furthermore, observed temperatures in Saturn’s ring-shadowed regions are larger than predicted by all radiative-climate models to date due to the incomplete characterization of the dynamical response to the shadow. Finally, far-infrared CIRS spectra are used to demonstrate variability of the para-hydrogen distribution over the 5-year span of the dataset, which may be related to observed changes in Saturn’s tropospheric haze in the spring hemisphere.  相似文献   

10.
Anderson and Schubert [2007. Saturn's Gravitational field, internal rotation, and interior structure. Science 317, 1384-1387 (paper I)] proposed that Saturn's rotation period can be ascertained by minimizing the dynamic heights of the 100 mbar isosurface with respect to the geoid; they derived a rotation period of 10 h 32 m 35 s. We investigate the same approach for Jupiter to see if the Jovian rotation period is predicted by minimizing the dynamical heights of its isobaric (1 bar pressure level) surface using zonal wind data. A rotation period of 9 h 54 m 29.7 s is found. Further, we investigate the minimization method by fitting Pioneer and Voyager occultation radii for both Jupiter and Saturn. Rotation periods of 9 h 55 m 30 s and 10 h 32 m 35 s are found to minimize the dynamical heights for Jupiter and Saturn, respectively. Though there is no dynamical principle requiring the minimization of the dynamical heights of an isobaric surface, the successful application of the method to Jupiter lends support to its relevance for Saturn.We derive Jupiter and Saturn rotation periods using equilibrium theory to explain the difference between equatorial and polar radii. Rotation periods of 9 h 55 m 20 s and 10 h 31 m 49 s are found for Jupiter and Saturn, respectively. We show that both Jupiter's and Saturn's shapes can be derived using solid-body rotation, suggesting that zonal winds have a minor effect on the planetary shape for both planets.The agreement in the values of Saturn's rotation period predicted by the different approaches supports the conclusion that the planet's period of rotation is about 10 h 32 m.  相似文献   

11.
Three-dimensional calculations are presented for the circumplanetary nature of the iogenic plasma source (pickup ions produced by electron and charge exchange processes in the plasma torus) created by O and S gases located above Io's exobase in its corona and escaping extended neutral clouds (designated as the “Outer Region”). These calculations are undertaken using neutral cloud models for O and S with realistic incomplete collisional cascade source velocity distributions and rates at Io's exobase and realistic spacetime loss processes in the plasma torus. The resulting spatial distributions for O and S about Jupiter are highly peaked at Io but extend at much lower density levels all about the planet, particularly within Io's orbit where they may play a role in the pitch angle scattering and energy loss of radially inward diffusing energetic electrons for the synchrotron radiation belts of Jupiter, in producing bite-outs in the energy distribution of energetic heavy ions near Io's orbit, and in providing a charge exchange source for energetic neutral atoms (ENAs) detected both near and far from Jupiter. For the iogenic plasma source created by these neutrals, two-dimensional distributions produced by integrating the three-dimensional information along the magnetic field lines are presented for the instantaneous values of the pickup ion rates, the total- and net-mass loading rates, the mass-per-unit-magnetic-flux source rate, the pickup conductivity, the pickup radial current, and the pickup ion power (or energy rate). On the circumplanetary spatial scale, the instantaneous iogenic plasma source is highly peaked about Io's position on its orbit around Jupiter. The degree of orbital asymmetry and its physical origin are discussed, and overall spatially integrated rates are presented. The spatially integrated net-mass loading rate is 154 kg s−1 and the total (electron impact and charge exchange) mass loading rate is 275 kg s−1. Rough minimum estimates are made for the spatially integrated total-mass loading rate created by the “Inner Region” (spatial region below Io's exobase) and are at least ∼1 to 2.5 times larger than that for the Outer Region. Implications of the iogenic plasma source created by the Outer Region and the Inner Region are discussed.  相似文献   

12.
Observations of H2O rotational lines from the Infrared Space Observatory (ISO) and the Submillimeter Wave Astronomy Satellite (SWAS) and of the CO2 ν2 band by ISO are analyzed jointly to determine the origin of water vapor and carbon dioxide in Jupiter's stratosphere. Simultaneous modelling of ISO/LWS and ISO/SWS observations acquired in 1997 indicates that most of the stratospheric jovian water is restricted to pressures less than 0.5±0.2 mbar, with a disk-averaged column density of (2.0±0.5)×1015 cm−2. Disk-resolved observations of CO2 by ISO/SWS reveal latitudinal variations of the CO2 abundance, with a decrease of at least a factor of 7 from mid-southern to mid-northern latitudes, and a disk-center column density of (3.4±0.7)×1014 cm−2. These results strongly suggest that the observed H2O and CO2 primarily result from the production, at midsouthern latitudes, of oxygenated material in the form of CO and H2O by the Shoemaker-Levy 9 (SL9) impacts in July 1994 and subsequent chemical and transport evolution, rather than from a permanent interplanetary dust particle or satellite source. This conclusion is supported by quantitative evolution model calculations. Given the characteristic vertical mixing times in Jupiter's stratosphere, material deposited at ∼0.1 mbar by the SL9 impacts is indeed expected to diffuse down to the ∼0.5 mbar level after 3 years. A coupled chemical-horizontal transport model indicates that the stability of water vapor against photolysis and conversion to CO2 is maintained over typically ∼50 years by the decrease of the local CO mixing ratio associated with horizontal spreading. A model with an initial (i.e., SL9-produced) H2O/CO mass mixing ratio of 0.07, not inconsistent with immediate post-impact observations, matches the observed H2O abunda nce and CO2 horizontal distribution 3 years after the impacts. In contrast, the production of CO2 from SL9-produced CO and a water component deriving from an interplanetary dust component is insufficient to account for the observed CO2 amounts. The observations can further be used to place a stringent upper limit (8×104 cm−2 s−1) on the permanent water influx into Jupiter. This may indicate that the much larger flux observed at Saturn derives dominantly from a ring source, or that the ablation of micrometeoroids leads dominantly to different species at Saturn (H2O) and Jupiter (CO). Finally, the SWAS H2O spectra do not appear fully consistent with the ISO data and should be confirmed by future ODIN and Herschel observations.  相似文献   

13.
To date, no accretion model has succeeded in reproducing all observed constraints in the inner Solar System. These constraints include: (1) the orbits, in particular the small eccentricities, and (2) the masses of the terrestrial planets - Mars’ relatively small mass in particular has not been adequately reproduced in previous simulations; (3) the formation timescales of Earth and Mars, as interpreted from Hf/W isotopes; (4) the bulk structure of the asteroid belt, in particular the lack of an imprint of planetary embryo-sized objects; and (5) Earth’s relatively large water content, assuming that it was delivered in the form of water-rich primitive asteroidal material. Here we present results of 40 high-resolution (N = 1000-2000) dynamical simulations of late-stage planetary accretion with the goal of reproducing these constraints, although neglecting the planet Mercury. We assume that Jupiter and Saturn are fully-formed at the start of each simulation, and test orbital configurations that are both consistent with and contrary to the “Nice model”. We find that a configuration with Jupiter and Saturn on circular orbits forms low-eccentricity terrestrial planets and a water-rich Earth on the correct timescale, but Mars’ mass is too large by a factor of 5-10 and embryos are often stranded in the asteroid belt. A configuration with Jupiter and Saturn in their current locations but with slightly higher initial eccentricities (e = 0.07-0.1) produces a small Mars, an embryo-free asteroid belt, and a reasonable Earth analog but rarely allows water delivery to Earth. None of the configurations we tested reproduced all the observed constraints. Our simulations leave us with a problem: we can reasonably satisfy the observed constraints (except for Earth’s water) with a configuration of Jupiter and Saturn that is at best marginally consistent with models of the outer Solar System, as it does not allow for any outer planet migration after a few Myr. Alternately, giant planet configurations which are consistent with the Nice model fail to reproduce Mars’ small size.  相似文献   

14.
We analyze the thermal infrared spectra of Jupiter obtained by the Cassini-CIRS instrument during the 2000 flyby to infer temperature and cloud density in the jovian stratosphere and upper troposphere. We use an inversion technique to derive zonal mean vertical profiles of cloud absorption coefficient and optical thickness from a narrow spectral window centered at 1392 cm−1 (7.18 μm). At this wavenumber atmospheric absorption due to ammonia gas is very weak and uncertainties in the ammonia abundance do not impact the cloud retrieval results. For cloud-free conditions the atmospheric transmission is limited by the absorption of molecular hydrogen and methane. The gaseous optical depth of the atmosphere is of order unity at about 1200 mbar. This allows us to probe the structure of the atmosphere through a layer where ammonia cloud formation is expected. The results are presented as height vs latitude cross-sections of the zonal mean cloud optical depth and cloud absorption coefficient. The cloud optical depth and the cloud base pressure exhibit a significant variability with latitude. In regions with thin cloud cover (cloud optical depth less than 2), the cloud absorption coefficient peaks at 1.1±0.05 bar, whereas in regions with thick clouds the peak cloud absorption coefficient occurs in the vicinity of 900±50 mbar. If the cloud optical depth is too large the location of the cloud peak cannot be identified. Based on theoretical expectations for the ammonia condensation pressure we conclude that the detected clouds are probably a system of two different cloud layers: a top ammonia ice layer at about 900 mbar covering only limited latitudes and a second, deeper layer at 1100 mbar, possibly made of ammonium hydrosulfide.  相似文献   

15.
W.-H. Ip 《Icarus》1978,34(1):117-127
The temporal evolutions of the planetesimals scattered from the Jupiter zone for different masses of the proto-Jupiter [(a) 0.1 and (b) 1.0 of the present mass] are investigated. Due to the combined effects of the orbital evolution of the planetesimals and the elimination of these projectiles either via impact capture or injection into escape velocity by the outer planets, the whole scattering process lasts about 108 yr for case (a) and about 107 yr for case (b). The longer time scale may be a good estimate for the accretion time interval of Jupiter while the shorter one (107) gives the upper time limit of the late heavy-bombardment epoch of the terrestrial planets due to planetesimals scattered from the Jupiter zone. The limiting value of the encounter velocity U at the end of the scattering process is ≈0.6. Consideration of the collisional interaction of these projectiles with the asteroids indicates that the corresponding bombardment effect could be rather appreciable. Also, the asteroids on the inner edge of the main asteroid belt would have been bombarded more severely than those on the outer edge. From this point of view, the structure of the asteroidal belt could be affected significantly not only by Jupiter's gravitational perturbation effect but also by its early scattering process.  相似文献   

16.
The 455 Ma old Lockne crater in central Sweden is a well-preserved and accessible instance of marine impact crater. The process of formation of the over 7 km wide crater (referred to as inner crater) in crystalline Proterozoic basement is numerically modeled under the assumption of a 45° oblique impact of an asteroid-like impactor. The 3D version of the SOVA multi-material hydrocode is used to model the shock wave propagation through the target, transient crater growth, material ejection in water and basement target, and water and fragmented rock ejecta expansion. The model results in a crater formation with the greatest ejection and melting transferred in the downrange direction. The model reproduces the growth of the water crater accompanied by the growth of a “wall” of ejected water at its outer margin. The basement ejecta are mostly trapped in this transient “water wall”. Only the largest ejected rock fragments could break through this water wall and thus reach distances farther than about 6 km from the center of the target. The model predicts approximately of impact melt formation, less than 10% of which is ejected outside of the inner (basement) crater, whereas the rest is reckoned to have remained within the inner crater. We assume that most of the ejected melt occurs as sand-sized fragments in the resurge sediments that formed subsequent to the collapse of the water crater that resulted in the powerful backflow of water. The model results are in accordance with several important details of the known geology of the crater. The model also outlines the difference in the marine crater formation processes in contrast to a crater with similar size formed on land.  相似文献   

17.
We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009 (Sánchez-Lavega, A. et al. [2010]. Astrophys. J. 715, L155-L159). The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 μm. The impact cloud expanded zonally from ∼5000 km (July 19) to 225,000 km (29 October, about 180° in longitude), remaining meridionally localized within a latitude band from 53.5°S to 61.5°S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact’s energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5°S latitude increases its eastward velocity with altitude above the tropopause by 5-10 m s−1. The corresponding vertical wind shear is low, about 1 m s−1 per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m s−1. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact.  相似文献   

18.
Observations of Jupiter by Cassini/CIRS, acquired during the December 2000 flyby, provide the latitudinal distribution of HCN and CO2 in Jupiter's stratosphere with unprecedented spatial resolution and coverage. Following up on a preliminary study by Kunde et al. [Kunde, V.G., and 41 colleagues, 2004. Science 305, 1582-1587], the analysis of these observations leads to two unexpected results (i) the total HCN mass in Jupiter's stratosphere in 2000 was (6.0±1.5)×1013 g, i.e., at least three times larger than measured immediately after the Shoemaker-Levy 9 (SL9) impacts in July 1994 and (ii) the latitudinal distributions of HCN and CO2 are strikingly different: while HCN exhibits a maximum at 45° S and a sharp decrease towards high Southern latitudes, the CO2 column densities peak over the South Pole. The total CO2 mass is (2.9±1.2)×1013 g. A possible cause for the HCN mass increase is its production from the photolysis of NH3, although a problem remains because, while millimeter-wave observations clearly indicate that HCN is currently restricted to submillibar (∼0.3 mbar) levels, immediate post-impact infrared observations have suggested that most of the ammonia was present in the lower stratosphere near 20 mbar. HCN appears to be a good atmospheric tracer, with negligible chemical losses. Based on 1-dimensional (latitude) transport models, the HCN distribution is best interpreted as resulting from the combination of a sharp decrease (over an order of magnitude in Kyy) of wave-induced eddy mixing poleward of 40° and an equatorward transport with velocity. The CO2 distribution was investigated by coupling the transport model with an elementary chemical model, in which CO2 is produced from the conversion of water originating either from SL9 or from auroral input. The auroral source does not appear adequate to reproduce the CO2 peak over the South Pole, as required fluxes are unrealistically high and the shape of the CO2 bulge is not properly matched. In contrast, the CO2 distribution can be fit by invoking poleward transport with a velocity and vigorous eddy mixing (). While the vertical distribution of CO2 is not measured, the combined HCN and CO2 results imply that the two species reside at different stratospheric levels. Comparing with the circulation regimes predicted by earlier radiative-dynamical models of Jupiter's stratosphere, and with inferences from the ethane and acetylene stratospheric latitudinal distribution, we suggest that CO2 lies in the middle stratosphere near or below the 5-mbar level.  相似文献   

19.
Jupiter's equatorial atmosphere, much like the Earth's, is known to show quasi-periodic variations in temperature, particularly in the stratosphere, but variations in other jovian atmospheric tracers have not been studied for any correlations to these oscillations. Data taken at NASA's Infrared Telescope Facility (IRTF) from 1979 to 2000 were used to obtain temperatures at two levels in the atmosphere, corresponding to the upper troposphere (250 mbar) and to the stratosphere (20 mbar). We find that the data show periodic signals at latitudes corresponding to the troposphere zonal wind jets, with periods ranging from 4.4 (stratosphere, 95% confidence at 4° S planetographic latitude) to 7.7 years (troposphere, 97% confidence at 6° N). We also discuss evidence that at some latitudes the troposphere temperature variations are out of phase from the stratosphere variations, even where no periodicity is evident. Hubble Space Telescope images were used, in conjunction with Voyager and Cassini data, to track small changes in the troposphere zonal winds from 20° N to 20° S latitude over the 1994-2000 time period. Oscillations with a period of 4.5 years are found near 7°-8° S, with 80-85% significance. Further, the strongest evidence for a QQO-induced tropospheric wind change tied to stratospheric temperature change occurs near these latitudes, though tropospheric temperatures show little periodicity here. Comparison of thermal winds and measured zonal winds for three dates indicate that cloud features at other latitudes are likely tracked at pressures that can vary by up to a few hundred millibar, but the cloud altitude change required is too large to explain the wind changes measured at 7° S.  相似文献   

20.
C.C. Reese  C.P. Orth 《Icarus》2011,213(2):433-442
We show that a sufficiently energetic impact can generate a melt volume which, after isostatic adjustment and differentiation, forms a spherical cap of crust with underlying depleted mantle. Depending on impact energy and initial crustal thickness, a basin may be retained or impact induced crust may be topographically elevated. Retention of a martian lowland scale impact basin at impact energies ∼3 × 1028-3 × 1029 J requires an initial crustal thickness greater than 10 km. Formation of impact induced crust with size comparable to the martian highlands requires a larger impact energy, ∼1-3 × 1030 J, and initial crustal thickness <20 km. Furthermore, we show that the boundary of impact induced crust can be elliptical due to a spatially asymmetric impact melt volume caused by an oblique impact. We suggest the term “impact megadome” for topographically elevated, impact induced crust and propose that processes involved in megadome formation may play an important role in the origin of the martian crustal dichotomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号