首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work the collapsing process of a spherically symmetric star, made of dust cloud, in the background of dark energy is studied for two different gravity theories separately, i.e., DGP Brane gravity and Loop Quantum gravity. Two types of dark energy fluids, namely, Modified Chaplygin gas and Generalised Cosmic Chaplygin gas are considered for each model. Graphs are drawn to characterize the nature and the probable outcome of gravitational collapse. A comparative study is done between the collapsing process in the two different gravity theories. It is found that in case of dark matter, there is a great possibility of collapse and consequent formation of Black hole. In case of dark energy possibility of collapse is far lesser compared to the other cases, due to the large negative pressure of dark energy component. There is an increase in mass of the cloud in case of dark matter collapse due to matter accumulation. The mass decreases considerably in case of dark energy due to dark energy accretion on the cloud. In case of collapse with a combination of dark energy and dark matter, it is found that in the absence of interaction there is a far better possibility of formation of black hole in DGP brane model compared to Loop quantum cosmology model.  相似文献   

2.
A two-fluid dark matter model, in which dark matter is represented as a two-component fluid thermodynamic system, without interaction between the constituent particles of different species, and with each distinct component having a different four-velocity, was recently proposed in Harko and Lobo [T. Harko, F.S.N. Lobo, Phys. Rev. D 83 (2011) 124051]. In the present paper we further investigate the two-fluid dark matter model, by assuming that the two dark matter components are pressureless, non-comoving fluids. For this particular choice of equations of state the dark matter distribution can be described as a single anisotropic fluid, with vanishing tangential pressure, and non-zero radial pressure. We investigate the properties of this model in the region of constant velocity galactic rotation curves, where the dynamics of the test particles is essentially determined by the dark matter only. By solving the general relativistic equations of mass continuity and hydrostatic equilibrium we obtain the geometric and physical parameters of the dark matter halos in the constant velocity region in an exact analytical form. The general, radial coordinate dependent, functional relationship between the energy density and the radial pressure is also determined, and it differs from a simple barotropic equation of state.  相似文献   

3.
Some requirements are discussed for solid hydrogen formation in cold dark dense clouds in galaxies. If temperatures in the clouds are near the microwave background temperature of 2.7 K and molecular hydrogen densities are 3×105 cm–3 or higher, as suggested by recent observations, it may be possible for solid hydrogen objects to form. Comet size hydrogen solids could build from molecular hydrogen condensation on grains and by collisions. Heated primarily by cosmic rays, objects with 100 km radii could last billions of years. The larger objects may be detectable, in the future, by sensitive gravitational lensing or eclipsing observations. Other possibilities are discussed for future detection of the cold dark dense molecular hydrogen regions. In our model, helium is added along with the hydrogen to preserve the primordial helium to hydrogen mass ratio,Y p , of the standard model. In the hot regions of the universe the solid hydrogen objects sublime and melt so our model predictsY p =0.250, the same as other baryonic dark matter models with identical values of =0.1,H o =50 and =6.8×10–10. This value cannot be ruled out at present because of the large systematic uncertainties in the observed value of 0.232. In the cold dark regions where solid hydrogen objects exist, we predict thatY p will be greater than 0.250. Observations are not yet sensitive enough to measure this ratio.  相似文献   

4.
In this paper we study the interacting dark energy model in the framework of Hořava-Lifshitz cosmology. Using an additional canonical scalar field, we formulate Hořava-Lifshitz cosmology with an effective interacting dark energy sector. We show that the interacting dark energy model in the framework of Hořava gravity exhibiting phantom behavior.  相似文献   

5.
Vilkovisky has claimed to have solved the black hole backreaction problem and finds that black holes lose only ten percent of their mass to Hawking radiation before evaporation ceases. We examine the implications of this scenario for cold dark matter, assuming that primordial black holes are created during the reheating period after inflation. The mass spectrum is expected to be dominated by 10-gram black holes. Nucleosynthesis constraints and the requirement that the earth presently exist do not come close to ruling out such black holes as dark matter candidates. They also evade the demand that the photon density produced by evaporating primordial black holes does not exceed the present cosmic radiation background by a factor of about one thousand.  相似文献   

6.
To reconstruct dark energy models the redshift z eq , marking the end of radiation era and the beginning of matter-dominated era, can play a role as important as z t , the redshift at which deceleration parameter experiences a signature flip. To implement the idea we propose a variable equation of state for matter that can bring a smooth transition from radiation to matter-dominated era in a single model. A popular Λ ρ dark energy model is chosen for demonstration but found to be unacceptable. An alternative Λ ρ a 3 model is proposed and found to be more close to observation.  相似文献   

7.
8.
9.
Results of a search for new H objects in the Cepheus region are presented. The observations on which the search was based were made in 1979 and 1985 at the 40 Schmidt telescope of the Byurakan Astrophysical Observatory with a 4° objective prism. Of the 80 emission stars detected, 68 are new. Most of them are fainter than the sun in absolute magnitude. A large fraction of the emission stars discovered may be flare stars as well as T Tau and Herbig Ae/Be stars.Translated fromAstrofizika, Vol. 39, No. 1, pp. 57–65, January–March, 1996.  相似文献   

10.
11.
We consider a tachyonic scalar field as a model of dark energy with interaction between components in the case of variable G and Λ. We assume a flat Universe with a specific form of scale factor and study cosmological parameters numerically and graphically. Statefinder analysis is also performed. For a particular choice of interaction parameters we succeed in obtaining an analytical expression of densities. We find that our model will be stable at the late stage but there is an instability in the early Universe, so we propose this model as a realistic model of our Universe.  相似文献   

12.
13.
Soft X-rays (0.1–0.8 keV) from the region including the Oph dark cloud were observed with the SAS-3 low-energy X-ray telescope. No X-ray absorption by the cloud was observed. This indicates that the diffuse component of soft X-rays in this region is mostly from the foreground of the Oph cloud which is located at a distance of 160–200 pc.  相似文献   

14.
We study the evolution of the equation of state of viscous dark energy in the scope of Bianchi type III space-time. We consider a case where the dark energy is minimally coupled to the perfect fluid, as well as in direct interaction with it. The viscosity and the interaction between the two fluids are parameterized by constants ζ0and σ, respectively. We have made a detailed investigation of the cosmological implications of this parametrization. To differentiate between different dark energy models,we have performed a geometrical diagnostic by using the statefinder pair {s, r}.  相似文献   

15.
We study the entropy-corrected version of the new agegraphic dark energy (NADE) model and dark matter in a spatially non-flat Universe and in the framework of Hořava-Lifshitz cosmology. For the two cases containing noninteracting and interacting entropy-corrected NADE (ECNADE) models, we derive the exact differential equation that determines the evolution of the ECNADE density parameter. Also the deceleration parameter is obtained. Furthermore, using a parametrization of the equation of state parameter of the ECNADE model as ω Λ(z)=ω 0+ω 1 z, we obtain both ω 0 and ω 1. We find that in the presence of interaction, the equation of state parameter ω 0 of this model can cross the phantom divide line which is compatible with the observation.  相似文献   

16.
Using near-simultaneous full disk solar X-ray images and Hei 10830 spectroheliograms from three rocket flights, we compare dark points identified on the Hei maps with X-ray bright points identified on the X-ray images. We find that for the largest and most obvious features there is a strong correlation: most Hei dark points correspond to X-ray bright points. However, about two-thirds of the X-ray bright points were not identified on the basis of the helium data alone. Once an X-ray feature is identified it is almost always possible to find an underlying dark patch of enhanced Hei absorption which, however, would not a priori have been selected as a dark point. Therefore, the Hei dark points, using current selection criteria, cannot be used as a one-to-one proxy for the X-ray data. Hei dark points do, however, identify the locations of the stronger X-ray bright points.Visitor, National Solar Observatory. National Optical Astronomy Observatories operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

17.
Recently, a very strong correlation between the central surface density of stars and dynamical mass in 135 disk galaxies has been obtained. It has been shown that this central-surface-densities relation agrees very well with Modified Newtonian Dynamics(MOND). In this article, we show that if we assume the baryons have an isothermal distribution and dark matter exists, then it is possible to derive by means of the Jeans equation an analytic central-surface-densities relation connecting dark matter and baryons that agrees with the observed relation. We find that the observed central-surface-densities relation can also be accommodated in the context of dark matter provided the latter is described by an isothermal profile. Therefore, the observed relation is consistent with not only MOND.  相似文献   

18.
MacQueen  R.M.  Hendrickson  M.A.  Woods  J.C.  Lecinski  A.R.  Elmore  D.F.  White  O.R. 《Solar physics》2000,191(1):85-96
The intensity of a sample of large, high-contrast and isolated dark points has been observed with full-disk images in the light of Hei 1083 nm from the Chromospheric Helium line Intensity Photometer (CHIP) on Mauna Loa, Hawaii. Temporal variations in the intensity encompassing a broad range of time scales have been recorded. Long-term changes in the intensity, although highly variable, are characterized by e-folding times on the order of 5 h. Superposed on these variations are frequent intensity variations, which occur over time scales ranging from the typical observing cadence of 3 min, to tens of minutes. Microflares-involving intensity changes of at least 50% over periods of minutes are observed frequently. Rapid cadence ( min) observations reveal differences between rise and decay times and shorter-term variations in the intensity profiles of these microflares.  相似文献   

19.
20.
Ibohal, Ishwarchandra and Singh (Ibohal et al., Astrophys. Space Sci. 335, 581, 2011) proposed a class of exact, non-vacuum and conformally flat solutions of Einstein’s equations whose stress tensor T ab has negative pressure. We show that T ab corresponds to an anisotropic fluid and the equation of state parameter seems not to be ω=?1/2. We consider the authors’ constant cannot be the mass of a test particle but is related to a Rindler acceleration of a spherical distribution of uniformly accelerating observers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号