首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments on the hydrogenation of CO on pure CO and CO-H2O mixed ice have been performed at temperatures between 8 and 20 K. We obtained temperature and compositional dependence of the effective reaction rate constants. Results indicate that hydrogenation proceeds efficiently on pure solid CO and CO-H2O mixed ice at temperatures below 10 and 20 K, respectively. Rate constants for pure CO decreased significantly at 12 K compared to those obtained with CO-H2O mixed ice. Hydrogenation of CO at temperatures greater than 12 K were catalyzed by the H2O adjacent to the CO. The importance of the experimental results for some relevant astrophysical environments has also been outlined.  相似文献   

2.
It has been suggested that inclusions of CO2 or CO2 clathrate hydrates may comprise a portion of the polar deposits on Mars. Here we present results from an experimental study in which CO2 molecules were trapped in water ice deposited from CO2/H2O atmospheres at temperatures relevant for the polar regions of Mars. Fourier-Transform Infrared spectroscopy was used to monitor the phase of the condensed ice, and temperature programmed desorption was used to quantify the ratio of species in the generated ice films. Our results show that when H2O ice is deposited at 140-165 K, CO2 is trapped in large quantities, greater than expected based on lower temperature studies in amorphous ice. The trapping occurs at pressures well below the condensation point for pure CO2 ice, and therefore this mechanism may allow for CO2 deposition at the poles during warmer periods. The amount of trapped CO2 varied from 3% to 16% by mass at 160 K, depending on the substrate studied. Substrates studied were a tetrahydrofuran (C4H8O) base clathrate and Fe-montmorillonite clay, an analog for Mars soil. Experimental evidence indicates that the ice structures are likely CO2 clathrate hydrates. These results have implications for the CO2 content, overall composition, and density of the polar deposits on Mars.  相似文献   

3.
We propose an interpretation of the composition of volatiles observed in comets based on their trapping in the form of clathrate hydrates in the solar nebula. The formation of clathrates is calculated from the statistical thermodynamics of Lunine and Stevenson (1985, Astrophys. J. Suppl. 58, 493-531), and occurs in an evolutionary turbulent solar nebula described by the model of Hersant et al. (2001, Astrophys. J. 554, 391-407). It is assumed that clathrate hydrates were incorporated into the icy grains that formed cometesimals. The strong depletion of the N2 molecule with respect to CO observed in some comets is explained by the fact that CO forms clathrate hydrates much more easily than does N2. The efficiency of this depletion, as well as the amount of trapped CO, depends upon the amount of water ice available in the region where the clathration took place. This might explain the diversity of CO abundances observed in comets. The same theory, applied to the trapping of volatiles around 5 AU, explains the enrichments in Ar, Kr, Xe, C, and N with respect to the solar abundance measured in the deep troposphere of Jupiter [Gautier et al 2001a] and [Gautier et al 2001b].  相似文献   

4.
Recent detection of methane (CH4) on Mars has generated interest in possible biological or geological sources, but the factors responsible for the reported variability are not understood. Here we explore one potential sink that might affect the seasonal cycling of CH4 on Mars - trapping in ices deposited on the surface. Our apparatus consisted of a high-vacuum chamber in which three different Mars ice analogs (water, carbon dioxide, and carbon dioxide clathrate hydrates) were deposited in the presence of CH4 gas. The ices were monitored for spectroscopic evidence of CH4 trapping using transmission Fourier-Transform Infrared (FT-IR) spectroscopy, and during subsequent sublimation of the ice films the vapor composition was measured using mass spectrometry (MS). Trapping of CH4 in water ice was confirmed at deposition temperatures <100 K which is consistent with previous work, thus validating the experimental methods. However, no trapping of CH4 was observed in the ice analogs studied at warmer temperatures (140 K for H2O and CO2 clathrate, 90 K for CO2 snow) with approximately 10 mTorr CH4 in the chamber. From experimental detection limits these results provide an upper limit of 0.02 for the atmosphere/ice trapping ratio of CH4. If it is assumed that the trapping mechanism is linear with CH4 partial pressure and can be extrapolated to Mars, this upper limit would indicate that less than 1% is expected to be trapped from the largest reported CH4 plume, and therefore does not represent a significant sink for CH4.  相似文献   

5.
The trapping and release of H2, CO, CO2, CH4, Ar, Ne, and N2 by amorphous water ice was studied experimentally under dynamic conditions, at low temperatures starting at 16°K, with gas pressure of 5 × 10?8?10?6 Torr. CO, CH4, Ar, and N2 were found to be released in three or four distinct temperature ranges, each resulting from a different trapping mechanism: (a) 30–55°K, where the gas frozen on the water ice evaporates; (b) 135–155°K, where gas is squeezed out of the water ice during the transformation of amorphous ice to cubic ice; (c) 165–190°K, where gas and water are released simultaneously, probably by the evaporation of a clathrate hydrate, and, occasionally (d) 160–175°K, where deeply buried gas is released during the transformation of cubic ice to hexagonal ice. If the third range is indeed due to clathrate formation, CO was found to form this compound. CO2 did not form a clathrate under the experimental conditions. Excess hydrogen did not affect the occlusion of other gases. Hydrogen itself was trapped only at 16°K. Neon was not trapped at 25°K. With cubic ice, the only trapping mechanism is freezing of gas on the ice surface. No fractionation between the gas phase and the ice was observed with a mixture of CO and Ar. Massive ejection of ice grains was observed during the evaporation of the gas in three (a,c,d) out of the four ranges. The experimental results are used to explain several cometary phenomena, especially those occurring at large heliocentric distances, and are applied also to Titan's atmospheric composition and to the possible ejection of ice grains from Enceladus.  相似文献   

6.
Several substances besides water ice have been detected on the surface of Europa by spectroscopic sensors, including CO2, SO2, and H2S. These substances might occur as pure crystalline ices, as vitreous mixtures, or as clathrate hydrate phases, depending on the system conditions and the history of the material. Clathrate hydrates are crystalline compounds in which an expanded water ice lattice forms cages that contain gas molecules. The molecular gases that may constitute Europan clathrate hydrates may have two possible ultimate origins: they might be primordial condensates from the interstellar medium, solar nebula, or jovian subnebula, or they might be secondary products generated as a consequence of the geological evolution and complex chemical processing of the satellite. Primordial ices and volatile-bearing compounds would be difficult to preserve in pristine form in Europa without further processing because of its active geological history. But dissociated volatiles derived from differentiation of a chondritic rock or cometary precursor may have produced secondary clathrates that may be present now. We have evaluated the current stability of several types of clathrate hydrates in the crust and the ocean of Europa. The depth at which the clathrates of SO2, CO2, H2S, and CH4 are stable have been obtained using both the temperatures observed in the surface [Spencer, J.R., Tamppari, L.K., Martin, T.Z., Travis, L.D., 1999. Temperatures on Europa from Galileo photopolarimeter-radiometer: Nighttime thermal anomalies. Science 284, 1514-1516] and thermal models for the crust. In addition, their densities have been calculated in order to determine their buoyancy in the ocean, obtaining different results depending upon the salinity of the ocean and type of clathrate. For instance, assuming a eutectic composition of the system MgSO4H2O for the ocean, CO2, H2S, and CH4 clathrates would float but SO2 clathrate would sink to the seafloor; an ocean of much lower salinity would allow all these clathrates to sink, except that CH4 clathrate would still float. Many geological processes may be driven or affected by the formation, presence, and destruction of clathrates in Europa such as explosive cryomagmatic activity [Stevenson, D.J., 1982. Volcanism and igneous processes in small icy satellites. Nature 298, 142-144], partial differentiation of the crust driven by its clathration, or the local retention of heat within or beneath clathrate-rich layers because of the low thermal conductivity of clathrate hydrates [Ross, R.G., Kargel, J.S., 1998. Thermal conductivity of Solar System ices, with special reference to martian polar caps. In: Schmitt, B., De Berg, C., Festou, M. (Eds.), Solar System Ices. Kluwer Academic, Dordrecht, pp. 33-62]. On the surface, destabilization of these minerals and compounds, triggered by fracture decompression or heating could result in formation of chaotic terrain morphologies, a mechanism that also has been proposed for some martian chaotic terrains [Tanaka, K.L., Kargel, J.S., MacKinnon, D.J., Hare, T.M., Hoffman, N., 2002. Catastrophic erosion of Hellas basin rim on Mars induced by magmatic intrusion into volatile-rich rocks. Geophys. Res. Lett. 29 (8); Kargel, J.S., Prieto-Ballesteros, O., Tanaka K.L., 2003. Is clathrate hydrate dissociation responsible for chaotic terrains on Earth, Mars, Europa, and Triton? Geophys. Res. 5. Abstract 14252]. Models of the evolution of the ice shell of Europa might take into account the presence of clathrate hydrates because if gases are vented from the silicate interior to the water ocean, they first would dissolve in the ocean and then, if the gas concentrations are sufficient, may crystallize. If any methane releases occur in Europa by hydrothermal or biological activity, they also might form clathrates. Then, from both geological and astrobiological perspectives, future missions to Europa should carry instrumentation capable of clathrate hydrate detection.  相似文献   

7.
Methane clathrate hydrate reservoirs capped by overlying permafrost have been proposed as potential sources of atmospheric methane plumes on Mars. However, the surface flux of methane from hydrate dissociation is limited by the diffusion rate of methane through the overlying ice. Assuming hydrates underlay the entire plume footprint, the maximum diffusion path length is expected to be less than 15 m, depths too shallow to stabilize pure methane hydrates under Mars geothermal and lithostatic conditions at low to mid latitudes. Therefore, pure methane hydrates confined within permafrost could not produce methane surface fluxes of the magnitude observed near the equator. However, the addition of 10% H2S, a secondary gas commonly associated with methane production on Earth, expands the hydrate stability field, with clathrates expected within 10 m of the surface at the equator and at depths less than 1 m at higher latitudes. This indicates that H2S would also be expected to be released as well as methane if the plumes have a confined hydrate reservoir source.  相似文献   

8.
Eric Chassefière 《Icarus》2009,204(1):137-271
The observations of methane made by the PFS instrument onboard Mars Express exhibit a definite correlation between methane mixing ratio, water vapor mixing ratio, and cloud optical depth. The recent data obtained from ground-based telescopes seem to confirm the correlation between methane and water vapor. In order to explain this correlation, we suggest that the source of gaseous methane is atmospheric, rather than at the solid surface of the planet, and that this source may consist of metastable submicronic particles of methane clathrate hydrate continuously released to the atmosphere from one or several clathrate layers at depth, according to the phenomenon of “anomalous preservation” evidenced in the laboratory. These particles, lifted up to middle atmospheric levels due to their small size, and therefore filling the whole atmosphere, serve as condensation nuclei for water vapor. The observed correlation between methane and water vapor mixing ratios could be the signature of the decomposition of the clathrate crystals by condensation-sublimation processes related to cloud activity. Under the effect of water condensation on crystal walls, metastability could be broken and particles be eroded, resulting in a subsequent irreversible release of methane to the gas phase. Using PFS data, and according to our hypothesis, the lifetime of gaseous methane is estimated to be smaller than an upper limit of 6 ± 3 months, much smaller than the lifetime of 300 yr calculated from atmospheric chemical models. The reason why methane has a short lifetime might be the occurrence of heterogeneous chemical decomposition of methane in the subsurface, where it is known since Viking biology experiments that oxidants efficiently decompose organic matter. If true, it is shown by using existing models of H2O2 penetration in the regolith that methane could prevent H2O2 from penetrating in the subsurface, and further oxidizing the soil, at depths larger than a few millimeters. The present source of methane clathrate, acting over the last few hundred thousand or million years, could have given rise to the thin CO2-ice layer covering the permanent water ice south polar cap. The hypothesis proposed in this paper requires, to be validated, a number of laboratory experiments studying the stability of methane clathrates in martian atmospheric conditions, and the kinetics and amplitude of clathrate particle erosion in presence of condensing water vapor. Detailed future observations of methane, and associated modeling, will allow to more accurately quantify the production rate of methane clathrate, its temporal variability at seasonal scale, and possibly to locate the source(s) of clathrates at the surface.  相似文献   

9.
Jules M. Goldspiel 《Icarus》2011,211(1):238-743
Young gullies and gully deposits on walls of martian craters have been cited as evidence that liquid water flowed on the surface of Mars relatively recently. Effects of variable environmental conditions at the surface of Mars are modeled and applied to the case of groundwater emergence from shallow aquifers to investigate whether groundwater is a viable source to enable the erosion of these gullies. The model includes detailed treatment of ice growth in the aquifer. Model results indicate that groundwater discharge can be maintained under the current environmental conditions if the aquifer permeability is like that of terrestrial gravel or higher, if the aquifer is 350 K or warmer, or if the aquifer is a brine with a freezing point depressed to 250 K or below. Groundwater discharge cannot be maintained for the conservative case of a cold, pure water, semi-pervious aquifer. Cold (275 K) pure water pervious (gravel) aquifers, warm (350 K) pure water semi-pervious aquifers, and cold (275 K) CaCl2 brine semi-pervious aquifers all exhibit a dependence of discharge on season, latitude and slope orientation in our modeling. Seasonal, latitudinal and azimuthal discharge variations are strongest for cold CaCl2 brine semi-pervious aquifers, with discharges from this aquifer type favoring equator-facing slopes at mid and high southern latitudes. At all latitudes and slope azimuths under our nominal conditions, the cold pure water pervious aquifer, the cold pure water semi-pervious aquifer and the cold CaCl2 brine semi-pervious aquifer all freeze completely shortly after the simulations are started. Discharge restarts in the summer for the cold pure water pervious aquifer and the cold brine aquifer, but discharge does not restart for the cold pure water semi-pervious aquifer. The warm pure water semi-pervious aquifer maintains daily seeps throughout the year at all but high latitudes. In the case of the cold pure water pervious aquifer, approximately 500,000 m3 of water could be discharged from a mid-latitude, 150-m thick aquifer with a 20-m wide seepage face orientated towards the equator or the pole after a single undermining-induced event before ice growth seals the seepage face. For a brine semi-pervious aquifer with the same dimensions, 200-300 m3 of water could be released from a mid-latitude 20-m wide equator-facing seepage face before the fresh exposure is sealed for the fall and winter seasons. Our results do not rule out groundwater emergence as a means of creating some recent gullies, but they indicate that rather special and perhaps unusual conditions would be required.  相似文献   

10.
We have conducted high-pressure experiments in the H2O-CH4 and H2O-CH4-NH3 systems in order to investigate the stability of methane clathrate hydrates, with an optical sapphire-anvil cell coupled to a Raman spectrometer for sample characterization. The results obtained confirm that three factors determine the stability of methane clathrate hydrates: (1) the bulk methane content of the samples; (2) the presence of additional gas compounds such as nitrogen; (3) the concentration of ammonia in the aqueous solution. We show that ammonia has a strong effect on the stability of methane clathrates. For example, a 10 wt.% NH3 solution decreases the dissociation temperature of methane clathrates by 14-25 K at pressures above 5 MPa. Then, we apply these new results to Titan’s conditions. Dissociation of methane clathrate hydrates and subsequent outgassing can only occur in Titan’s icy crust, in presence of locally large amounts of ammonia and in a warm context. We propose a model of cryomagma chamber within the crust that provides the required conditions for methane outgassing: emplacement of an ice plume triggers the melting (if solid) or heating (if liquid) of large ammonia-water pockets trapped at shallow depth, and the generated cryomagmas dissociate surrounding methane clathrate hydrates. We show that this model may allow for the outgassing of significant amounts of methane, which would be sufficient to maintain the presence of methane in Titan’s atmosphere for several tens of thousands of years after a large cryovolcanic event.  相似文献   

11.
Radar observations in the Deuteronilus Mensae region by Mars Reconnaissance Orbiter have constrained the thickness and dust concentration found within mid-latitude ice deposits, providing an opportunity to more accurately estimate the rheology of ice responsible for the formation of lobate debris aprons based on their apparent age of ∼100 Myr. We developed a numerical model simulating ice flow under martian conditions using results from ice deformation experiments, theory of ice grain growth based on terrestrial ice cores, and observational constraints from radar profiles and laser altimetry. By varying the ice grain size, the ice temperature, the subsurface slope, and the initial ice volume we determine the combination of parameters that best reproduce the observed LDA lengths and thicknesses over a period of time comparable to the apparent ages of LDA surfaces (90-300 Myr). We find that an ice temperature of 205 K, an ice grain size of 5 mm, and a flat subsurface slope give reasonable ages for many LDAs in the northern mid-latitudes of Mars. Assuming that the ice grain size is limited by the grain boundary pinning effect of incorporated dust, these results limit the dust volume concentration to less than 4%. However, assuming all LDAs were emplaced by a single event, we find that there is no single combination of grain size, temperature, and subsurface slope which can give realistic ages for all LDAs, suggesting that some or all of these variables are spatially heterogeneous. Based on our model we conclude that the majority of northern mid-latitude LDAs are composed of clean (?4 vol%), coarse (?1 mm) grained ice, but regional differences in either the amount of dust mixed in with the ice, or in the presence of a basal slope below the LDA ice must be invoked. Alternatively, the ice temperature and/or timing of ice deposition may vary significantly between different mid-latitude regions. Either eventuality can be tested with future observations.  相似文献   

12.
This investigation uses linear mixture modeling employing cryogenic laboratory reference spectra to estimate surface compositions and water ice grain sizes of Europa’s ridged plains and smooth low albedo plains. Near-infrared spectra for 23 exposures of ridged plains materials are analyzed along with 11 spectra representing low albedo plains. Modeling indicates that these geologic units differ both in the relative abundance of non-ice hydrated species and in the abundance and grain sizes of water ice. The background ridged plains in our study area appear to consist predominantly of water ice (∼46%) with approximately equal amounts (on average) of hydrated sulfuric acid (∼27%) and hydrated salts (∼27%). The solutions for the smooth low albedo plains are dominated by hydrated salts (∼62%), with a relatively low mean abundance of water ice (∼10%), and an abundance of hydrated sulfuric acid similar to that found in ridged plains (∼27%). The model yields larger water ice grain sizes (100 μm versus 50-75 μm) in the ridged plains. The 1.5-μm water ice absorption band minimum is found at shorter wavelengths in the low albedo plains deposits than in the ridged plains (1.498 ± .003 μm versus 1.504 ± .001 μm). The 2.0-μm band minimum in the low albedo plains exhibits a somewhat larger blueshift (1.964 ± .006 μm versus 1.983 ± .006 μm for the ridged plains).The study area spans longitudes from 168° to 185°W, which includes Europa’s leading side-trailing side boundary. A well-defined spatial gradient of sulfuric acid hydrate abundance is found for both geologic units, with concentrations increasing in the direction of the trailing side apex. We associate this distribution with the exogenic effects of magnetospheric charged particle bombardment and associated chemical processing of surface materials (the radiolytic sulfur cycle). However, one family of low albedo plains exposures exhibits sulfuric acid hydrate abundances up to 33% lower than found for adjacent exposures, suggesting that these materials have undergone less processing, thus implying that these deposits may have been emplaced more recently.Modeling identifies high abundances (to 30%) of magnesium sulfate brines in the low albedo plains exposures. Our investigation marks the first spectroscopic identification of MgSO4 brine on Europa. We also find significantly higher abundances of sodium-bearing species (bloedite and mirabilite) in the low albedo plains. The results illuminate the role of radiolytic processes in modifying the surface composition of Europa, and may provide new constraints for models of the composition of Europa’s putative subsurface ocean.  相似文献   

13.
Laurel E. Senft 《Icarus》2011,214(1):67-81
Impact craters on icy satellites display a wide range of morphologies, some of which have no counterpart on rocky bodies. Numerical simulation studies have struggled to reproduce the diversity of features, such as central pits and transitions in crater depth with increasing diameter, observed on the icy Galilean satellites. The transitions in crater depth (at diameters of about 26 and 150 km on Ganymede and Callisto) have been interpreted as reflecting subsurface structure. Using the CTH shock physics code, we model the formation of craters with diameters between 400 m and about 200 km on Ganymede using different subsurface temperature profiles. Our calculations include recent improvements in the model equation of state for H2O and quasi-static strength parameters for ice. We find that the shock-induced formation of dense high-pressure polymorphs (ices VI and VII) creates a gap in the crater excavation flow, which we call discontinuous excavation. For craters larger than about 20 km, discontinuous excavation concentrates a hot plug of material (>270 K and mostly on the melting curve) in the center of the crater floor. The size and occurrence of the hot plug are in good agreement with the observed characteristics of central pit craters, and we propose that a genetic link exists between them. We also derive depth versus diameter curves for different internal temperature profiles. In a 120 K isothermal crust, calculated craters larger than about 30 km diameter are deeper than observed and do not reproduce the transition at about 26 km diameter. Calculated crater depths are shallower and in good agreement with observations between about 30 and 150 km diameter using a warm thermal gradient representing a convective interior. Hence, the depth-to-diameter transition at about 26 km reflects thermal weakening of ice. Finally, simulation results generally support the hypothesis that the anomalous interior morphologies for craters larger than 100 km are related to the presence of a subsurface ocean.  相似文献   

14.
Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a ‘honeycomb’ structure created by sublimation. This ice could have a density as low as c. 450 kg m−3 and a thermal conductivity as low as 1.6 W m−1 K−1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will act to reduce the surface temperature, and hence rate of sublimation, thereby prolonging the lifespan of any liquid water beneath.  相似文献   

15.
In this paper, we use a statistical thermodynamic approach to quantify the efficiency with which clathrates on the surface of Titan trap noble gases. We consider different values of the Ar, Kr, Xe, CH4, C2H6 and N2 abundances in the gas phase that may be representative of Titan's early atmosphere. We discuss the effect of the various parameters that are chosen to represent the interactions between the guest species and the ice cage in our calculations. We also discuss the results of varying the size of the clathrate cages. We show that the trapping efficiency of clathrates is high enough to significantly decrease the atmospheric concentrations of Xe and, to a lesser extent, of Kr, irrespective of the initial gas phase composition, provided that these clathrates are abundant enough on the surface of Titan. In contrast, we find that Ar is poorly trapped in clathrates and, as a consequence, that the atmospheric abundance of argon should remain almost constant. We conclude that the mechanism of trapping noble gases via clathration can explain the deficiency in primordial Xe and Kr observed in Titan's atmosphere by Huygens, but that this mechanism is not sufficient to explain the deficiency in Ar.  相似文献   

16.
An investigation of the activity of Comet C/1995 O1 (Hale-Bopp) with a thermophysical nucleus model that does not rely on the existence of amorphous ice is presented. Our approach incorporates recent observations allowing to constrain important parameters that control cometary activity. The model accounts for heat conduction, heat advection, gas diffusion, sublimation, and condensation in a porous ice-dust matrix with moving boundaries. Erosion due to surface sublimation of water ice leads to a moving boundary. The movement of the boundary is modeled by applying a temperature remapping technique which allows us to account for the loss in the internal energy of the eroded surface material. These kind of problems are commonly referred to as Stefan problems. The model takes into account the diurnal rotation of the nucleus and seasonal effects due to the strong obliquity of Hale-Bopp as reported by Jorda et al. (Jorda, L., Rembor, K., Lecacheux, J., Colom, P., Colas, F., Frappa, E., Lara, L.M. [1997]. Earth Moon Planets 77, 167-180). Only bulk sublimation of water and CO ice are considered without further assumptions such as amorphous ices with certain amount of occluded CO gas. Confined and localized activity patterns are investigated following the reports of Lederer and Campins (Lederer, S.M., Campins, H. [2002]. Earth Moon Planets 90, 381-389) about the chemical heterogeneity of Hale-Bopp and of Bockelée-Morvan et al. (Bockelée-Morvan, D., Henry, F., Biver, N., Boissier, J., Colom, P., Crovisier, J., Despois, D., Moreno, R., Wink, J. [2009]. Astron. Astrophys. 505, 825-843) about a strong CO source at a latitude of 20°. The best fit to the observations of Biver et al. (Biver, N. et al. [2002]. Earth Moon Planets 90, 5-14) is obtained with a low thermal conductivity of 0.01 W m−1 K−1. This is in agreement with recent results of the Deep Impact mission to 9P/Tempel 1 (Groussin, O., A’Hearn, M.F., Li, J.-Y., Thomas, P.C., Sunshine, J.M., Lisse, C.M., Meech, K.J., Farnham, T.L., Feaga, L.M., Delamere, W.A. [2007]. Icarus 187, 16-25) and with previous thermal simulations (Kührt, E. [1999]. Space Sci. Rev. 90, 75-82). The water production curve matches the production rates well from −4 AU pre-perihelion to the outgoing leg while the model does not reproduce so well the water production beyond 4 AU pre-perihelion. The CO production curve is a good fit to the measurements of Biver et al. (2002) over the whole measured heliocentric range from −7 AU pre- to 15 AU post-perihelion.  相似文献   

17.
Spectral observations have detected methane within the martian atmosphere (Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M. [2004]. Science 306, 1758–1761; Mumma, M.J. et al. [2009]. Science 323, 1041–1045), however, the origin of the methane has not been determined. Methane clathrate (also referred to as methane hydrate) has been suggested as a potential subsurface reservoir, storing and releasing biologic and/or abiogenic methane. In this study, rates of methane hydrate formation and dissociation were measured experimentally at 234–264 K and 1.4–4.7 MPa to test the clathrate reservoir hypothesis. Initial formation rates range from 4.3 × 10?6 to 8.1 × 10?5 mol m?2 s?1. Results show decreasing rates of formation over time in individual experiments, indicating initial rapid clathration, followed by diffusion-limited transport of methane into the ice through the previously formed hydrate. These experiments indicate increased pressure results in increased formation rates, likely the result of higher concentration gradients, enhancing the methane diffusion flux into the solid phase. Experiments conducted at elevated temperatures produced faster initial rates of formation, resulting from increased kinetic energy of methane molecules and/or thickening of the Quasi-Liquid Layer. Based on this temperature dependence, the activation energy for methane hydrate formation from ice was determined to be 35.9 kJ/mol. Hydrate dissociation experiments initiated by depressurization or warming at conditions between 222 K and 265 K and 0.1–2.0 MPa were conducted following each formation experiment, yielding methane hydrate dissociation rates from 3.01 × 10?6 to 9.92 × 10?5 mol m?2 s?1. While both hydrate dissociation and formation showed decreasing instantaneous rates over the course of each experiment, the transition between the initial rate of dissociation and the interpreted diffusion-limited period of continued dissociation was more abrupt than that observed in formation experiments, supporting an ice shielding effect. The initial concentration of methane in the solid phase had a significant effect on hydrate dissociation rates. Higher methane concentrations in the solid phase produce faster initial rates, likely due to increased concentration gradients, thus increasing the diffusion component of dissociation. Increased temperatures also produced faster dissociation rates, yielding an activation energy for dissociation of 32.7 kJ/mol. The rates determined within this study suggest that small near-surface methane hydrate reservoirs are a feasible source for recent methane plumes detected on Mars. Rates of methane release from gas hydrates also indicate that gas hydrate dissociation may have played a role in forming ancient chaos terrain and associated outflow channels.  相似文献   

18.
I.D.S. Grey 《Icarus》2004,168(2):467-474
Research on the impact cratering process on icy bodies has been largely based on the most abundant ice, water. However little is known about the influence of other relatively abundant ices such as ammonia. Accordingly, data are presented studying the influence on cratering in ammonia rich ice using spherical 1 mm diameter stainless steel projectiles at velocities of 4.8±0.5 km s−1. The ice target composition ranged from pure water ice, to solutions containing 50% ammonia and 50% water by weight. Results for crater depth, diameter, volume and depth/diameter ratio are given. The results showed that the presence of ammonia in the ice had a very strong influence on crater diameter and morphology. It was found that with only a 10% concentration of ammonia, crater diameter significantly decreased, and then at greater concentrations became independent of ammonia content. Crater depth was independent of the presence of ammonia in the ice, and the crater volume appeared to decrease as ammonia concentration increased. Between ammonia concentrations of 10 and 20% crater morphology visibly changed from wide shallow craters with a deeper central pit to craters with a smoothly increasing depth from the crater rim to centre. Thus, a small amount of ammonia within a water ice surface may have a major effect on crater morphology.  相似文献   

19.
This work reports theoretical infrared and electronic absorption spectra of formaldehyde and its ions in gas phase and H2O ice at different levels of theory. The vibrational frequencies from this work at B3LYP/6-311++G** level are in agreement with the experimental determinations. The gas phase dipole moment of neutral formaldehyde 2.4 D is in excellent agreement with the experimental value of 2.33 D. An influence of ice on vibrational frequencies of neutral formaldehyde molecule was obtained using Self Consistence Isodensity Polarizable Continuum Model (SCI-PCM) with dielectric constant 78.5. Significant shift in vibrational frequencies for neutral formaldehyde molecule when studied in H2O ice and upon ionization is observed. All the vibrational modes in cation and anion of formaldehyde in gas phase are red shifted than the corresponding modes in neutral formaldehyde. Two vibrational modes are blue shifted and all other modes are red shifted for neutral formaldehyde in H2O ice. Time dependent density functional theory (TDDFT) is used to study electronic absorption spectrum of neutral formaldehyde and its charged states. It is found that like neutral formaldehyde, its cation and anion also display strong σσ electronic transitions in vacuum and far UV regions. This study should help in detecting formaldehyde molecule and its ions in gas phase and in H2O ice in different astronomical environment.  相似文献   

20.
Chemistry on the icy surface of Europa is heavily influenced by the incident energetic particle flux from the jovian magnetosphere. The majority (>75%) of this energy is in the form of high energy electrons (extending to >10 MeV). We have simulated the electron irradiation environment of Europa with a vacuum system containing a high-energy electron gun for irradiation of ice samples formed on a gold mirror cooled with a cryostat. Pure water films of ∼2.6 μm thickness were grown at 100 K and then either cooled (to 80 K), warmed (to 120 K) or left at 100 K and subsequently irradiated with 10 keV electrons. The production of hydrogen peroxide (H2O2) was monitored by observation of the 2850 cm−1 (3.5 μm) band. Equilibrium concentrations of H2O2, in units of percent by number H2O2 relative to water, were found to be 0.043% (80 K), 0.029% (100 K), and 0.0063% (120 K). These values are 33%, 22%, and 5%, respectively, that of the reported surface concentration on the leading hemisphere of Europa (Carlson, R.W., Anderson, M.S., Johnson, R.E., Smythe, W.D., Hendrix, A.R., Barth, C.A., et al. [1999]. Science 283(5410), 2062-2064) and less than the equilibrium concentrations formed by ion irradiation. In addition to the ice film temperature, the current of electrons was varied between different experiments to determine the production and destruction of H2O2 as a function of both electron flux and ice temperature. Variation in current was found to have little effect on the results other than accelerating arrival at radiolytic equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号