首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the development of a NaOH-leaching technique to extract the authigenic Al and Be in marine sediments, which should allow the sedimentary signals of cosmogenic 26Al and 10Be to be more effectively studied as geochemical/geophysical tracers. The technique has been applied to the study of 26Al and 10Be in opal-rich sediments from the North Pacific. The 26Al/27Al and 10Be/9Be ratios of ~3 × 10−14 and 1 × 10−7 leached from the sediments are higher than those in the total sediments by factors of 3–10 and 2–3, respectively. The authigenic 10Be/9Be ratios are similar to those in deep waters at the study site, pointing to the potential usefulness of the ratios in paleoceanographic studies. The fractions of total Be and Al in the sediment studied that are of authigenic origin average about 40 and 17%, respectively. Estimated 26AL/27A1 ratios in detrital sediments are ≤ 10−15, low enough to indicate that the source of 26Al in the ocean mainly comes from atmospheric production. In the study area, the deposition flux of 26Al is comparable to its atmospheric supply. However, the deposition flux of 10Be is about threefold higher than the atmospheric input, signifying lateral transport of 10Be from the open ocean to this area of relatively high particle flux. The 26Al/10Be ratio, being insensitive to the oceanic influx of lithogenic particles, may serve as a valuable proxy for paleoproductivity. Both the authigenic and total-sediment 26Al/27Al and 10Be/ 9Be ratios decreased significantly at ~6 ka, which could reflect an enhanced input of windblown lithogenic particles to the North Pacific. While the enhanced dust input did not significantly alter the deep-water 9Be concentration, it contributed to the observed increase of authigenic 9Be flux to the sediment.  相似文献   

2.
The short residence times of Th and Pa in seawater make them very responsive to changes in the ocean environment. We use a new multi-ion-counting technique to make Th and Pa isotope measurements in seawaters from a near-shore environment in which oceanic chemical tracers are not overwhelmed by terrestrial inputs (the Bahamas). An unusual feature of the Bahamas setting is the shallow depth of water residing on the bank tops. These waters have significantly lower 232Th/230Th (∼10,000) than those immediately adjacent to the banks (24,000-31,000) and a (231Pa/230Th) near the production ratio (∼0.1). The change in 232Th/230Th and (231Pa/230Th) on the bank tops is explained by almost quantitative removal of Th and Pa by scavenging, and their replacement with a mixture of 230Th and 231Pa alpha-recoiled from the underlying carbonates, together with Th from dust dissolution. Analysis of a water profile in the Tongue of the Ocean, which separates the Great and Little Bahama Banks, allows us to trace the movement of bank-top water to depth. A distinct minimum in both 232Th/230Th (∼13,000) and (231Pa/230Th) (∼0.5) is observed at ∼430 m and is interpreted to reflect density cascading of bank-top water with entrained carbonate sediment. These results suggest that Th and Pa can be used as water-mass tracers in near-shore environments. Uranium concentration measurements on the same waters demonstrate that U is conservative across a range in salinity of 2 psu, with a concentration of 3.33 ppb (at a salinity of 35).The incorporation of U and Th isotopes into marine carbonates has also been assessed by analyzing carbonate samples from the same location as these Bahamas waters. Such incorporation is critical for U-Th geochronology. U isotope analyses demonstrate that seawater δ234U averages 146.6 and does not vary by more than 2.5%o, and that carbonates capture this value. Additional high precision measurements (≈±1%o) on modern carbonates confirm that all oceans have identical δ234U. Modern marine carbonates are shown to have 232Th/230Th ratios that reflect the local seawater in which they formed.  相似文献   

3.
We present U, Th, and Pa isotope data for young lavas from Costa Rica and Nicaragua in the Central American arc. Thorium isotopic ratios for Costa Rica and Nicaragua differ dramatically: Costa Rican lavas are characterized by low (230Th/232Th) (1 to 1.2) and, for four out of five lavas, (230Th/238U) greater than unity. Nicaraguan lavas have high (230Th/232Th) (2.2 to 2.7) and, for five of six samples, (230Th/238U) less than unity. All lavas have (231Pa/235U) greater than unity, with initial values ranging from 1.27 to 1.77, but those from Costa Rica have larger 231Pa excesses. There is a broad positive correlation between (231Pa/235U) and (230Th/238U) similar to the worldwide trend for arcs outlined by Pickett and Murrell (1997), although many of the Nicaraguan lavas skirt the high end of that trend. In greater detail, the Central American data appear to divide into separate high-(231Pa/235U) and low-(231Pa/235U) tiers. These tiers may be different because of either different residence times in the crust or different proportions of sedimentary components from the slab.Substantial (231Pa/235U) excesses (>1.5) in both Costa Rica and Nicaragua require a melting process that allows for enhanced daughter (231Pa) ingrowth. With increasing U addition, (231Pa/230Th) increases in a manner that cannot be explained adequately by aging of fluid components before partial melting and eruption. Thus, either some 231Pa is added from the slab, or melting-enhanced 231Pa ingrowth is greater in sources that have experienced a larger amount of slab-derived flux and a higher extent of melting. These observations can be explained if regions that have undergone greater extents of fluxing and melting have experienced these processes over a longer time interval than those that have had little flux added and little melt extracted. We propose a flux-ingrowth melting model in which corner flow in the mantle wedge supplies fresh hot mantle into a zone of slab fluid addition. Partial melting occurs in response to this fluxing. We assume critical melting at low porosity (∼10−3), rapid fluid flux to the melting region, and rapid melt transport. Solid mantle traverses the melting region over 105 to 106 yr, thereby allowing 231Pa and 230Th ingrowth from U retained in the residues of melt extraction. Magmas are aggregated from all parts of the melting regime, mixing melts from incipiently fluxed regions with those from sources that have experienced more extensive fluid addition, partial melting, and daughter nuclide ingrowth. With suitable assumptions about component addition from the slab, this flux-ingrowth model matches a wide range of U-series and trace element data from Costa Rican and Nicaraguan lavas, with required average extents of melting of ∼1 to 3% and 7 to 15%, respectively. Upwelling and/or extensive melt-rock reaction are not required to explain large (231Pa/235U) excesses in Central America or other arcs. On Th isotope equiline plots, the model produces linear arrays that resemble isochrons but that have no age significance. Instead, these arrays are generated by mixing of melts from sources that have experienced fluid addition and partial melting over a range of time intervals, as seems likely in arc source regions. Finally, the flux-ingrowth model predicts considerable 226Ra excesses for integrated magmas. If we assume that 226Ra is added continuously with the slab-derived fluid, the model predicts large and increasing (226Ra/230Th) with increasing melting and slab-component addition, without requiring the addition of a distinct late fluid.  相似文献   

4.
5.
A deep-sea Mn nodule handpicked from top of a 20 cm diameter North Pacific tripod core was directly counted by an α-spectrometer with a silicon surface barrier detector. A distinct 210Po peak was recorded for the nodule upper side in contact with bottom seawater. Based on the spectrum, the 210Po (supported by 210Pb with 22 year half life) is thought to be confined in the top few microns of the nodule. Since the 210Po peak diminishes considerably for the bottom side resting on sediment, nondestructive α-spectrometry is useful for determining the sea floor orientation of nodules. This method was tested for a western North Pacific dredged Mn nodule, and was successful in identifying the orientation (and also surface loss of the nodule by dredging).Radiochemical analysis was also carried out for carefully scraped samples from the top and bottom of the two nodules. The growth rates of the hand-picked nodule based on excess 230Th and 231Pa profiles were 1 to 4 mm/106 y and apparently varied with time. The dredged sample has grown at 2 to 6 mm/ 106 y and the growth has likely been episodic. The radionuclide composition was significantly different between the top and bottom. Evidence was found that the radionuclide fluxes of 230Th and 231Pa into the nodules considerably changed during the growing histories. The 230Th/232Th activity ratios in the nodule tops are comparable with those in bottom seawater suggesting that the top is growing with metals of seawater origin. However it remains unresolved whether the nodule bottoms are growing by utilizing metals in the sediment pore water.  相似文献   

6.
Activity profiles of excess 234Th, excess 210Pb, 232Th, 230Th, 234U and 238U, and 228/232Th ratios determined in eight box cores of sediment from six sites in central Puget Sound provide new insights into the dynamic nature of solid phase mixing in surface sediments, the exchange of 228Ra and other soluble species across the sediment-water interface, and the cycling of U, Th and 210Pb in this coastal zone.Comparison of excess 234Th inventories in sediments with its production rate in the overlying water column indicates a mean residence time of at most 14 days for particles in the central Puget Sound water column.Surface sediment horizons with excess 234Th have no excess 228Th which might be used to ascertain sediment accumulation rates over the past decade. Instead, deficiencies of 228Th due to loss of soluble 228Ra from pore water to the overlying water persist to 20–30 cm, revealing that exchange of soluble chemicals between pore and overlying waters reaches these depths in the extensively bioturbated sediments of Puget Sound.Solid phase U isotope concentrations tend to increase by up to a factor of two with depth in sediments, as a result of dissolved U being biologically pumped down into sediments where it is partially removed when conditions become mildly reducing. 232Th and 230Th activities and 230/232Th ratios are constant with depth in sediments, indicating constant detrital phase compositions and essentially no authigenic 230Th. Steady state 210Pb depositional activities in and fluxes to Puget Sound sediments average only about onehalf those for sediments of the open Washington coast north of the Columbia River mouth, primarily because of a much lower supply of dissolved 210Pb in sea waters adverting into Puget Sound.Excess 234Th profiles in sediments reveal much more detail about the depth dependency, dynamic nature and recent history of solid phase mixing processes than excess 210Pb profiles. At least six of eight 234Th profiles show that mixing within the 210Pb-defined surface mixed layer is depth dependent. In three profiles, 234Th-derived mixing rates are fastest several centimeters below the sediment-water interface, indicating greater macro-benthic activity at these depths. Depth dependent mixing coefficients derived from the best fit of a four layer, advection-diffusion-decay model to the 234Th data are consistent with 210Pb profiles determined for the same sediments, strongly suggesting that 234Th and 210Pb are mixed equivalently and in a multilayered manner.  相似文献   

7.
High-resolution records of the natural radionuclide230Th were measured in sediments from the eastern Atlantic sector of the Antarctic circumpolar current to obtain a detailed reconstruction of the sedimentation history of this key area for global climate change during the late Quaternary. High-resolution dating rests on the assumption that the230Thex flux to the sediments is constant. Short periods of drastically increased sediment accumulation rates (up to a factor of 8) were determined in the sediments of the Antarctic zone during the climate optima at the beginning of the Holocene and the isotope stage 5e. By comparing expected and measured accumulation rate of230Thex, lateral sediment redistribution was quantified and vertical particle rain rates originating from the surface water above were calculated. We show that lateral contributions locally were up to 6.5 times higher than the vertical particle rain rates. At other locations only 15% of the expected vertical particle rain rate were deposited.  相似文献   

8.
Here we present the results of experiments investigating the adsorption of Protactinium and Thorium onto different particle types in natural seawater. Particle types studied were smectite as a representative of clay, biogenic opal from a cleaned diatom culture, manganese dioxide precipitate, and calcium carbonate. The particles were added to three different types of natural seawater (0.5 mg/L) which were first 0.2 μm-filtered, and the distribution of Pa and Th between dissolved and particulate phase (>0.2 μm) was monitored for 4 to 5 d at increasing time intervals. The tracers applied were the β-emitters 233Pa and 234Th. The measurement technique via β-counting for both nuclides in the same sample is reported here for the first time.The observed recoveries during the experiment range from 40 to 99 (±5) % for Th and from 51 to 105 (±6) % for Pa. The distribution coefficients (Kd) after establishment of an equilibrium cover a wide range for Th from 0.5 to 107 × 106 ml/g, and from 0.03 to 166 × 106 ml/g for Protactinium, depending on particle type and on the type of seawater used.Thorium revealed a specific affinity for all particle types investigated, with varying degree and adsorption kinetics. The results suggest that all particle types investigated may serve as Th carrier phases in the sediment. Pa was found to be less particle reactive than Th in most cases. Th/Pa fractionation factors (FTh/Pa) were also obtained. Weakest fractionation was found on MnO2 (FTh/Pa=1), followed by the chemically cleaned biogenic opal (2.8) and smectite (5.4). The results for calcium carbonate were highly variable. Our experimental results imply that particle composition is indeed playing a role in the differing marine geochemistry of Th and Pa. We conclude that experiments with filtered natural seawater using particle concentrations on a natural level are a helpful approach when investigating the geochemical behaviour of strongly particle-reactive elements like Th and Pa in the marine environment.  相似文献   

9.
We present data for U and its decay series nuclides 230Th, 226Ra, 231Pa, and 210Po for 14 lavas from Kick’em Jenny (KEJ) submarine volcano to constrain the time-scales and processes of magmatism in the Southern Lesser Antilles, the arc having the globally lowest plate convergence rate. Although these samples are thought to have been erupted in the last century, most have (226Ra)/(210Po) within ±15% of unity. Ten out of 14 samples have significant 226Ra excesses over 230Th, with (226Ra)/(230Th) up to 2.97, while four samples are in 226Ra-230Th equilibrium within error. All KEJ samples have high (231Pa)/(235U), ranging from 1.56 to 2.64 and high 238U excesses (up to 43%), providing a global end-member of high 238U and high 231Pa excesses. Negative correlations between Sr, sensitive to plagioclase fractionation, and Ho/Sm, sensitive to amphibole fractionation, or K/Rb, sensitive to open system behavior, indicate that differentiation at KEJ lavas was dominated by amphibole fractionation and open-system assimilation. While (231Pa)/(235U) does not correlate with differentiation indices such as Ho/Sm, (230Th)/(238U) shows a slight negative correlation, likely due to assimilation of materials with slightly higher (230Th)/(238U). Samples with 226Ra excess have higher Sr/Th and Ba/Th than those in 226Ra-230Th equilibrium, forming rough positive correlations of (226Ra)/(230Th) with Sr/Th and Ba/Th similar to those observed in many arc settings. We interpret these correlations to reflect a time-dependent magma differentiation process at shallow crustal levels and not the process of recent fluid addition at the slab-wedge interface.The high 231Pa excesses require an in-growth melting process operating at low melting rates and small residual porosity; such a model will also produce significant 238U-230Th and 226Ra-230Th disequilibrium in erupted lavas, meaning that signatures of recent fluid addition from the slab are unlikely to be preserved in KEJ lavas. We instead propose that most of the 238U-230Th, 226Ra-230Th, and 235U-231Pa disequilibria in erupted KEJ lavas reflect the in-growth melting process in the mantle wedge (reflecting variations in U/Th, daughter-parent ratios, fO2, and thermal structure), followed by modification by magma differentiation at crustal depths. Such a conclusion reconciles the different temporal implications from different U-series parent-daughter pairs and relaxes the time constraint on mass transfer from slab to eruption occurring in less than a few thousand years imposed by models whereby 226Ra excess is derived from the slab.  相似文献   

10.
Measurements of 238U, 234U, 230Th, 232Th, 231Pa, Mn, Fe, Co, Ni, Cu, and Zn were made on 23 samples from core GPC-5, a 29-m giant piston core from a water depth of 4583 m on the northeastern Bermuda Rise (33°41.2′N, 57°36.9′W). This area is characterized by rapid deposition of sediment transported by abyssal currents. Unsupported 230Th and 231Pa are present throughout the core but, because of large variations in the sedimentation rate, show marked departures from exponential decay with depth. The trend with depth of the 231Paex230Thex ratio is consistent with the average accumulation rate of 36 cm/1000 y reported earlier on the basis of radiocarbon dating and CaCO3 stratigraphy. When expressed on a carbonate-free basis, concentrations of Mn, Co, Ni, Cu, Zn, 230Thex, and 231Paex all show cyclic variations positively correlated with those of CaCO3. The correlations can be explained by a model in which all of these constituents, including CaCO3, are supplied to the sediments from the water column at a constant rate. Concentration variations are controlled mainly by varying inputs of terrigenous detritus, with low inputs occurring during interglacials and high inputs during glacials. Relationships between the metal and 230Thex concentrations permit estimates of the rates at which the metals are removed to the sediment by scavenging from the water column. The results, in μg/cm2-1000 y, are: 4300 ± 1100 for Mn, 46 ± 16 for Ni and 76 ± 26 for Cu. These rates are somewhat larger than ocean-wide averages estimated by other methods, and the absolute rate of 230Th accumulation in GPC-5 averages about nine times higher than production in the overlying water column. This part of the Bermuda Rise and similar bottom-current deposits may act as important accumulators of elements scavenged from seawater.  相似文献   

11.
New data are presented for lavas from the Kamchatka Peninsula and the Aleutian arc. Radiogenic isotopes are strikingly homogeneous in the Kamchatka lavas and although incompatible trace element ratios exhibit much greater variability, much of this appears to result from shallow level, crystal fractionation. The data reveal little systematic across-arc change in radiogenic isotopes or trace element ratios. The Nd and Pb isotope data overlap those for Pacific MORB and limit the amount of sediment that could be incorporated in the mantle source region to <1% which is insufficient to account for the observed La/Ta ratios (50–68) in the high-MgO lavas. The lack of a positive correlation between La/Ta and depth to the slab suggests that melt–wall rock interaction was not important in controlling this ratio. Instead it is inferred that La/Ta increased during partial melting and that DLa/DTa = 0.11–0.06, possibly due to residual amphibole. Ba, U, Sr and Pb were added to the source by an aqueous fluid from the subducting slab and its inferred isotopic composition indicates that this fluid was derived from the altered oceanic crust. The addition of U resulted in a large range of (238U/232Th) from 0.79–2.48 similar to that observed in the Mariana and Lesser Antilles island arcs. However, (230Th/232Th) = 0.79–2.34, and the majority of samples lie close to the equiline indicating that the time since U/Th fractionation is generally ≥150 thousand years. The large width of the volcanic zone is assumed to reflect protracted fluid release from the subducting slab over the depth interval 170–380 km possibly coupled with extension across the Central Kamchatka Depression. The data from the Aleutians contrast strongly with those from Kamchatka. Radiogenic isotope data indicate that the Aleutian lavas contain a significant recycled sedimentary component, consistent with elevated 10Be/9Be ratios. The Aleutian lavas have (230Th/232Th) = 0.79–2.34 and exhibit a significant range of U/Th disequilibria [(238U/230Th) = 0.75–1.01]. However, 10Be/9Be is positively correlated with (238U/230Th) suggesting that the 10Be signal was carried by the aqueous fluid from the slab. The U/Th disequilibria for the Aleutian lavas lie close to a 30 thousand year reference line suggesting that this fluid was released from the slab ∼30 thousand years ago similar to recent estimates from the Lesser Antilles, Marianas, and Tonga-Kermadec island arcs from which it is inferred that fluid addition was the trigger for partial melting. Given that the rate of convergence in Kamchatka is similar to that in the Aleutians, Marianas and Tonga-Kermadec the inferred greater time since␣fluid release in Kamchatka requires further investigation. Received: 24 September 1997 / Accepted: 7 July 1998  相似文献   

12.
Determining sources of sediment to coastal systems is an important and complex problem that figures prominently in a myriad of geological, geomorphological, geochemical, and biological processes. Lithogenic (226Ra,228Ra,228Th,230Th,232Th) and fallout (137Cs,210Pb) isotopes were employed in conjunction with sedimentological methods to determine rates of sedimentation in the Nueces Delta and Nueces-Corpus Christi Estuary and to assess the relative importance of marine versus terrestrial sediment sources to the estuary. Similarity of lithogenic isotope ratios in surface sediments throughout the system precluded a numeric approach to discerning the importance of each of the two large scale sediment sources (terrestrial and marine). A stepwise, graphical examination of discrete lithogenic isotope activity concentrations shows more promise. Terrestrial, marine, and bay sediment means for226Ra versus232Th,226Ra versus230Th, and228Ra versus232Th show that terrestrial and marine sediment sources have different signatures, despite having similar grain size distributions (sands), and that sediment deposited in Nueces and Corpus Christi Bays are indistinguishable from the terrestrial component. Supporting evidence is provided by thorium isotopes,230Th versus232Th,228Th versus232Th, and228Th versus230Th. Nueces Delta sedimentation (0.09–0.53 g cm−2 yr−1) shows a subtle gradient, with rates generally lower in the west and progressively higher moving east, likely reflecting contrasts in land use and topography. Nueces Bay cores differ from those in Corpus Christi Bay in that sands comprise a larger percentage of their composition, and they are mixed over greater depth, most likely due to geographic and physiographic effects. Sediment accumulation rates consistently decrease over the first 20 km from the Nueces River and become constant after that, implying that the river is the most significant source of sediment to the estuary. The interpretation of sediment supply to this estuary as dominated by terrestrial inputs is based on three complimentary sets of data: sediment grain size distributions, discrete lithogenic isotope data (Ra versus Th and Th versus Th), and sediment accumulation rates for both Nueces and Corpus Christi Bays.  相似文献   

13.
The 238U-230Th-226Ra and 235U-231Pa disequilibria have been measured by mass spectrometry in historic lavas from the Kamchatka arc. The samples come from three closely located volcanoes in the Central Kamchatka Depression (CKD), the most active region of subducted-related volcanism in the world. The large excesses of 226Ra over 230Th found in the CKD lavas are believed to be linked to slab dehydration. Moreover, the samples show the uncommon feature of (230Th/238U) activity ratios both lower and higher than 1. The U-series disequilibria are characterized by binary trends between activity ratios, with (231Pa/235U) ratios all >1. It is shown that these correlations cannot be explained by a simple process involving a combination of slab dehydration and melting. We suggest that they are more likely to reflect mixing between two end-members: a high-magnesia basalt (HMB) end-member with a clear slab fluid signature and a high-alumina andesite (HAA) end-member reflecting the contribution of a slab-derived melt. The U-Th-Ra characteristics of the HMB end-member can be explained either by a two-step fluid addition with a time lag of 150 ka between each event or by continuous dehydration. The inferred composition for the dehydrating slab is a phengite-bearing eclogite. Equilibrium transport or dynamic melting can both account for 231Pa excess over 235U in HMB end-member. Nevertheless, dynamic melting is preferred as equilibrium transport melting requires unrealistically high upwelling velocities to preserve fluid-derived 226Ra/230Th. A continuous flux melting model is also tested. In this model, 231Pa-235U is quickly dominated by fluid addition and, for realistic extents of melting, this process cannot account for (231Pa/235U) ratios as high as 1.6, as observed in the HMB end-member.The involvement of a melt derived from the subducted oceanic crust is more likely for explaining the HAA end-member compositions than crustal assimilation. Melting of the oceanic crust is believed to occur in presence of residual phengite and rutile, resulting in no 226Ra-230Th disequilibrium and low 231Pa excess over 235U in the high-alumina andesites. Consequently, it appears that high-alumina andesites and high-magnesia basalts have distinct origins: the former being derived from melting of the subducted oceanic crust and the latter from hydrated mantle. It seems that there is no genetic link between these two magma types, in contrast with what was previously believed.  相似文献   

14.
Interpretation of U-series disequilibria in midocean ridge basalts is highly dependent on the bulk partition coefficients for U and Th and therefore the mineralogy of the mantle source. Distinguishing between the effect of melting processes and variable source compositions on measured disequilibria (238U-230Th-226Ra and 235U-231Pa) requires measurement of the radiogenic isotopes Hf, Nd, Sr, and Pb. Here, we report measurements of 238U-230Th-226Ra and 235U-231Pa disequilibria; Hf, Nd, Sr, and Pb isotopic; and major and trace element compositions for a suite of 20 young midocean ridge basalts from the East Pacific Rise axis between 9°28′ and 9°52′N. All of the samples were collected within the axial summit trough using the submersible Alvin. The geological setting and observational data collected during sampling operations indicate that all the rocks are likely to have been erupted from 1991 to 1992 or within a few decades of that time. In these samples, 230Th excesses and 226Ra excesses are variable and inversely correlated. Because the eruption ages of the samples are much less than the half-life of 226Ra, this inverse correlation between 230Th and 226Ra excesses can be considered a primary feature of these lavas. For the lava suite analyzed in this study, 226Ra and 230Th excesses also vary with lava composition: 226Ra excesses are negatively correlated with Na8 and La/Yb and positively correlated with Mg#. Conversely, 230Th excesses are positively correlated with Na8 and La/Yb and negatively correlated with Mg#. Th/U, 230Th/232Th, and 230Th excesses are also variable and correlated to one another. 231Pa excesses are large but relatively constant and independent of Mg#, La/Yb, Th/U, and Na8. The isotope ratios 143Nd/144Nd, 176Hf/177Hf, 87Sr/86Sr, and 208Pb/206Pb are constant within analytical uncertainty, indicating that they were derived from a common source. The source is homogeneous with respect to parent/daughter ratios Lu/Hf, Sm/Nd, Rb/Sr, and Th/U; therefore, the measured variations of Th/U, 230Th, and 226Ra excesses and major and trace element compositions in these samples are best explained by polybaric melting of a homogeneous source, not by mixing of compositionally distinct sources.  相似文献   

15.
The 230Th/234U/238U age dating of corals via alpha counting or mass spectrometry has significantly contributed to our understanding of sea level, radiocarbon calibration, rates of ocean and climate change, and timing of El Nino, among many applications. Age dating of corals by mass spectrometry is remarkably precise, but many samples exposed to freshwater yield inaccurate ages. The first indication of open-system 230Th/234U/238U ages is elevated 234U/238Uinitial values, very common in samples older than 100,000 yr. For samples younger than 100,000 yr that have 234U/238Uinitial values close to seawater, there is a need for age validation. Redundant 230Th/234U/238U and 231Pa/235U ages in a single fossil coral fragment are possible by Multi-Collector Magnetic Sector Inductively Coupled Plasma Mass Spectrometry (MC-MS-ICPMS) and standard anion exchange column chemistry, modified to permit the separation of uranium, thorium, and protactinium isotopes from a single solution. A high-efficiency nebulizer employed for sample introduction permits the determination of both 230Th/234U/238U and 231Pa/235U ages in fragments as small as 500 mg. We have obtained excellent agreement between 230Th/234U/238U and 231Pa/235U ages in Barbados corals (30 ka) and suggest that the methods described in this paper can be used to test the 230Th/234U/238U age accuracy.Separate fractions of U, Th, and Pa are measured by employing a multi-dynamic procedure, whereby 238U is measured on a Faraday cup simultaneously with all minor isotopes measured with a Daly ion counting detector. The multi-dynamic procedure also permits correcting for both the Daly to Faraday gain and for mass discrimination during sample analyses. The analytical precision of 230Th/234U/238U and 231Pa/235U dates is generally better than ±0.3% and ±1.5%, respectively (2 Relative Standard deviation [RSD]). Additional errors resulting from uncertainties in the decay constant for 231Pa and from undetermined sources currently limit the 231Pa/235U age uncertainty to about ±2.5%. U isotope data and 230Th/234U/238U ages agree with National Institute of Standards and Technology (NIST) reference materials and with measurements made by Thermal Ionization Mass Spectrometry (TIMS) in our laboratory.  相似文献   

16.
The processes involved in the formation and transport of partial melts above subducting plates remain poorly constrained relative to those at mid-ocean ridges. In particular, 238U-230Th-226Ra disequilibria, that might normally be used to constrain melting dynamics, tend to be swamped by the effects of fluid addition from the down-going plate. The 231Pa-235U system provides an exciting exception to this because the highly incompatible nature of Pa means that fractionation and in-growth during partial melting overwrite the effects of fluid U addition. We present 231Pa-235U data on 50 well-characterised lavas from seven subduction zones in order to examine partial melting processes. Measured (231Pa/235U) ratios are all >1 and 15% are >2. Overall (231Pa/235U) shows broad positive correlations with (230Th/238U) and La/Yb and negative trends against Ba/Th and (226Ra/230Th). These systematics can differ from arc to arc but suggest that (231Pa/235U) tends to be higher in sediment-rich arc lavas where the effects of fluid addition are muted and there is less of a 231Pa deficit for melting to overprint. We have explored the effects of decompression melting, frictional drag dynamic melting with and without ageing subsequent to fluid U addition to the wedge as well as flux melting models. Globally, average (231Pa/235U) appears to correlate negatively with convergence rate and so in the numerical models we use the local subduction rate for the rate of matrix flow through the melting zone. Using this assumption and reasonable values for other parameters, the melting models can simulate the overall range of (231Pa/235U) and some of the data trends. However, it is clear that local variations in some parameters, especially source composition and extent of melting, exert a major influence on 231Pa-235U disequilibria. Some data, which lie at a high angle to the modelled trends, may be explained by mixing between small degree hydrous melts formed near the slab and larger degree, decompression melts produced at shallow depth.  相似文献   

17.
The geochemical behaviors of Be and Al in ocean waters have been successfully studied in recent years using natural, cosmogenic, radioactive10Be and26Al as tracers. The present day dissolved concentrations and distribution of the stable and radioactive isotopes of Be and Al in ocean waters have revealed their short residence times and appreciable effects of exchange fluxes at the coastal and ocean-sediment interfaces. It follows that concentrations of these particle-active elements must have varied in the past with temporal changes in climate, biological productivity and aeolian flux of continental detritus to the oceans. We therefore investigated the feasibility of extending the measurements of Be and Al isotope concentrations in marine systems to the 103–106 y BP time scale. We report here the discovery of significant amounts of intrinsic Be and Al in marine foraminiferal calcite and coral aragonite, and of Al in opal (radiolarians) and aragonite (coral), which makes it possible to determine10Be/Be and26Al/Al in oceans in the past. We also report measured10Be/9Be in foraminiferal calcite in Pacific Ocean cores, which reveal that the concentrations and ratios of the stable and cosmogenic isotopes of Be and Al have varied significantly in the past 30 ky. The implications of these results are discussed.  相似文献   

18.
We present U-series, Sr-Nd-Pb isotope, and trace element data from the two principal volcanic chains on Luzon Island, developed over oppositely dipping subduction zones, to explore melting and mass transfer processes beneath arcs. The Bataan (western) and Bicol (eastern) arcs are currently subducting terrigenous and pelagic sediments, respectively, which have different trace element and isotopic compositions. The range of (230Th/238U) disequilibria for both arcs is 0.85-1.15; only lavas from Mt. Mayon (Bicol arc) have 230Th activity excesses. Bataan lavas have higher 87Sr/86Sr and lower 143Nd/144Nd than Bicol lavas (87Sr/86Sr = 0.7042-0.7046, 143Nd/144Nd = 0.51281-0.51290 vs. 87Sr/86Sr = 0.70371-0.70391, 143Nd/144Nd = 0.51295-0.51301) and both arcs show steep linear arrays towards sediment values on 207Pb/204Pb vs. 206Pb/204Pb diagrams. Analysis of incompatible element and isotopic data allows identification of a sediment component that, at least in part, was transferred as a partial melt to the mantle wedge peridotite. Between 1% and 5% sediment melt addition can explain the isotopic and trace element variability in the rocks from both arcs despite the differences in sediment supply. We therefore propose that sediment transfer to the mantle wedge is likely mechanically or thermally limited. It follows that most sediments are either accreted, reside in the sub-arc lithosphere, or are recycled into the convecting mantle. However, whole-sale sediment recycling into the upper mantle is unlikely in light of the global mid-ocean ridge basalt data. Fluid involvement is more difficult to characterize, but overall the Bicol arc appears to have more fluid influence than the Bataan arc. Rock suites from each arc can be related by a dynamic melting process that allows for 230Th ingrowth, either by dynamic or continuous flux melting, provided the initial (230Th/232Th) of the source is ∼0.6-0.7. The implication of either model is that inclined arrays on the U-Th equiline diagram may not have chronologic significance. Modeling also suggests that U-series disequilibria are influenced by the tectonic convergence rate, which dictates mantle matrix flow. Thus with slower matrix flow there is a greater degree of 230Th ingrowth. While other factors such as prior mantle depletion and addition of a subducted component may explain some aspects of U-series data, an overall global correlation between tectonic convergence rate and the extent of U-Th disequilibria may originate from melting processes.  相似文献   

19.
Here, we provide evidence suggesting that marine (diatom) opal contains not only a high fidelity record of dissolved oceanic concentrations of cosmic ray-produced radionuclides, 10Be and 26Al, but also a record of temporal variations in a large number of trace elements such as Ti, Fe, Zn and Mn. This finding is derived from measurements in purified biogenic opal that can be separated from detrital materials using a newly developed technique based on surface charge characteristics. Initial results from a sediment core taken near the present-day position of the Antarctic Polar Front (ODP Site 1093) show dramatic changes in the intrinsic concentrations of, Be, Al, Ti, Fe, Mn and Zn in the opal assemblages during the past ∼140 kyr BP. The results imply appreciable climatically controlled fluctuations in the level of bioreactive trace elements. The time series of total Be, Al, Ti, Fe and 10Be in the sediment core are all well correlated with each other and with dust records in the polar ice cores. The observations suggest that a significant flux of these trace metals to oceans is contributed by the aeolian dust, in this case, presumably from the Patagonia. This observation also allows determination of fluxes of dust-contributed 10Be to the Antarctica ice sheets. However, our data show that the relationships among the various metals are not perfectly linear. During periods of higher dissolved concentrations of trace elements (indicated by Fe and Ti) the relative concentrations of bioreactive elements, Be, Al, Mn and Zn are decreased. By contrast, the Fe/Zn and Fe/Mn ratios decrease significantly during each transition from cold to warm periods. The relative behavior could be consistent with any of the following processes: (i) enhanced biological productivity due to greater supply of the bioreactive elements (e.g. Zn) during cold periods (ii) increased biological and inorganic scavenging of particle active elements (e.g. Be and Al) during early interglacial periods (iii) differential uptake/removal of the metals by the various diatom taxa whose relative productivity or growth rate changes with large scale climate. In any case, with one sedimentary phase and in single sedimentary sections, we now have the potential to compare directly a proxy for aeolian input of micronutrients (e.g. Fe or Ti), with a proxy for production (e.g. 26Al/Al ratios). We expect that studies of the temporal records of trace elements and cosmogenic nuclides in contrasting regions of upwelling and productivity, which exhibit different sensitivities to global climate fluctuations and micronutrient inputs, would lead to a direct and comprehensive test of ideas such as the hypothesis of iron control of atmospheric carbon dioxide [Martin, J.H., 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography5, 1-13]. Our present data from a single site do not show that increases in dissolved Fe concentrations, per se, were responsible for increased biological productivity. However, a much clearer picture of the effect of increased dust fluxes should emerge when we have data for trace elements and the cosmogenic nuclides, 10Be and 26Al from various oceanic provinces.  相似文献   

20.
U-series disequilibria are presented for Holocene samples from the Canary Islands and interpreted with special emphasis on the separate roles of plume vs. lithospheric melting processes. We report Th and U concentrations and (238U)/(232Th), (230Th)/(232Th), (230Th)/(238U) and (234U)/(238U) for 43 samples, most of which are minimally differentiated, along with (226Ra)/(230Th) and (231Pa)/(235U) for a subset of these samples, measured by thermal ionization mass spectrometry (TIMS). Th and U concentrations range between 2 and 20 ppm and 0.5 and 6 ppm, respectively. Initial (230Th)/(238U) ranges from 1.1 to 1.6. (226Ra)/(230Th)o ranges between 0.9 and 1.8 while (231Pa)/(235U)o ranges between 1.0 and 2.0.Our interpretation of results is based on a three-fold division of samples as a function of incompatible element ratio, such as Nb/U. The majority of samples have Nb/U = 47 ± 10, similar to most MORB and OIB. Higher ratios are found exclusively in alkali basalts and tholeiites from the eastern Canary Islands whereas lower ratios are exclusively found in differentiated rocks from the western Canary Islands. Those with ordinary Nb/U ratios are attributed to melting within the slowly ascending HIMU-dominated Canary plume.Higher Nb/U, generally found in more silica rich basalts from the eastern islands, is attributed to lithospheric contamination. Based on their trace element characteristics, two possible contaminants are amphibole veins (± other minerals) crystallized in the mantle from previous plume-derived basanite or re-melted plume-derived intrusive rocks. The high Nb/U signature of these materials is imparted on a melt of the lithosphere created either by the diffusive infiltration of alkalis or by direct reaction between basanites and peridotite. Mixing between plume-derived basanite and lithospheric melt accounts for the U-series systematics of most eastern island magmas including the well-known Timanfaya eruption. Lower Nb/U ratios in differentiated rocks from the western islands are attributed to fractional crystallization of amphibole ± phlogopite ± sphene from basanite during its ascent through the lithosphere. Based on changes in disequilibria, phonolites and tephrites are interpreted to result from rapid differentiation of primitive parents within millennia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号