首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
V-type asteroids in the inner Main Belt (a < 2.5 AU) and the HED meteorites are thought to be genetically related to one another as collisional fragments from the surface of the large basaltic Asteroid 4 Vesta. We investigate this relationship by comparing the near-infrared (0.7-2.5 μm) spectra of 39 V-type asteroids to laboratory spectra of HED meteorites. The central wavelengths and areas spanned by the 1 and 2 μm pyroxene-olivine absorption bands that are characteristic of planetary basalts are measured for both the asteroidal and meteoritic data. The band centers are shown to be well correlated, however the ratio of areas spanned by the 1 and 2 μm absorption bands are much larger for the asteroids than for the meteorites. We argue that this offset in band area ratio is consistent with our currently limited understanding of the effects of space weathering, however we cannot rule out the possibility that this offset is due to compositional differences. Several other possible causes of this offset are discussed.Amongst these inner Main Belt asteroids we do not find evidence for non-Vestoid mineralogies. Instead, these asteroids seem to represent a continuum of compositions, consistent with an origin from a single differentiated parent body. In addition, our analysis shows that V-type asteroids with low inclinations (i < 6°) tend to have band centers slightly shifted towards long wavelengths. This may imply that more than one collision on Vesta’s surface was responsible for producing the observed population of inner belt V-type asteroids. Finally, we offer several predictions that can be tested when the Dawn spacecraft enters into orbit around Vesta in the summer of 2011.  相似文献   

2.
S. Fornasier  B.E. Clark 《Icarus》2011,214(1):131-146
We present reflected light spectral observations from 0.4 to 2.5 μm of 24 asteroids chosen from the population of asteroids initially classified as Tholen X-type objects (Tholen, 1984). The X complex in the Tholen taxonomy comprises the E, M and P classes which have very different inferred mineralogies but which are spectrally similar to each other, with featureless spectra in visible wavelengths.The data were obtained during several observing runs in the 2004-2007 years at the NTT, TNG and IRTF telescopes. Sixteen asteroids were observed in the visible and near-infrared wavelength range, seven objects in the visible wavelength range only, and one object in the near-infrared wavelength range only. We find a large variety of near-infrared spectral behaviors within the X class, and we identify weak absorption bands in spectra of 11 asteroids. Our spectra, together with albedos published by Tedesco et al. (2002), can be used to suggest new Tholen classifications for these objects. We describe 1 A-type (1122), 1 D-type (1328), 1 E-type (possibly, 3447 Burckhalter), 10 M-types (77, 92, 184, 337, 417, 741, 758, 1124, 1146 and 1355), 5 P-types (275, 463, 522, 909, 1902), and 6 C-types (50, 220, 223, 283, 517, and 536). In order to constrain the possible composition of these asteroids, we perform a least-squares search through the RELAB spectral database. Many of the best fits are consistent with meteorite analogue materials suggested in the published literature. In fact, we find that seven of the new M-types can be fit with metallic iron (or pallasite) materials, and that the low albedo C/P-type asteroids are best fitted with CM meteorites, some of which have been subjected to heating episodes or laser irradiation. Our method of searching for meteorite analogues emphasizes the spectral characteristics of brightness and shape, and de-emphasizes minor absorption bands. Indeed, faint absorption features like the 0.9 μm band seen on four newly classified M-type asteroids are not reproduced by the iron meteorites. In these cases, we have searched for geographical mixture models that can fit the asteroid spectrum, minor bands, and albedo. We find that a few percent (less than 3%) of orthopyroxene added to iron or pallasite meteorite, results in good spectral matches, reproducing the weak spectral feature around 0.9 μm seen on 92 Undina, 417 Suevia, and 1124 Stroobantia. For 337 Devosa, a mixture model that better reproduces its spectral behavior and the 0.9 μm feature is made with Esquel pallasite enriched with goethite (2%).Finally, we consider the sample of the X-type asteroids we have when we combine the present observations with previously published observations for a total of 72 bodies. This sample includes M and E-type asteroid data presented in [Fornasier et al., 2008] and [Fornasier et al., 2010]. We find that the mean visible spectral slopes for the different E, M and P Tholen classes are very similar, as expected. An analysis of the X-type asteroid distribution in the main belt is also reported, following both the Tholen and the Bus-DeMeo taxonomies (DeMeo et al., 2009).  相似文献   

3.
We present near-infrared spectral measurements of Themis family Asteroid (379) Huenna (D ∼ 98 km) and its 6 km satellite using SpeX on the NASA IRTF. The companion was farther than 1.5″ from the primary at the time of observations and was approximately 5 magnitudes dimmer. We describe a method for separating and extracting the signal of a companion asteroid when the signal is not entirely resolved from the primary. The spectrum of (379) Huenna has a broad, shallow feature near 1 μm and a low slope, characteristic of C-type asteroids. The secondary’s spectrum is consistent with the taxonomic classification of C-complex or X-complex. The quality of the data was not sufficient to identify any subtle feature in the secondary’s spectrum.  相似文献   

4.
In order to gain further insight into their surface compositions and relationships with meteorites, we have obtained spectra for 17 C and X complex asteroids using NASA’s Infrared Telescope Facility and SpeX infrared spectrometer. We augment these spectra with data in the visible region taken from the on-line databases. Only one of the 17 asteroids showed the three features usually associated with water, the UV slope, a 0.7 μm feature and a 3 μm feature, while five show no evidence for water and 11 had one or two of these features. According to DeMeo et al. (2009), whose asteroid classification scheme we use here, 88% of the variance in asteroid spectra is explained by continuum slope so that asteroids can also be characterized by the slopes of their continua. We thus plot the slope of the continuum between 1.8 and 2.5 μm against slope between 1.0 and 1.75 μm, the break at ∼1.8 μm chosen since phyllosilicates show numerous water-related features beyond this wavelength. On such plots, the C complex fields match those of phyllosilicates kaolinite and montmorillonite that have been heated to about 700 °C, while the X complex fields match the fields for phyllosilicates montmorillonite and serpentine that have been similarly heated. We thus suggest that the surface of the C complex asteroids consist of decomposition products of kaolinite or montmorillonite while for the X complex we suggest that surfaces consist of decomposition products of montmorillonite or serpentine. On the basis of overlapping in fields on the continuum plots we suggest that the CI chondrites are linked with the Cgh asteroids, individual CV and CR chondrites are linked with Xc asteroids, a CK chondrite is linked with the Ch or Cgh asteroids, a number of unusual CI/CM meteorites are linked with C asteroids, and the CM chondrites are linked with the Xk asteroids. The associations are in reasonable agreement with chondrite mineralogy and albedo data.  相似文献   

5.
The origin of the similarly-sized binary Asteroid (90) Antiope remains an unsolved puzzle. To constrain the origin of this unique double system, we recorded individual spectra of the components using SPIFFI, a near-infrared integral field spectrograph fed by SINFONI, an adaptive optics module available on VLT-UT4. Using our previously published orbital model, we requested telescope time when the separation of the components of (90) Antiope was larger than 0.087″, to minimize the contamination between components, during the February 2009 opposition. Several multi-spectral data-cubes in J band (SNR = 40) and H + K band (SNR = 100) were recorded in three epochs and revealed the two components of (90) Antiope. After developing a specific photometric extraction method and running an error analysis by Monte-Carlo simulations, we successfully extracted reliable spectra of both components from 1.1 to 2.4 μm taken on the night of February 21, 2009. These spectra do not display any significant absorption features due to mafic mineral, ices, or organics, and their slopes are in agreement with both components being C- or Cb-type asteroids. Their constant flux ratio indicates that both components’ surface reflectances are quite similar, with a 1-sigma variation of 7%. By comparison with 2MASS J, H, K color distribution of observed Themis family members, we conclude that both bodies were most likely formed at the same time and from the same material. The similarly-sized system could indeed be the result of the breakup of a rubble-pile proto-Antiope into two equal-sized bodies, but other scenarios of formation implying a common origin should also be considered.  相似文献   

6.
E.A. Cloutis  T. Hiroi 《Icarus》2011,212(1):180-209
Existing reflectance spectra of CI chondrites (18 spectra of 3 CIs) have been augmented with new (18 spectra of 2 CIs) reflectance spectra to ascertain the spectral variability of this meteorite class and provide insights into their spectral properties as a function of grain size, composition, particle packing, and viewing geometry. Particle packing and viewing geometry effects have not previously been examined for CI chondrites. The current analysis is focused on the 0.3-2.5 μm interval, as this region is available for the largest number of CI spectra. Reflectance spectra of powdered CI1 chondrites are uniformly dark (<10% maximum reflectance) but otherwise exhibit a high degree of spectral variability. Overall spectral slopes range from red (increasing reflectance with increasing wavelength) to blue (decreasing reflectance with increasing wavelength). A number of the CI spectra exhibit weak (<5% deep) absorption bands that can be attributed to both phyllosilicates and magnetite. Very weak absorption bands attributable to other CI phases, such as carbonates, sulfates, and organic matter may be present in one or a few spectra, but their identification is not robust. We found that darker spectra are generally correlated with bluer spectral slopes: a behavior most consistent with an increasing abundance of fine-grained magnetite and/or insoluble organic material (IOM), as no other CI opaque phase appears able to produce concurrent darkening and bluing. Magnetite can also explain the presence of an absorption feature near 1 μm in some CI spectra. The most blue-sloped spectra are generally associated with the larger grain size samples. For incidence and emission angles <60°, increasing phase angle results in darker and redder spectra, particularly below ∼1 μm. At high incidence angles (60°), increasing emission angle results in brighter and redder spectra. More densely packed samples and underdense (fluffed) samples show lower overall reflectance than normally packed and flat-surface powdered samples. Some B-class asteroids exhibit selected spectral properties consistent with CI chondrites, although perfect spectral matches have not been found. Because many CI chondrite spectra exhibit absorption features that can be related to specific mineral phases, the search for CI parent bodies can fruitfully be conducted using such parameters.  相似文献   

7.
Patrick Michel  Martin Jutzi 《Icarus》2011,211(1):535-545
The Veritas family is located in the outer main belt and is named after its apparent largest constituent, Asteroid (490) Veritas. The family age has been estimated by two independent studies to be quite young, around 8 Myr. Therefore, current properties of the family may retain signatures of the catastrophic disruption event that formed the family. In this paper, we report on our investigation of the formation of the Veritas family via numerical simulations of catastrophic disruption of a 140-km-diameter parent body, which was considered to be made of either porous or non-porous material, and a projectile impacting at 3 or 5 km/s with an impact angle of 0° or 45°. Not one of these simulations was able to produce satisfactorily the estimated size distribution of real family members. Based on previous studies devoted to either the dynamics or the spectral properties of the Veritas family, which already treated (490) Veritas as a special object that may be disconnected from the family, we simulated the formation of a family consisting of all members except that asteroid. For that case, the parent body was smaller (112 km in diameter), and we found a remarkable match between the simulation outcome, using a porous parent body, and the real family. Both the size distribution and the velocity dispersion of the real reduced family are very well reproduced. On the other hand, the disruption of a non-porous parent body does not reproduce the observed properties very well. This is consistent with the spectral C-type of family members, which suggests that the parent body was porous and shows the importance of modeling the effect of this porosity in the fragmentation process, even if the largest members are produced by gravitational reaccumulation during the subsequent gravitational phase. As a result of our investigations, we conclude that it is very likely that the Asteroid (490) Veritas and probably several other small members do not belong to the family as originally defined, and that the definition of this family should be revised. Further investigations will be performed to better constrain the definitions and properties of other asteroid families of different types, using the appropriate model of fragmentation. The identification of very young families in turn will continue to serve as a tool to check the validity of numerical models.  相似文献   

8.
E.A. Cloutis  P. Hudon  T. Hiroi 《Icarus》2011,216(1):309-346
We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe3+-Fe2+ charge transfers), and the 0.9-1.2 μm region (due to Fe2+ crystal field transitions), and generally dominate over mafic silicates. CM petrologic subtypes exhibit a positive correlation between degree of aqueous alteration and depth of the 0.7 μm absorption band. This is consistent with the decrease in fine-grained opaques that accompanies aqueous alteration. There is no consistent relationship between degree of aqueous alteration and evidence for a 0.65 μm region saponite-group phyllosilicate absorption band. Spectra of different subsamples of a single CM can show large variations in absolute reflectance and overall slope. This is probably due to petrologic variations that likely exist within a single CM chondrite, as duplicate spectra for a single subsample show much less spectral variability. When the full suite of available CM spectra is considered, few clear spectral-compositional trends emerge. This indicates that multiple compositional and physical factors affect absolute reflectance, absorption band depths, and absorption band wavelength positions. Asteroids with reflectance spectra that exhibit absorption features consistent with CM spectra (i.e., absorption bands near 0.7 and 0.9 μm) include members from multiple taxonomic groups. This suggests that on CM parent bodies, aqueous alteration resulted in the consistent production of serpentine-group phyllosilicates, however resulting absolute reflectances and spectral shapes seen in CM reflectance spectra are highly variable, accounting for the presence of phyllosilicate features in reflectance spectra of asteroids across diverse taxonomic groups.  相似文献   

9.
J.P Emery  R.H Brown 《Icarus》2003,164(1):104-121
We present new near-infrared spectra of 20 Trojan asteroids. The spectra were recorded at the NASA Infrared Telescope Facility (IRTF) using the recently commissioned medium-resolution spectrograph SpeX and at the Multiple Mirror Telescope (MMT) using the instrument FSPEC. Spectra of all of these objects were measured in K-band (1.95-2.5 μm), 8 of these in L-band (2.8-4.0 μm), and 14 in the range 0.8-2.5 μm. These observations nearly double the number of published 0.8-2.5 μm spectra of Trojan asteroids and provide the first systematic study of the L-band region for these distant asteroids. The data show that the red spectral slope measured in the near-IR extends through the L-band, though it is not as steep here as at shorter wavelengths. A significant diversity is apparent in the near-IR spectral slopes of this sampling of objects. Most of the spectra do not contain any definitive absorption features characteristic of surface composition (e.g., H2O, organics, silicates) as seen on main-belt asteroids and several Centaur and Kuiper Belt objects. A few objects may display spectral activity, and the reliability of these possible features is discussed. While these spectra are generally compatible with silicate surfaces to explain the spectral slope mixed with some fraction of low albedo material, there is no absolute indication of silicates. The spectral slope could also be explained by the presence of hydrocarbons, but the lack of absorption features, especially in L-band where very strong fundamental absorptions from these molecules appear, constrains the character and abundance of these materials at the surface.  相似文献   

10.
By studying color variations between young and old asteroid families we find evidence for processes that modify colors of asteroids over time. We show that colors of aging surfaces of S-type asteroids become increasingly ‘redder’ and measure the rate of these spectral changes. We estimate that the mean spectral slope between 0.35 and 0.9 μm increases with time t (given in My) as ≈0.01 μm−1×log10t. This empirical fit is valid only for 2.5?t?3000 My (the time interval where we have data) and for the mean spectral slope determined from wide-wavelength filter photometry obtained by the Sloan Digital Sky Survey. We also find that Gy-old terrains of S-type asteroids reflect about 15% more light at ∼1-μm wavelengths than an ∼5-My-old S-type asteroid surface when the flux is normalized by the reflected light at 0.55 μm. We attribute these effects to space weathering. This result has important implications for asteroid geology and the origin of meteorites that reach the Earth. Our results also suggest that surfaces of C-type asteroids exhibit color alterations opposite to those of the S-type asteroids.  相似文献   

11.
T. Mothé-Diniz  F. Roig 《Icarus》2005,174(1):54-80
The taxonomic properties of the main asteroid families are analyzed and discussed in the light of an updated definition of the families using a large proper elements database and the asteroids taxonomy derived from reflectance spectra recently obtained by two large visible spectroscopic surveys: the SMASS II and the S3OS2. Our analysis indicates that most families are quite homogeneous taxonomically and mineralogically—whenever there exists a mineralogical constraint—, being probably originated from homogeneous parent bodies. The exceptions are the Nysa family, that should likely be considered a clan, and the Eos family that encompasses a broad range of taxonomies, whose mineralogical relations cannot be completely ruled out. Only in a few cases the families may be taxonomically distinguished from the background population. That is the case of the Minerva/Gefion, Adeona, Dora, Merxia, Hoffmeister, Koronis, Eos, and Veritas families. Some of the families presented in this work show a larger spectral diversity than previously reported, as it is the case for the Maria and Koronis families. On the other hand, the Veritas family is found to be homogeneous, in sharp contrast with previous works. Mineralogical relations are reported whenever they could be found in the literature and we examine the possible constraints posed by the presence of different taxonomies in certain families.  相似文献   

12.
We present reflectance spectra from 0.4 to 2.4 μm of Asteroid (101955) 1999 RQ36, the target of the OSIRIS-REx spacecraft mission. The visible spectral data were obtained at the McDonald Observatory 2.1-m telescope with the ES2 spectrograph. The infrared spectral data were obtained at the NASA Infrared Telescope Facility using the SpeX instrument. The average visible spectrum is combined with the average near-infrared wavelength spectrum to form a composite spectrum. We use three methods to constrain the compositional information in the composite spectrum of Asteroid (101955) 1999 RQ36 (hereafter RQ36). First, we perform a least-squares search for meteorite spectral analogs using 15,000 spectra from the RELAB database. Three most likely meteorite analogs are proposed based on the least-squares search. Next, six spectral parameters are measured for RQ36 and their values are compared with the ranges in parameter values of the carbonaceous chondrite meteorite classes. A most likely meteorite analog group is proposed based on the depth of overlap in parameter values. The results of the least-squares search and the parametric comparisons point to CIs and/or CMs as the most likely meteorite analogs for RQ36, and COs and CHs as the least likely. RQ36 has a spectrally “blue” continuum slope that is also observed in carbonaceous chondrites containing magnetite. We speculate that RQ36 is composed of a “CM1”-like material. Finally, we compare RQ36 to other B-type asteroids measured by Clark et al. (Clark, B.E. et al. [2010]. J. Geophys. Res. 115, E06005). The results of this comparison are inconclusive. RQ36 is comparable to Themis spectral properties in terms of its albedo, visible spectrum, and near-infrared spectrum from 1.1 to 1.45 μm. However, RQ36 is more similar to Pallas in terms of its near-infrared spectrum from 1.6 to 2.3 μm. Thus it is possible that B-type asteroids form a spectral continuum and that RQ36 is a transitional object, spectrally intermediate between the two end-members. This is particularly interesting because Asteroid 24 Themis was recently discovered to have H2O ice on the surface (Rivkin, A., Emery, J. [2010]. Nature 464, 1322–1323; Campins, H. et al. [2010a]. Nature 464, 1320–1321).  相似文献   

13.
Mineral compositions and abundances derived from visible/near-infrared (VIS/NIR or VNIR) spectra are used to classify asteroids, identify meteorite parent bodies, and understand the structure of the asteroid belt. Using a suite of 48 equilibrated (types 4-6) ordinary (H, L, and LL) chondrites containing orthopyroxene, clinopyroxene, and olivine, new relationships between spectra and mineralogy have been established. Contrary to previous suggestions, no meaningful correlation is observed between band parameters and cpx/(opx + cpx) ratios. We derive new calibrations for determining mineral abundances (ol/(ol + px)) and mafic silicate compositions (Fa in olivine, Fs in pyroxene) from VIS/NIR spectra. These calibrations confirm that band area ratio (BAR) is controlled by mineral abundances, while Band I center is controlled by mafic silicate compositions. Spectrally-derived mineralogical parameters correctly classify H, L and LL chondrites in ∼80% of cases, suggesting that these are robust relationships that can be applied to S(IV) asteroids with ordinary chondrites mineralogies. Comparison of asteroids and meteorites using these new mineralogical parameters has the advantage that H, L and LL chemical groups were originally defined on the basis of mafic silicate compositions.  相似文献   

14.
High-resolution (0.34 nm) reflectance spectra of a suite of terrestrial ortho- and clinopyroxenes were characterized in the 506-nm region. This region exhibits absorption bands attributed to spin-forbidden transitions in Fe2+ located in the M2, and possibly M1, crystallographic site(s). The most intense absorption bands (up to 3.8% deep in <45 μm fractions) are present in low Ca-content orthopyroxene spectra. This region exhibits two (spectral Group I) or more (spectral Group II) absorption bands in the 500-515 nm interval. Group I spectra are associated with the lowest Ca-content samples. For orthopyroxenes, the number of constituent absorption bands and band depths vary as a function of Ca content; increasing Ca content results the appearance of more than two absorption bands and a general reduction in band depths, offsetting an expected increase in band depth with increasing Fe2+ content; band depths may also be reduced due to the long wavelength wing of ultraviolet region Fe-O charge transfer absorptions. Band depths and shapes in this region are also a function of grain size, with the strongest bands appearing for larger grain sizes - in the 90-250 μm range. The number and position of constituent absorption bands can be used to constrain factors such as cooling rates, as expressed in the formation of Guinier-Preston zones versus coarser-grained augite exsolution lamellae. Band depths in the spectra of fine-grained (<45 μm) clinopyroxenes do not exceed 1% and are generally lowest for spectral type A clinopyroxenes, where most of the Fe2+ is present in the M1 crystallographic site. The appearance of the 506 nm band in the spectra of pyroxene-bearing asteroids can be used to constrain pyroxene composition and structure. The results of this study suggest that detailed analysis of absorption features in the 506 nm region is a powerful tool for determining the composition and structure of pyroxenes. The spectral resolution of the VIR-MS spectrometer aboard the Dawn spacecraft - which will examine Asteroid 4 Vesta, a body possessing surficial pyroxenes - will be sufficient to provide some constraints on pyroxene composition.  相似文献   

15.
We present a mineralogical assessment of 12 Maria family asteroids, using near-infrared spectral data obtained over the years 2000-2009 combined with visible spectral data (when available) to cover the spectral interval of 0.4-2.5 μm. Our analysis indicates the Maria asteroid family, which is located adjacent to the chaotic region of the 3:1 Kirkwood Gap, appears to be a true genetic family composed of assemblages analogous to mesosiderite-type meteorites. Dynamical models by Farinella et al. (Farinella, P., Gunczi, R., Froeschlé, Ch., Froeschlé, C., [1993]. Icarus 101, 174-187) predict this region should supply meteoroids into Earth-crossing orbits. Thus, the Maria family is a plausible source of some or all of the mesosiderites in our meteorite collections. These individual asteroids were most likely once part of a larger parent object that was broken apart and dispersed. One of the Maria dynamical family members investigated, ((695) Bella), was found to be unrelated to the genetic Maria family members. The parameters of (695) Bella indicate an H-chondrite assemblage, and that Bella may be a sister or daughter of Asteroid (6) Hebe.  相似文献   

16.
We report an unexpected variability among mid-infrared spectra (IRTF and Spitzer data) of eight S-type asteroids for which all other remote sensing interpretations (e.g. VNIR spectroscopy, albedo) yield similar compositions. Compositional fitting making use of their mid-IR spectra only yields surprising alternative conclusions: (1) these objects are not “compositionally similar” as the inferred abundances of their main surface minerals (olivine and pyroxene) differ from one another by 35% and (2) carbonaceous chondrite and ordinary chondrite meteorites provide an equally good match to each asteroid spectrum.Following the laboratory work of Ramsey and Christensen (Ramsey, M.S., Christensen, P.R. [1998]. J. Geophys. Res. 103, 577-596), we interpret this variability to be physically caused by differences in surface particle size and/or the effect of space weathering processes. Our results suggest that the observed asteroids must be covered with very fine (<5 μm) dust that masks some major and most minor spectral features. We speculate that the compositional analysis may be improved with a spectral library containing a wide variety of well characterized spectra (e.g., olivine, orthopyroxene, feldspar, iron, etc.) obtained from very fine powders. In addition to the grain size effect, space weathering processes may contribute as well to the reduction of the spectral contrast. This can be directly tested via new laboratory irradiation experiments.  相似文献   

17.
We have conducted a radar-driven observational campaign of 22 main-belt asteroids (MBAs) focused on Bus–DeMeo Xc- and Xk-type objects (Tholen X and M class asteroids) using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). Sixteen of our targets were near-simultaneously observed with radar and those observations are described in a companion paper (Shepard, M.K., and 19 colleagues [2010]. Icarus, in press). We find that most of the highest metal-content asteroids, as suggested by radar, tend to exhibit silicate absorption features at both 0.9 and 1.9 μm, and the lowest metal-content asteroids tend to exhibit either no bands or only the 0.9 μm band. Eleven of the asteroids were observed at several rotational longitudes in the near-infrared and significant variations in continuum slope were found for nine in the spectral regions 1.1–1.45 μm and 1.6–2.3 μm. We utilized visible wavelength data (Bus, S.J., Binzel, R.P. [2002b]. Icarus 158, 146–177; Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., Barucci, M.A. [2010]. Icarus 210, 655–673.) for a more complete compositional analysis of our targets. Compositional evidence is derived from our target asteroid spectra using two different methods: (1) a χ2 search for spectral matches in the RELAB database, and (2) parametric comparisons with meteorites. This paper synthesizes the results of the RELAB search and the parametric comparisons with compositional suggestions based on radar observations. We find that for six of the seven asteroids with the highest iron abundances, our spectral results are consistent with the radar evidence (16 Psyche, 216 Kleopatra, 347 Pariana, 758 Mancunia, 779 Nina, and 785 Zwetana). Three of the seven asteroids with the lowest metal abundances, our spectral results are consistent with the radar evidence (21 Lutetia, 135 Hertha, 497 Iva). The remaining seven asteroids (22 Kalliope, 97 Klotho, 110 Lydia, 129 Antigone, 224 Oceana, 678 Fredegundis, and 771 Libera) have ambiguous compositional interpretations when comparing the spectral analogs to the radar analogs. The number of objects with ambiguous results from this multi-wavelength survey using visible, near-infrared, and radar wavelengths indicates that perhaps a third diagnostic wavelength region (such as the mid-infrared around 2–4 μm, the mid-infrared around 10–15 μm, and/or the ultraviolet around 0.2–0.4 μm) should be explored to resolve the discrepancies.  相似文献   

18.
Lucy F. Lim  Joshua P. Emery 《Icarus》2011,213(2):510-523
We present the thermal infrared (5-35 μm) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph (“IRS”; Houck, J.R. et al. [2004]. Astrophys. J. Suppl. 154, 18-24) together with new groundbased lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 ± 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (HV) at that rotational phase to be 12.58 ± 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 ± 0.4 km with a visible albedo pV = 0.142 ± 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 ± 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 ±  2.8 K and beaming parameter η = 1.16 ± 0.05. Thermophysical modeling places a lower limit of on the thermal inertia of the asteroid’s surface layer (if the surface is very smooth) but more likely values fall between 30 and depending on the sense of rotation.The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 μm reststrahlen band, the 15-16.5 μm Si-O-Si stretching region, and the 16-25 μm reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range Wo2±1En74±2Fs24±1. Spectral deconvolution of the 9-12 μm reststrahlen features indicates that up to ≈20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non-cumulate eucrite as the major component on the surface of 956 Elisa, although cumulate eucrite material may be present at abundances lower than that of the diogenite component.Analysis of new near-IR spectra of 956 Elisa with the Modified Gaussian Model (MGM; Sunshine, J.M., Pieters, C.M., Pratt, S.F. [1990]. J. Geophys. Res. 95 (May), 6955-6966) results in two pyroxene compositions: 75% magnesian low-Ca pyroxene and 25% high-Ca pyroxene. High-Ca pyroxene is not evident in the mid-IR data, but may belong to a component that is underrepresented in the mid-IR spectrum either because of its spatial distribution on the asteroid or because of its particle size. High-Ca pyroxenes that occur as exsolution lamellae may also be more evident spectrally in the NIR than in the mid-IR. In any case, we find that the mid-IR spectrum of 956 Elisa is dominated by emission from material of diogenite-like composition, which has very rarely been observed among asteroids.  相似文献   

19.
We present reflectance spectra of 19 V-type asteroids obtained at the 3.6 m Telescopio Nazionale Galileo covering 0.8 to 2.5 μm. For 8 of these asteroids we obtained also visible spectra in the same observational run. The range from 0.8 to 2.5 μm, encompassing the 1 and 2 μm pyroxene features, allows a precise mineralogical characterization of these asteroids. The obtained data suggests the possible coexistence of distinct mineralogical groups among the V-type asteroids, either probing different layers of (4) Vesta or coming from different bodies. No clear correlation was found between mineralogies and the objects being, or not, member of the Vesta dynamical family.  相似文献   

20.
Processes such as the solar wind sputtering and micrometeorite impacts can modify optical properties of surfaces of airless bodies. This explains why spectra of the main belt asteroids, exposed to these ‘space weathering’ processes over eons, do not match the laboratory spectra of ordinary chondrite (OC) meteorites. In contrast, an important fraction of Near Earth Asteroids (NEAs), defined as Q-types in the asteroid taxonomy, display spectral attributes that are a good match to OCs. Here we study the possibility that the Q-type NEAs underwent recent encounters with the terrestrial planets and that the tidal gravity (or other effects) during these encounters exposed fresh OC material on the surface (thus giving it the Q-type spectral properties). We used numerical integrations to determine the statistics of encounters of NEAs to planets. The results were used to calculate the fraction and orbital distribution of Q-type asteroids expected in the model as a function of the space weathering timescale, tsw (see main text for definition), and maximum distance, r, at which planetary encounters can reset the surface. We found that tsw ∼ 106 yr (at 1 AU) and r ∼ 5Rpl, where Rpl is the planetary radius, best fit the data. Values tsw < 105 yr would require that r > 20Rpl, which is probably implausible because these very distant encounters should be irrelevant. Also, the fraction of Q-type NEAs would be probably much larger than the one observed if tsw > 107 yr. We found that tsw ∝ q2, where q is the perihelion distance, expected if the solar wind sputtering controls tsw, provides a better match to the orbital distribution of Q-type NEAs than models with fixed tsw. We also discuss how the Earth magnetosphere and radiation effects such as YORP can influence the spectral properties of NEAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号