首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Deep Impact flyby spacecraft includes a 1.05 to 4.8 μm infrared (IR) spectrometer. Although ice was not observed on the surface in the impact region, strong absorptions near 3 μm due to water ice are detected in IR measurements of the ejecta from the impact event. Absorptions from water ice occur throughout the IR dataset beginning three seconds after impact through the end of observations, ∼45 min after impact. Spatially and temporally resolved IR spectra of the ejecta are analyzed in conjunction with laboratory impact experiments. The results imply an internal stratigraphy for Tempel 1 consisting of devolatilized materials transitioning to unaltered components at a depth of approximately one meter. At greater depths, which are thermally isolated from the surface, water ice is present. Up to depths of 10 to 20 m, the maximum depths excavated by the impact, these pristine materials consist of very fine grained (∼1±1 μm) water ice particles, which are free from refractory impurities.  相似文献   

2.
The ejecta blankets of impact craters in volatile‐rich environments often possess characteristic layered ejecta morphologies. The so‐called double‐layered ejecta (DLE) craters are characterized by two ejecta layers with distinct morphologies. The analysis of high‐resolution image data, especially HiRISE and CTX, provides new insights into the formation of DLE craters. A new phenomenological excavation and ejecta emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim—a well‐preserved DLE crater—and studies of other DLE craters. The observations show that the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a debris avalanche or (if saturated with water) a debris flow mode after landing, overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits during the emplacement stage that overrun and superimpose parts of the outer ejecta layer. Based on our model, DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock‐induced vaporization and melting of ground ice, leading to high ejection angles, proximal landing positions, and an ejecta curtain with relatively wet (in terms of water in liquid form) composition in the distal part versus dryer composition in the proximal part. As a consequence, basal melting of ice components in the ejecta at the transient crater rim, which is induced by frictional heating and the enhanced pressure at depth, initiates an outwards directed collapse of crater rim material in a translational slide mode. Our results indicate that similar processes may also be applicable for other planetary bodies with volatile‐rich environments, such as Ganymede, Europa, and the Earth.  相似文献   

3.
Hale crater, a 125 × 150 km impact crater located near the intersection of Uzboi Vallis and the northern rim of Argyre basin at 35.7°S, 323.6°E, is surrounded by channels that radiate from, incise, and transport material within Hale’s ejecta. The spatial and temporal relationship between the channels and Hale’s ejecta strongly suggests the impact event created or modified the channels and emplaced fluidized debris flow lobes over an extensive area (>200,000 km2). We estimate ∼1010 m3 of liquid water was required to form some of Hale’s smaller channels, a volume we propose was supplied by subsurface ice melted and mobilized by the Hale-forming impact. If 10% of the subsurface volume was ice, based on a conservative porosity estimate for the upper martian crust, 1012 m3 of liquid water could have been present in the ejecta. We determine a crater-retention age of 1 Ga inside the primary cavity, providing a minimum age for Hale and a time at which we propose the subsurface was volatile-rich. Hale crater demonstrates the important role impacts may play in supplying liquid water to the martian surface: they are capable of producing fluvially-modified terrains that may be analogous to some landforms of Noachian Mars.  相似文献   

4.
Abstract— Mars Global Surveyor (MGS) and Mars Odyssey data are being used to revise the Catalog of Large Martian Impact Craters. Analysis of data in the revised catalog provides new details on the distribution and morphologic details of 6795 impact craters in the northern hemisphere of Mars. This report focuses on the ejecta morphologies and central pit characteristics of these craters. The results indicate that single‐layer ejecta (SLE) morphology is most consistent with impact into an ice‐rich target. Double‐layer ejecta (DLE) and multiple‐layer ejecta (MLE) craters also likely form in volatile‐rich materials, but the interaction of the ejecta curtain and target‐produced vapor with the thin Martian atmosphere may be responsible for the large runout distances of these ejecta. Pancake craters appear to be a modified form of double‐layer craters where the thin outer layer has been destroyed or is unobservable at present resolutions. Pedestal craters are proposed to form in an icerich mantle deposited during high obliquity periods from which the ice has subsequently sublimated. Central pits likely form by the release of vapor produced by impact into ice‐soil mixed targets. Therefore, results from the present study are consistent with target volatiles playing a dominant role in the formation of crater morphologies found in the Martian northern hemisphere.  相似文献   

5.
Yuichi Fujii 《Icarus》2009,201(2):795-801
We performed low-velocity impact experiments of gypsum spheres with porosity ranging from 0 to 61% and diameter ranging from 25 to 83 mm. The impact velocity was from 0.2 to 22 m/s. The target was an iron plate. The outcome of gypsum spheres with porosity 31-61% was different from those of non-porous ice [Higa M., Arakawa, M., Maeno, N., 1996. Planet. Space Sci. 44, 917-925; Higa M., Arakawa, M., Maeno, N., 1998. Icarus 133, 310-320] and non-porous gypsum. In between the intact and fragmentation modes, the outcome of the non-porous ice and gypsum was crack growth at the impact point. However, the outcome of the porous gypsum was compaction. We found that the restitution coefficients of the porous gypsum spheres were all in a similar range, in spite of the difference of the porosity and size at impact velocities up to about 10 m/s where they begin to be fragmented in pieces. Moreover, there is not a large difference between the restitution coefficient of porous and non-porous gypsum. These results collectively indicate that restitution coefficient of gypsum spheres of cm-size is not strongly dependent upon the porosity and compaction process.  相似文献   

6.
Double-layered ejecta (DLE) craters are distinctive among the variety of crater morphologies observed on Mars, but the mechanism by which they form remains under debate. We assess two ejecta emplacement mechanisms: (1) atmospheric effects from ejecta curtain-induced vortices or a base surge and (2) ballistic emplacement followed by a landslide of ejecta assisted by either surface- or pore-ice. We conduct a morphological analysis of the ejecta facies for three DLE craters which impacted into irregular pre-existing topography. We find that the unique topographic environments affected the formation of grooves and the inner facies, and thus appear to be inconsistent with an atmospheric-effects origin but are supportive of the landslide hypothesis. We distinguish between the two landslide models (lubrication by either surface- or pore-ice) by assessing relationships between DLE crater ejecta and morphologic features indicative of buried ice deposits, including sublimation pits, ring-mold craters, expanded secondary craters, and excess ejecta craters. The association of DLE craters with these features suggests that surface ice was present at the time of the impacts that formed the DLE craters. We also compare the Froude numbers of DLE crater ejecta to landslides, and find that the ejecta of DLE craters are kinematically and frictionally similar to terrestrial landslides that overran glaciers. This suggests that the grooves on DLE craters may plausibly form through the same shear/splitting mechanism as the landslides. In summary, our analysis supports the hypothesis that DLE craters form through meteoroid impacts into decameters-thick surface ice deposits (emplaced during periods of higher obliquity) followed by ejecta sliding on the ice.  相似文献   

7.
The Lunar CRater Observation and Sensing Satellite mission (LCROSS) impacted the moon in a permanently shadowed region of Cabeus crater on October 9th 2009, excavating material rich in water ice and volatiles. The thermal and spatial evolution of LCROSS ejecta is essential to interpretation of regolith properties and sources of released volatiles. The unique conditions of the impact, however, made analysis of the data based on canonical ejecta models impossible. Here we present the results of a series of impact experiments performed at the NASA Ames Vertical Gun Range designed to explore the LCROSS event using both high-speed cameras and LCROSS flight backup instruments. The LCROSS impact created a two-component ejecta plume: the usual inverted lampshade “low-angle” curtain, and a high speed, high-angle component. These separate components excavated to different depths in the regolith. Extrapolations from experiments match the visible data and the light curves in the spectrometers. The hollow geometry of the Centaur led to the formation of the high-angle plume, as was evident in the LCROSS visible and infrared measurements of the ejecta. Subsequent ballistic return of the sunlight-warmed ejecta curtain could scour the surface out to many crater radii, possibly liberating loosely bonded surface volatiles (e.g., H2). Thermal imaging reveals a complex, heterogeneous distribution of heated material after crater formation that is present but unresolved in LCROSS data. This material could potentially serve as an additional source of energy for volatile release.  相似文献   

8.
Abstract— The northern lowland plains, such as those found in Acidalia and Utopia Planitia, have high percentages of impact craters with fluidized ejecta. In both regions, the analysis of crater geometry from Mars Orbiter Laser Altimeter (MOLA) data has revealed large ejecta volumes, some exceeding the volume of excavation. Moreover, some of the crater cavities and fluidized ejecta blankets of these craters are topographically perched above the surrounding plains. These perched craters are concentrated between 40 and 70°N in the northern plains. The atypical high volumes of the ejecta and the perched craters suggest that the northern lowlands have experienced one or more episodes of resurfacing that involved deposition and erosion. The removal of material, most likely caused by the sublimation of ice in the materials and their subsequent erosion and transport by the wind, is more rapid on the plains than on the ejecta blankets. The thermal inertia difference between the ejecta and the surrounding plains suggests that ejecta, characterized by a lower thermal inertia, protect the underneath terrain from sublimation. This results in a decreased elevation of the plains relative to the ejecta blankets. Sublimation and eolian erosion can be particularly high during periods of high obliquity.  相似文献   

9.
We examine the effects of Io ejecta on the surface and environment of Europa. We find that the observed sulfur on the trailing side of Europa, when interpreted as a deposit in equilibrium between implanation of, and sputtering by, corotating Io ejecta, implies a slow loss of material from Europa by sputtering. From this we infer that the spectrum of particles sputtered from water ice is soft. The quantity of observed sulfur and its confinement to the trailing hemisphere appear to exclude significant implantation and sputtering by energetic heavy ions. We also conclude that the contribution from Europa to the magnetospheric plasma (even at Europa itself) is negligible compared to the matter ejected from Io.  相似文献   

10.
The detection of fresh impact craters with bright floors and ejecta (arising from fresh clean water ice) in the northern lowlands of Mars (Byrne et al., 2009b, Science 325, 1674), together with observations of polygonal structures and evidence from the Phoenix probe, suggests that there are substantial water ice deposits just below the surface over large areas. Specifically in cases of the larger craters observed, the impacts themselves may have raised the temperature and the pressure of the water ice deposits locally to values which allow phase changes. In this paper, we use smoothed particle hydrodynamics to model hyper-velocity impacts. We estimate peak shock pressures in a solid water ice target covered by a layer of loose material, modeled by pre-damaged dunite. In addition, we account for the possibility of a thin layer of sub-surface water ice by using a three-layer model where the ice is surrounded by dunite. We find that the peak shock pressures reached in the simulated events are high enough to produce several 100-1000 kg of liquid water depending upon the impact parameters and the exact shock pressure needed for the phase change. A difficulty remains however in determining whether liquid is generated or whether a type of fluidized ice is produced (or indeed some combination of the two). We also note that the process can become rather complex as the number of layers increases because of reflections of the shock at sub-surface boundaries—a process which should lead to increased fluidization.  相似文献   

11.
Jere H. Lipps  Sarah Rieboldt 《Icarus》2005,177(2):515-527
Jupiter's moon Europa possesses an icy shell kilometers thick that may overlie a briny ocean. The inferred presence of water, tidal and volcanic energy, and nutrients suggests that Europa is potentially inhabited by some kind of life; indeed Europa is a primary target in the search for life in the Solar System although no evidence yet exists for any kind of life. The thickness of the icy crust would impose limits on life, but at least 15 broad kinds of habitats seem possible for Europa. They include several on the sea floor, at least 3 in the water column, and many in the ice itself. All of these habitats are in, or could be transported to, the icy shell where they could be exposed by geologic activity or impacts so they might be explored from the surface or orbit by future planetary missions. Taphonomic processes that transport, preserve, and expose habitats include buoyant ice removing bottom habitats and sediment to the underside of the ice, water currents depositing components of water column habitats on the ice bottom, cryovolcanoes depositing water on the surface, tidal pumping bringing water column and ice habitats to the near-surface ice, and subice freezing and diapiric action incorporating water column and bottom ice habitats into the lower parts of the icy shell. The preserved habitats could be exposed at or near the surface of Europa chiefly in newly-formed ice, tilted or rotated ice blocks, ridge debris, surface deposits, fault scarps, the sides of domes and pits, and impact craters and ejecta. Future exploration of Europa for life must consider careful targeting of sites where habitats are most likely preserved or exist close to the surface.  相似文献   

12.
《Icarus》1987,71(2):268-286
Very high resolution Viking Orbiter images (8–17 m per pixel) have been used to investigate the morphology of Martian rampart crater ejecta blankets and the crater interiors, with the objective of identifying the fluidizing medium for the ejecta and the physical properties of the target rock. The occurrence of well-preserved, small-scale pressure ridges and scour marks, evidence for subsidence around isolated buried blocks in partially eroded ejecta lobes, and the stability of crater walls and distal ramparts argue for ground ice being the dominant state for volatiles within the target rocks at the time of impact. Rare examples of channels (190–650 m wide) on the surfaces of ejecta blankets, and on the inner walls of the crater Cerulli, indicate that in some instances liquid water was incorporated into the ejecta during its emplacement. No morphological evidence has been found to discount the idea that atmospheric effects were partially responsible for ejecta fluidization, but it is clear that these effects were not the sole reason for the characteristic lobate deposits surrounding at least some rampart craters on Mars.  相似文献   

13.
New three-dimensional hydrodynamic simulations of hypervelocity impacts into the crust of Titan were undertaken to determine the fraction of liquid water generated on the surface of Saturn's largest moon over its history and, hence, the potential for surface—modification of hydrocarbons and nitriles by exposure to liquid water. We model in detail an individual impact event in terms of ejecta produced and melt generated, and use this to estimate melt production over Titan's history, taking into account the total flux of the impactors and its decay over time. Our estimates show that a global melt layer at any time after the very beginning of Titan's history is improbable; but transient melting local to newly formed craters has occurred over large parts of the surface. Local maxima of the melt are connected with the largest impact events. We also calculate the amount of volatiles delivered at the impact with various impact velocities (from 3 km/s for possible Hyperion fragments to 11 km/s for Jupiter family comets) and their retention as a possible source of Titan's atmosphere. We find the probability of impact ejecta escaping Titan with its modern dense and thick atmosphere is rather low, and dispersal of Titan organics throughout the rest of the Solar System requires impactors tens of kilometers in diameter. Water ice melting and exposure of organics to liquid water has been widespread because of impacts, but burial or obscuration of craters by organic deposits or cryovolcanism is aided by viscous relaxation. The largest impactors may breach an ammonia-water mantle layer, creating a circular albedo contrast rather than a crater.  相似文献   

14.
Ian Giblin  Donald R. Davis 《Icarus》2004,171(2):487-505
We present results from 27 impact experiments using porous (porosity ranging from 0.39 to 0.54) ice targets and solid ice projectiles at impact speeds ranging from 90 to 155 m/s. These targets were designed to simulate Kuiper Belt Objects (KBOs) in structure. We measured a specific energy for shattering, , of 2.1×105 erg/g for those snowball targets hit by intact ice projectiles; this is of the same order as that measured for solid ice targets. The fragment mass distribution follows a power law, although the exponent is not simply related to the largest fragment size as assumed by fragmentation models. We provide the first measurement of the three-dimensional mass-velocity distribution for disrupted ice targets and find that fragment speeds range from ∼2 to ∼20 m/s. The fraction of collisional kinetic energy that is partitioned into ejecta speeds is between 1 and 15% (although it should be noted that the lower limit is more reliable than the upper).  相似文献   

15.
Abstract— We present numerical simulations of crater formation under Martian conditions with a single near‐surface icy layer to investigate changes in crater morphology between glacial and interglacial periods. The ice fraction, thickness, and depth to the icy layer are varied to understand the systematic effects on observable crater features. To accurately model impact cratering into ice, a new equation of state table and strength model parameters for H2O are fitted to laboratory data. The presence of an icy layer significantly modifies the cratering mechanics. Observable features demonstrated by the modeling include variations in crater morphometry (depth and rim height) and icy infill of the crater floor during the late stages of crater formation. In addition, an icy layer modifies the velocities, angles, and volumes of ejecta, leading to deviations of ejecta blanket thickness from the predicted power law. The dramatic changes in crater excavation are a result of both the shock impedance and the strength mismatch between layers of icy and rocky materials. Our simulations suggest that many of the unusual features of Martian craters may be explained by the presence of icy layers, including shallow craters with well‐preserved ejecta blankets, icy flow related features, some layered ejecta structures, and crater lakes. Therefore, the cratering record implies that near‐surface icy layers are widespread on Mars.  相似文献   

16.
Impact strength and cratering ejecta were studied for porous targets of pure ice and icy-silicate mixture in order to clarify the accumulation and destruction (shattering) condition of small icy bodies. The icy projectile impacted on the cylindrical targets with the porosity up to 55% at a velocity of 150 to 670 m/s at −10°C. The porosity dependence of the impact strength and that of the maximum ejecta velocity were measured in each type of these targets. As a result, the maximum ejecta velocity normalized by the impact velocity (Ve-max/Vi) is found to depend only on the porosity (φ), irrespective of the target type; a relationship is derived to be Ve-max/Vi=−2.17φ+1.29. The impact strength of pure ice increased with increased target porosity, but that of mixture target had an opposite trend; that is, the strength decreased with increased porosity. These porosity dependencies of the impact strength could be explained by the porosity dependence of the physical parameters such as impact pressure, pressure decay, and static strength. Finally, the accumulation of small icy bodies is discussed to show that the collisional events can be divided into three types by the porosity and the collision velocity according to our experimental results: mass loss, rubble pile formation, and regolith formation (compaction).  相似文献   

17.
Viking images of Martian craters with rampart-bordered ejecta deposits reveal distinct impact ejecta morphology when compared to that associated with similar-sized craters on the Moon and Mercury. Topographic control of distribution, lobate and terraced margins, cross-cutting relationships, and multiple stratigraphic units are evidence for ejecta emplacement by surface flowage. It is suggested that target water explosively vaporized during impact alters initial ballistic trajectories of ejecta and produces surging flow emplacement. The dispersal of particulates during a series of controlled steam explosions generated by interaction of a thermite melt with water has been experimentally modeled. Preliminary results indicate that the mass ratio of water to melt and confining pressure control the degree of melt fragmentation (ejecta particle size) and the energy and mode of melt-ejecta dispersal. Study of terrestrial, lobate, volcanic ejecta produced by steam-blast explosions reveals that particle size and vapor to clast volume ratio are primary parameters characterizing the emplacement mechanism and deposit morphology. Martian crater ramparts are formed when ejecta surges lose fluidizing vapors and transported particles are deposited en masse. This deposition results from flow yield strength increasing above shear stress due to interparticle friction.  相似文献   

18.
The Deep Impact oblique impact cratering experiment   总被引:1,自引:0,他引:1  
The Deep Impact probe collided with 9P Tempel 1 at an angle of about 30° from the horizontal. This impact angle produced an evolving ejecta flow field very similar to much smaller scale oblique-impact experiments in porous particulate targets in the laboratory. Similar features and phenomena include a decoupled vapor/dust plume at the earliest times, a pronounced downrange bias of the ejecta, an uprange “zone of avoidance” (ZoA), heart-shaped ejecta ray system (cardioid pattern), and a conical (but asymmetric) ejecta curtain. Departures from nominal cratering evolution, however, provide clues on the nature of the impact target. These departures include: fainter than expected flash at first contact, delayed emergence of the self-luminous vapor/dust plume, uprange-directed plume, narrow early-time uprange ray followed by a late-stage uprange plume, persistence of ejecta asymmetries (and the uprange ZoA) throughout the approach sequence, emergence of a downrange ZoA at late times, detachment of uprange curved rays, very long lasting non-radial ejecta rays, and high-angle ejecta plume lasting over the entire encounter. The first second of crater formation most closely resembles the consequences of a highly porous target, while later evolution indicates that the target may be layered as well. Experiments also reveal that impacts into highly porous targets produce a vapor/dust plume directed back up the incoming trajectory. This uprange plume is attributed to cavitation within a narrow penetration funnel. The observed lateral expansion speed of the initial vapor plume downrange provides an estimate for the total vaporized mass equal to ∼5mp (projectile masses) of water ice or 6mp of CO2. The downrange plume speed is consistent with the gas expansion added to the downrange horizontal component of the DI probe. Based on high-speed spectroscopy of experimental impacts, the observed delay in brightening of the DI plume may be the result of delayed condensation of carbon, in addition to silicates. Observed molecular species in the initial self-luminous vapor plume likely represent recombination products from completely dissociated target materials. The crater produced by the impact can be estimated from Earth-based observations of total ejected mass to be 130-220 m in diameter. This size range is consistent with a 220 m-diameter circular feature at the point of impact visible in highly processed, deconvolved HRI images. The final crater, however, may resemble an inverted sombrero-hat, with a deep central pit surrounded by a shallow excavation crater. Excavated distal material observed from the Earth was likely from the upper few meters contrasted with ballistic ejecta observed from the DI flyby, which included deep materials (10-30 m) within the diffuse plume above the crater and shallower (5-10 m) materials within the ejecta curtain.  相似文献   

19.
Abstract– Within the frame of the MEMIN research unit (Multidisciplinary Experimental and Numerical Impact Research Network), impact experiments on sandstone targets were carried out to systematically study the influence of projectile mass, velocity, and target water saturation on the cratering and ejection processes. The projectiles were accelerated with two‐stage light‐gas guns (Ernst‐Mach‐Institute) onto fine‐grained targets (Seeberger sandstone) with about 23% porosity. Collection of the ejecta on custom‐designed catchers allowed determination of particle shape, size distribution, ejection angle, and microstructures. Mapping of the ejecta imprints on the catcher surface enabled linking of the different patterns to ejection stages observed on high‐speed videos. The increase in projectile mass from 0.067 to 7.1 g correlates with an increase in the total ejected mass; ejecta angles, however, are similar in range for all experiments. The increase in projectile velocity from 2.5 to 5.1 km s?1 correlates with a total ejecta mass increase as well as in an increase in comminution efficiency, and a widening of the ejecta cone. A higher degree of water saturation of the target yields an increase in total ejecta mass up to 400% with respect to dry targets, higher ejecta velocity, and a steeper cone. These data, in turn, suggest that the reduced impedance contrast between the quartz grains of the target and the pores plays a primary role in the ejecta mass increase, while vaporization of water determines the ejecta behavior concerning ejecta velocity and particle distribution.  相似文献   

20.
Abstract— In order to study the catastrophic disruption of porous bodies such as asteroids and planetesimals, we conducted several impact experiments using porous gypsum spheres (porosity: 50%). We investigated the fragment mass and velocity of disrupted gypsum spheres over a wide range of specific energies from 3 times 103 J/kg to 5 times 104 J/kg. We compared the largest fragment mass (m1/Mt) and the antipodal velocity (Va) of gypsum with those of non‐porous materials such as basalt and ice. The results showed that the impact strength of gypsum was notably higher than that of the non‐porous bodies; however, the fragment velocity of gypsum was slower than that of the non‐porous bodies. This was because the micro‐pores dispersed in the gypsum spheres caused a rapid attenuation of shock pressure in them. From these results, we expect that the collisional disruption of porous bodies could be significantly different from that of non‐porous bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号