首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Helium diffusion from apatite is a sensitive function of the volume fraction of radiation damage to the crystal, a quantity that varies over the lifetime of the apatite. Using recently published laboratory data we develop and investigate a new kinetic model, the radiation damage accumulation and annealing model (RDAAM), that adopts the effective fission-track density as a proxy for accumulated radiation damage. This proxy incorporates creation of crystal damage proportional to α-production from U and Th decay, and the elimination of that damage governed by the kinetics of fission-track annealing. The RDAAM is a version of the helium trapping model (HeTM; Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249, 148-161), calibrated by helium diffusion data in natural and partially annealed apatites. The chief limitation of the HeTM, now addressed by RDAAM, is its use of He concentration as the radiation damage proxy for circumstances in which radiation damage and He are not accumulated and lost proportionately from the crystal.By incorporating the RDAAM into the HeFTy computer program, we explore its implications for apatite (U-Th)/He thermochronometry. We show how (U-Th)/He dates predicted from the model are sensitive to both effective U concentration (eU) and details of the temperature history. The RDAAM predicts an effective He closure temperature of 62 °C for a 28 ppm eU apatite of 60 μm radius that experienced a 10 °C/Ma monotonic cooling rate; this is 8 °C lower than the 70 °C effective closure temperature predicted using commonly assumed Durango diffusion kinetics. Use of the RDAAM is most important for accurate interpretation of (U-Th)/He data for apatite suites that experienced moderate to slow monotonic cooling (1-0.1 °C/Ma), prolonged residence in the helium partial retention zone, or a duration at temperatures appropriate for radiation damage accumulation followed by reheating and partial helium loss. Under common circumstances the RDAAM predicts (U-Th)/He dates that are older, sometimes much older, than corresponding fission-track dates. Nonlinear positive correlations between apatite (U-Th)/He date and eU in apatites subjected to the same temperature history are a diagnostic signature of the RDAAM for many but not all thermal histories.Observed date-eU correlations in four different localities can be explained with the RDAAM using geologically reasonable thermal histories consistent with independent fission-track datasets. The existence of date-eU correlations not only supports a radiation damage based kinetic model, but can significantly limit the range of acceptable time-temperature paths that account for the data. In contrast, these datasets are inexplicable using the Durango diffusion model. The RDAAM helps reconcile enigmatic data in which apatite (U-Th)/He dates are older than expected using the Durango model when compared with thermal histories based on apatite fission-track data or other geological constraints. It also has the potential to explain at least some cases in which (U-Th)/He dates are actually older than the corresponding fission-track dates.  相似文献   

2.
A laser-ablation inductively-coupled plasma mass spectrometry technique was developed to measure U, Th, and Ce zonation in polished sections of apatite for assessing the consequences of parent zonation for (U-Th)/He thermochronometry. The technique produces concentration maps with an averaging length-scale of ∼20 μm, comparable to the α-stopping distance, and a precision of ∼5% down to few ppm concentration levels. A model was developed to transform the measured concentration distribution into a simplified representation for use in spherical-geometry He production-diffusion models. To illustrate these methods, 30 sections of apatite from a single granite (GC863) were mapped. Every analyzed apatite from GC863 is zoned, with most grains having variable thickness rims and terminations that are enriched in U and Th by about a factor of three over the grain cores.Parent zonation has three independent effects on (U-Th)/He He ages: it influences the α ejection correction, the 4He concentration profile which governs diffusive loss, and, via radiation damage trap accumulation, spatial variability of diffusivity within the crystal. If the observed zonation is typical of the apatite population in GC863, use of the standard homogenous α ejection correction would cause He ages to be on average 3% too young, and with a large amount of grain-to-grain variability (9% too young in the most rim-enriched case to 6% too old in a core-enriched case). Independent of the ejection correction, the concentration profile modifies the effective closure temperature of the apatites by placing more (or less) 4He near the grain edge. The parent zonation in GC863 apatites causes closure temperatures to range from four degrees lower (rim-enriched case) to two degrees higher (core-enriched case) than applies in the homogenous case. Alpha ejection and concentration profile effects on He age are additive and of the same sense. In the case of typical grains in GC863 cooled between 1 and 10 °C/Ma, the two effects are roughly equal in magnitude. The effects of intracrystalline variations in radiation damage trap accumulation become apparent at slow cooling rates (1 °C/Ma). For example, in rim-enriched GC863 grains cooled at 1 °C/Ma, preferential accumulation of radiation damage traps near the grain rim almost compensates for the higher loss rate expected of 4He also located preferentially near the rim. Under some circumstances strong rim-enrichment may actually increase the effective closure temperature of an apatite. Zonation at the level observed in GC863 modifies the 4He/3He spectra substantially from that expected from a uniform distribution. Measured 4He/3He spectra are strikingly similar to predictions based on the mapped eU distributions of the very same crystals, supporting the overall validity of the analytical and interpretive approach presented here.The magnitude and style of U, Th zonation documented in GC863 is one possible source of frequently observed over-dispersion of apatite (U-Th)/He ages as well as anomalous 4He/3He spectra.  相似文献   

3.
Borehole and surface samples from the Archean Tanzania Craton were analysed for apatite fission track(AFT) and(U-Th)/He data with the aim of deciphering cooling histories of the basement rocks. Fission track dates from borehole and outcrop samples are Carboniferous-Permian(345± 33.3 Ma to271±31.7 Ma) whereas(U-Th)/He dates are Carboniferous-Triassic(336±45.8 Ma to 213±29 Ma) for outcrop grains and are consistently younger than corresponding AFT dates. Single grain(U-Th)/He dates from the borehole are likely to be flawed by excessive helium implantation due to their very low effective uranium contents, radiation damage and grain sizes. All AFT and(U-Th)/He dates are significantly younger than the stratigraphic ages of their host rocks, implying that the samples have experienced Phanerozoic elevated paleo-temperatures. Considerations of the data indicate removal of up to 9 km overburden since the Palaeozoic.Thermal modelling reveals a protracted rapid cooling event commencing during the early Carboniferous(ca. 350 Ma) at rates of 46 m/Ma ending in the Triassic(ca. 220 Ma). The model also suggests minor cooling during the Cretaceous of the samples to surface temperatures. The suggested later cooling event remains to be tested. The major cooling phase during the Carboniferous is interpreted to be associated with compressional tectonics during the Variscan Orogeny sensu far field induced stresses. Coeval sedimentation in the Karoo basins in the region suggests that most of the cooling of cratonic rocks during the Carboniferous was associated with denudation.  相似文献   

4.
In North Africa, the Algerian margin is made of basement blocks that drifted away from the European margin, namely the Kabylia, and docked to the African continental crust in the Early Miocene. This young margin is now inverted, as dated Miocene (17 Ma) granites outcrop alongshore, evidencing kilometre‐scale exhumation since their emplacement. Age of inversion is actually unknown, although Pliocene is often considered in the offshore domain. To decipher the exhumation history of the margin between 17 and 5 Ma, we performed a coupled apatite fission track (AFT) and (U–Th–Sm)/He (AHe) study in the Cap Bougaroun Miocene granite. AFT dates range between 7 ± 1 and 10 ± 1 Ma, and mean AHe dates between 8 ± 2 and 10 ± 1 Ma. These data evidence rapid and multi‐kilometre exhumation during Tortonian times. This event cannot be related to slab break‐off but instead to the onset of margin inversion that has since developed as an in‐sequence north‐verging deforming prism.  相似文献   

5.
U-Th rich mineral inclusions in apatite are often held responsible for erroneously old (U-Th)/He ages, because they produce “parentless” He. Three aspects associated with this problem are discussed here. First, simple dimensional considerations indicate that for small mineral inclusions, the parentless helium problem might not be as serious as generally thought. For example, a mineral inclusion that is 10% the length, width and height of its host apatite needs to be a thousand times more concentrated in U and Th to produce an equal amount of He. Therefore, single isolated inclusions smaller than a few μm are unlikely to contribute significant helium. For larger or more abundant inclusions, the parentless helium problem can be solved by dissolution of the apatite and its inclusions in hot HF. Second, besides creating parentless helium, inclusions also complicate α-ejection corrections. Mathematical exploration of this latter problem for spherical geometries reveals that for randomly distributed inclusions, the probability distribution of single-grain ages is predicted to have a sharp mode at the mean age, with tails towards younger and older ages. Multiple-grain measurements will yield accurate and precise age estimates if 10 or more randomly distributed α-emitting mineral inclusions are present in a sample. Third, thermal modeling indicates that mineral inclusions have a non-trivial but minor (<5 °C) effect on the closure temperature. These predictions were tested on apatites from rapidly cooled migmatites of Naxos (Greece) which contain abundant U-rich zircon inclusions. Thirty-seven samples were subjected to two kinds of treatment. The “pooled” age (i.e., the synthetic multi-grain age computed from a number of single-grain analyses) of four inclusion-free samples (13 apatites), prepared in HNO3 is 10.9 Ma, close to apatite and zircon fission-track ages from the same rock. (U-Th)/He ages of 14 inclusion-bearing samples dissolved in HNO3 range between 9 and 45 Ma, with a pooled age of 22.6 Ma. The ages of 19 HF-treated samples range between 5 and 16 Ma, with 10 of 14 single-grain samples between 9 and 13 Ma and a pooled age of 10.9 Ma. These observations agree with the theoretical predictions and support the addition of HF-treated apatite (U-Th)/He dating to the thermochronological toolbox.  相似文献   

6.
A combination of four thermochronometers [zircon fission track (ZFT), zircon (U–Th)/He (ZHe), apatite fission track (AFT) and apatite (U–Th–[Sm])/He (AHe) dating methods] applied to a valley to ridge transect is used to resolve the issues of metamorphic, exhumation and topographic evolution of the Nízke Tatry Mts. in the Western Carpathians. The ZFT ages of 132.1 ± 8.3, 155.1 ± 12.9, 146.8 ± 8.6 and 144.9 ± 11.0 Ma show that Variscan crystalline basement of the Nízke Tatry Mts. was heated to temperatures >210°C during the Mesozoic and experienced a low-grade Alpine metamorphic overprint. ZHe and AFT ages, clustering at ~55–40 and ~45–40 Ma, respectively, revealed a rapid Eocene cooling event, documenting erosional and/or tectonic exhumation related to the collapse of the Carpathian orogenic wedge. This is the first evidence that exhumation of crystalline cores in the Western Carpathians took place in the Eocene and not in the Cretaceous as traditionally believed. Bimodal AFT length distributions, Early Miocene AHe ages and thermal modelling results suggest that the samples were heated to temperatures of ~55–90°C during Oligocene–Miocene times. This thermal event may be related either to the Oligocene/Miocene sedimentary burial, or Miocene magmatic activity and increased heat flow. This finding supports the concept of thermal instability of the Carpathian crystalline bodies during the post-Eocene period.  相似文献   

7.
The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U–Th–Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time–temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.  相似文献   

8.
(U‐Th)/He ages on apatite obtained in the vicinity of the Têt fault hydrothermal system show a large variability. In the inner damage zone adjacent to the fault core, where fluid flows are concentrated, AHe ages display a large scatter (3–41 Ma) and apatite ageing. Samples from the outer damage zone show young ages with less dispersion (0.9–21.1 Ma) and apatite rejuvenation. Outside the damage zone, ages are consistent with the regional exhumation history between 20 and 12 Ma. The important age dispersion found in the damage zone is interpreted as the result of 4He mobility during fluid infiltration. Our results show that thermochronological data close to a fault should be interpreted with caution, but may offer a new tool for geothermal exploration.  相似文献   

9.
New apatite helium and fission-track data from the Otway Basin are consistent with previously published borehole ages, confirming earlier suggestions that existing thermal models for basin evolution should be reevaluated. Analysis of the relationship between helium ages and grain size in newly analyzed samples, as well as in samples previously reported, reveals that grain size variations may contribute to the previously reported scatter in helium ages among aliquots of the same sample. In addition, systematic variations in apatite grain size with borehole depth or temperature may also have a significant effect on the interpretation of borehole helium age data. Incorporation of the observed grain size variations in Otway borehole apatites into forward models based on published thermal histories, principally based on vitrinite reflectance and fission-track data, suggests that existing models for the eastern Otway Basin are broadly consistent with the helium data. In contrast, thermal histories for western basin boreholes, now thought to be at maximum temperatures, predict helium ages that are generally older than the observed ages, implying that basin temperatures were hotter than indicated by the models. This discrepancy is consistent with a Cenozoic heating event in parts of the western Otway Basin similar to that documented for the eastern basin. The relatively wide spread of apparent apatite fission-track (AFT) ages and compositions compared to the restricted age range of helium measurements on coexisting grains, although not conclusive, supports previous suggestions that composition does not appear to affect the sensitivity of the He closure temperature in apatite.  相似文献   

10.
We identified a Neogene rapid uplift-denudation event of the South Tianshan based on apatite (U–Th)/He and apatite fission track (AFT) ages in Tertiary rocks of the Tarim basin, using borehole samples. The (U–Th)/He thermochronology can be used to reveal the tectono-thermal events with lower temperature than that of AFT thermochronology and has not been used previously to study the uplift of the Tianshan Mountain. Using these data, we show the relationship between the uplift of the South Tianshan and the subsidence/deposition of the northern Tarim basin during the Neogene. The apatite helium ages reveal the migration of uplift, erosion and deposition in the northern Tarim basin. A rapid uplift of the South Tianshan during the Miocene and a corresponding rapid subsidence in the northern Tarim basin occurred. However, in the Pliocene, the Kuqa Depression and South Tianshan uplifted and eroded at the same time and in turn provided the detrital source rocks for the Northern Uplift of the Tarim basin. In contrast to earlier studies, we arrive at the conclusion that the South Tianshan experienced rapid uplift in the Miocene based on (U–Th)/He data of apatite obtained from borehole samples collected in the Tarim basin itself, and not from the bordering mountain chain. Combined apatite (U–Th)/He and fission track thermochronometry enables reconstruction of thermal histories of sedimentary rocks between 40 and 120°C, and this has implications for the generation of liquid hydrocarbon in the 65–120°C range in the basin. Thermal and burial histories of typical samples were also modelled to show the rapid uplift in our study. Our works not only provide a new evidence for the South Tianshan uplift but also indicate that there is a coupling between uplift and subsidence in the South Tianshan and adjacent northern part of the Tarim basin, which controlled hydrocarbon accumulation in the Kuqa Depression and Northern Uplift of the Tarim basin.  相似文献   

11.
The South Atlantic passive margin along the south-eastern Brazilian highlands exhibits a complex landscape,including a northern inselberg area and a southern elevated plateau,separated by the Doce River valley.This landscape is set on the Proterozoic to early Paleozoic rocks of the region that once was the hot core of the Aracuai orogen,in Ediacaran to Ordovician times.Due to the break-up of Gondwana and consequently the opening of the South Atlantic during the Early Cretaceous,those rocks of the Araquai orogen became the basement of a portion of the South Atlantic passive margin and related southeastern Brazilian highlands.Our goal is to provide a new set of constraints on the thermo-tectonic history of this portion of the south-eastern Brazilian margin and related surface processes,and to provide a hypothesis on the geodynamic context since break-up.To this end,we combine the apatite fission track(AFT)and apatite(U-Th)/He(AHe)methods as input for inverse thermal history modelling.All our AFT and AHe central ages are Late Cretaceous to early Paleogene.The AFT ages vary between 62 Ma and90 Ma,with mean track lengths between 12.2μm and 13.6μm.AHe ages are found to be equivalent to AFT ages within uncertainty,albeit with the former exhibiting a lesser degree of confidence.We relate this Late Cretaceous-Paleocene basement cooling to uplift with accelerated denudation at this time.Spatial variation of the denudation time can be linked to differential reactivation of the Precambrian structural network and differential erosion due to a complex interplay with the drainage system.We argue that posterior large-scale sedimentation in the offshore basins may be a result of flexural isostasy combined with an expansion of the drainage network.We put forward the combined compression of the Mid-Atlantic ridge and the Peruvian phase of the Andean orogeny,potentially augmented through the thermal weakening of the lower crust by the Trindade thermal anomaly,as a probable cause for the uplift.  相似文献   

12.
An apatite fission track (AFT) study of crystalline basement in the central Gawler Craton reveals apparent ages in the range of ca 430–58 Ma. The majority of samples underwent protracted monotonic cooling related to regional Paleozoic exhumation, consistent with long-term crustal stability as expected for cratonic interiors. However, multiple samples show evidence of Late Cretaceous–early Paleogene reheating, indicating a more dynamic low-temperature history. Inverse time–temperature modelling of AFT data indicates varying degrees of thermal overprinting between ~60 and 110°C, with substantially overprinted and negligibly overprinted samples in close proximity (<1 km). Time–temperature histories for samples that experienced thermal overprinting reveal localised Late Cretaceous–early Paleogene (ca 100–50 Ma) heating that is significantly younger than the Paleozoic–early Mesozoic exhumation recorded regionally. The highly localised nature and non-systematic patterns of overprinting combined with the lack of major Mesozoic or Cenozoic fault structures are not consistent with a regional thermal event associated with substantial reburial and later exhumation. Rather, localised reheating was most likely caused by heated groundwater from the once-overlying Mesozoic Eromanga Basin aquifer system, whose modern discharge margin (~400 km north of the study area) is marked by thermal mound springs that produce fluids with temperatures up to 100°C. Only basement rocks in close proximity to fluid pathways in the overlying aquifer would have recorded reheating, resulting in the observed sporadic distribution of partially overprinted samples. Thermal history modelling indicates rejuvenated apatite grains cooled to near-surface temperatures in the latest Cretaceous–Paleogene. This was likely in response to local removal of the overlying Eromanga Basin aquifer unit due to a relatively minor degree of exhumation (≤1 km) recorded regionally, which consequently disrupted the anomalous heating mechanism. These results show that the flow of heated groundwater is a feasible reheating mechanism for low-temperature thermochronometers, resulting in cooling patterns that may become decoupled from exhumation in cratonic interiors.  相似文献   

13.
Recent work [Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249(3-4), 148-161] revealing a correlation between radiogenic 4He concentration and He diffusivity in natural apatites suggests that helium migration is retarded by radiation-induced damage to the crystal structure. If so, the He diffusion kinetics of an apatite is an evolving function of time and the effective uranium concentration in a cooling sample, a fact which must be considered when interpreting apatite (U-Th)/He ages. Here we report the results of experiments designed to investigate and quantify this phenomenon by determining He diffusivities in apatites after systematically adding or removing radiation damage.Radiation damage was added to a suite of synthetic and natural apatites by exposure to between 1 and 100 h of neutron irradiation in a nuclear reactor. The samples were then irradiated with a 220 MeV proton beam and the resulting spallogenic 3He used as a diffusant in step-heating diffusion experiments. In every sample, irradiation increased the activation energy (Ea) and the frequency factor (Do/a2) of diffusion and yielded a higher He closure temperature (Tc) than the starting material. For example, 100 h in the reactor caused the He closure temperature to increase by as much as 36 °C. For a given neutron fluence the magnitude of increase in closure temperature scales negatively with the initial closure temperature. This is consistent with a logarithmic response in which the neutron damage is additive to the initial damage present. In detail, the irradiations introduce correlated increases in Ea and ln(Do/a2) that lie on the same array as found in natural apatites. This strongly suggests that neutron-induced damage mimics the damage produced by U and Th decay in natural apatites.To investigate the potential consequences of annealing of radiation damage, samples of Durango apatite were heated in vacuum to temperatures up to 550 °C for between 1 and 350 h. After this treatment the samples were step-heated using the remaining natural 4He as the diffusant. At temperatures above 290 °C a systematic change in Tc was observed, with values becoming lower with increasing temperature and time. For example, reduction of Tc from the starting value of 71 to ∼52 °C occurred in 1 h at 375 °C or 10 h at 330 °C. The observed variations in Tc are strongly correlated with the fission track length reduction predicted from the initial holding time and temperature. Furthermore, like the neutron irradiated apatites, these samples plot on the same Ea − ln(Do/a2) array as natural samples, suggesting that damage annealing is simply undoing the consequences of damage accumulation in terms of He diffusivity.Taken together these data provide unequivocal evidence that at these levels, radiation damage acts to retard He diffusion in apatite, and that thermal annealing reverses the process. The data provide support for the previously described radiation damage trapping kinetic model of Shuster et al. (2006) and can be used to define a model which fully accommodates damage production and annealing.  相似文献   

14.
The (U‐Th)/He dating technique has been widely used for several decades to constrain the timing of low temperature geological processes. Recent research has shown that the commonly used reference material (the Durango apatite) often yields dispersed fragment dates that are beyond analytical uncertainties. Here, we report a new apatite (U‐Th)/He dating reference material, MK‐1, which was collected from the Mogok metamorphic belt in Burma. Electron probe microanalysis and backscattered electron images of two randomly selected fragments indicate that this apatite is chemically and structurally homogeneous. We performed single‐grain (U‐Th)/He dating on thirty randomly selected fragments of this material. (U‐Th)/He dating results from multiple laboratories show that fragments of the MK‐1 apatite megacryst yielded reproducible results, with a mean date of 18.0 ± 0.2 Ma. The Th/U ratio of this apatite is homogeneous. Nine randomly selected fragments registered a narrow range of effective uranium (eU) mass fractions (326–354 μg g?1), with a mean value of 336.6 ± 10.3 μg g?1. Twenty‐four in situ (U‐Th)/He dates yielded a mean value of 18.0 ± 0.2 Ma (MSWD = 0.41), indistinguishable from the results obtained by the conventional method. All the results suggest that this apatite has the potential to become a new reference material for (U‐Th)/He geochronology.  相似文献   

15.
Thermochronology has revolutionized our understanding of the establishment and evolution of lithospheric thermal structure. However, many potential benefits provided by the application of diffusion theory to thermochronology have yet to be fully exploited. This study uses apatite (Tc = 450-550 °C) and titanite (Tc = 550-650 °C) U-Pb ID-TIMS thermochronology at the single- to sub-grain scale to separate the variable effects of volume diffusion of Pb from metamorphic (over)growth above and below the Tc of a mineral. Data are presented from two ca. 3227 Ma tonalite samples from north and south of the Barberton Greenstone Belt (BGB), southern Africa. Two distinct populations of apatite from a sample north of the BGB record fast cooling followed by metamorphic growth ∼10 Myr later. Both apatite and titanite dates from south of the BGB show a strong correlation with the grain size and record 100 Myr of post-emplacement cooling. Complex core-rim zoning observed in cathodoluminescence images of apatite is interpreted to reflect metamorphic overgrowth above the Tc. The age and topology of grain size versus date curves from titanite and apatite are used in combination with a finite-difference numerical model to show that slow, non-linear, cooling and not thermal resetting is responsible for the observed distribution. The thermal histories from either side of the BGB are very different and provide unique insight into the BGB’s tectonic evolution: a ∼70 Myr period of apparent stability after ca. 3.2 Ga terrane assembly was followed by fast exhumation south of the BGB that led to lower-crustal melting and intrusion of granitic batholiths ca. 3.14-3.10 Ga.  相似文献   

16.
Multi-method thermochronology applied to the Peake and Denison Inliers (northern South Australia) reveals multiple low-temperature thermal events. Apatite fission track (AFT) data suggest two main time periods of basement cooling and/or reheating into AFT closure temperatures (~60–120°C); at ca 470–440 Ma and ca 340–300 Ma. We interpret the Ordovician pulse of rapid basement cooling as a result of post-orogenic cooling after the Delamerian Orogeny, followed by deformation related to the start of the Alice Springs Orogeny and orocline formation relating to the Benambran Orogeny. This is supported by a titanite U/Pb age of 479 ± 7 Ma. Our thermal history models indicate that subsequent denudation and sedimentary burial during the Devonian brought the basement rocks back to zircon U–Th–Sm/He (ZHe) closure temperatures (~200–150°C). This period was followed by a renewal of rapid cooling during the Carboniferous, likely as the result of the final pulses of the Alice Springs Orogeny, which exhumed the inlier to ambient surface temperatures. This thermal event is supported by the presence of the Mount Margaret erosion surface, which indicates that the inlier was exposed at the surface during the early Permian. During the Late Triassic–Early Jurassic, the inlier was subjected to minor reheating to AFT closure temperatures; however, the exact timing cannot be deduced from our dataset. Cretaceous apatite U–Th–Sm/He (AHe) ages coupled with the presence of contemporaneous coarse-grained terrigenous rocks suggest a temporally thermal perturbation related with shallow burial during this time, before late Cretaceous exhumation cooled the inliers back to ambient surface temperatures.  相似文献   

17.
Apatite fission-track (AFT) and (U+Th)/He (AHe) data, combined with time–temperature inverse modelling, reveal the cooling and exhumation history of the Iberian Massif in eastern Galicia since the Mesozoic. The continuous cooling at various rates correlates with variation of tectonic boundary conditions in the adjacent continental margins. The data provide constraints on the 107 timescale longevity of a relict paleolandscape. AFT ages range from 68 to 174 Ma with mean track lengths of 10.7 ± 2.6 to 12.6 ± 1.8 μm, and AHe ages range from 73 to 147 Ma. Fastest exhumation (≈0.25 km/Ma) occurred during the Late Jurassic to Early Cretaceous main episode of rifting in the adjacent western and northern margins. Exhumation rates have decreased since then and have been approximately one order of magnitude lower. Across inland Galicia, the AFT data are consistent with Early Cretaceous movement on post-Variscan NE trending faults. This is coeval with an extensional episode offshore. The AHe data in this region indicate less than 1.7 km of denudation in the last 100 Ma. This low exhumation suggests the attainment of a mature landscape during Late Cretaceous post-rift tectonic stability, whose remains are still preserved. The low and steady rate of denudation prevailed across inland Galicia despite minor N–S shortening in the northern margin since ≈45 Ma ago. In north Galicia, rock uplift in response to NW strike-slip faulting since Early Oligocene to Early Miocene has caused insufficient exhumation (<3 km) to remove the Mesozoic cooling signal recorded by the AFT data.  相似文献   

18.
Cambrian siliciclastic sequences along the Dead Sea Transform (DST) margin in southern Israel and southern Jordan host both detrital fluorapatite [D‐apatite] and U‐rich authigenic carbonate‐fluorapatite (francolite) [A‐apatite]. D‐apatite and underlying Neoproterozoic basement apatite yield fission‐track (FT) data reflecting Palaeozoic–Mesozoic sedimentary cycles and epeirogenic events, and dispersed (U–Th–Sm)/He (AHe) ages. A‐apatite, which may partially or completely replace D‐apatite, yields an early Miocene FT age suggesting formation by fracturing, hydrothermal fluid ascent and intra‐strata recrystallisation, linked to early DST motion. The DST, separating the African and Arabian plates, records ~105 km of sinistral strike‐slip displacement, but became more transtensional post‐5 Ma. Helium diffusion measurements on A‐apatite are consistent with thermally activated volume diffusion, indicating Tc ~52 to 56 ± 10°C (cooling rate 10°C/Ma). A‐apatite AHe data record Pliocene cooling (~35 to 40°C) during the transtensional phase of movement. This suggests that timing of important milestones in DST motion can be discerned using A‐apatite low‐temperature thermochronology data alone.  相似文献   

19.
The Dexing porphyry copper and Yinshan polymetallic deposits in Dexing City, southeastern China are both giant porphyry ore systems. Located 15 km apart, they formed synchronously and share a similar magma source and metallogenic evolution, but their metal endowment, dominant rock types, and alteration assemblages differ significantly. In this contribution, we investigate the cause of these distinctions through new molybdenite Re–Os ages and zircon and apatite (U–Th)/He thermochronology data. Dexing has a molybdenite Re–Os age of ~170.3 Ma, zircon (U–Th)/He (ZHe) ages of 110 to 120 Ma and apatite (U–Th)/He (AHe) ages of 7 to 9 Ma. In contrast, Yinshan has older ZHe ages of 128 to 140 Ma and an AHe age of ~30 Ma. Viewed in combination with previously published data, we conclude that the apparently slow cooling experienced by these bodies is primarily a reflection of their experiencing multiple episodes of thermal disturbance. We tentatively infer that both deposits were exposed in the Late Miocene or more recent time, with the Dexing deposit more deeply exhumed than Yinshan. Our study has exploration implications for deeper porphyry-style ores at Yinshan and for porphyry deposits in non-arc (intraplate) settings in general.  相似文献   

20.
<正>The thermal evolution of source rocks in the Paleozoic has long been a problem to petroleum exploration in the Bachu uplift,Tarim basin,since the thermal history in the Paleozoic could not be rebuilt objectively due to lack of effective thermal indicators in the Lower Paleozoic successions.The apatite and zircon(U-Th)/He thermochronometry can be used as a new kind of technique to study the thermal history and tectonic uplift of sedimentary basins.Based on the measured apatite and zircon(U-Th)/He ages,apatite fission track data and equivalence vitrinite reflectance(%EVR_o),the tectonothermal histories in 5 wells of the Bachu uplift were modeled.The modeling results show that there was relatively high gradient at the Early Paleozoic in the Bachu uplift and it decreased gradually during the entire Paleozoic:33-35℃/km in the Cambrian-Ordovician, 32-33℃/km in the Silurian-Devonian,30-32℃/km at the end of Carboniferous and 27.5- 31℃/km at the end of Permian.Therefore,the thermal history can be modeled by combining multiple thermal indicators of AFT,(U-Th)/He ages and EVR_o data.Especially,this provides a new method to rebuild the thermal history for the Low Paleozoic carbonate successions in the Tarim Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号